JPS60128658A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS60128658A
JPS60128658A JP58236851A JP23685183A JPS60128658A JP S60128658 A JPS60128658 A JP S60128658A JP 58236851 A JP58236851 A JP 58236851A JP 23685183 A JP23685183 A JP 23685183A JP S60128658 A JPS60128658 A JP S60128658A
Authority
JP
Japan
Prior art keywords
capacitor
trench
type
conductivity type
diffusion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58236851A
Other languages
Japanese (ja)
Inventor
Yukimasa Uchida
内田 幸正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58236851A priority Critical patent/JPS60128658A/en
Priority to KR1019840007692A priority patent/KR890004765B1/en
Priority to EP84115474A priority patent/EP0169938B1/en
Priority to DE8484115474T priority patent/DE3477532D1/en
Publication of JPS60128658A publication Critical patent/JPS60128658A/en
Priority to US07/857,727 priority patent/US5428236A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce distance between groove-shaped capacitors and to improve device capability to withstand errors in software by a method wherein a device is constituted of grooves extending from the surface of a semiconductor layer to the inside thereof, regions diffused with impurities of the first and second conductivity types, and electrodes extending from the inside at least to the vicinity of the openings with the intermediary of a capacitor-insulating film. CONSTITUTION:A part of each of activation regions 23a, 23b and both ends of an activation region 23c are respectively provided with groove-shaped capacitors 24a-24d. The groove-shaped capacitors 24a, 24b are positioned adjacent to each other. A p type diffused region 26a doped to be a diffused layer of the first conductivity type is formed in an Si substrate 21. In the p type diffused region 26a inside a groove 25a, an n type diffused region 27a of the second conductivity type is formed to be shallower than the p type diffused region 26a. In a groove- shaped capacitor 24a designed as such, an electrode 29 serves as the first capacitor electrode and the n type diffused region 27a as the second capacitor electrode.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体記憶装置に関し、特に記憶部としての
溝型キャパシタの構造を改良した半導体記憶装置に係わ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor memory device, and more particularly to a semiconductor memory device in which the structure of a trench type capacitor as a memory portion is improved.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ダイナミックメモリをはじめとする半導体記憶装置は、
その記憶容量が微細加工技1・行の進歩に伴って約3年
で4倍の速度で増大している。記憶容量の大容旦化に伴
ってメモリセル面積は急速に縮小されつづ(ブでいるが
、メモリセルの記憶キャパシタ値はラフ1〜エラーの防
止上及びレンズアンプのセンスのためのS/N比の確保
のために数十「Fの大きな値に維持する必要がある。
Semiconductor storage devices, including dynamic memory,
The storage capacity has increased four times in about three years due to advances in microfabrication technology. With the increase in memory capacity, the area of memory cells is rapidly decreasing (although the storage capacitor value of memory cells is increasing from rough 1 to S/N for error prevention and lens amplifier sensing). In order to secure the ratio, it is necessary to maintain a large value of several tens of F.

ところで、従来より単位面積当りのキ\・パシタ値を大
きくするために、記憶キャパシタを構成するMO3構造
の絶縁膜を薄膜化したり、絶縁膜材料を酸化シリコン膜
から窒化シリコン膜に変えたりしている。しかしながら
、これらの記憶キャパシタは半導体基板の表面を利用し
てM OS fM 造を形成するので、セル面積の微細
化に伴って、大きなキャパシタ値を得ることは自ずと限
界があった。
By the way, in order to increase the capacitor value per unit area compared to the past, the MO3 structure insulating film that constitutes the storage capacitor has been made thinner, and the insulating film material has been changed from silicon oxide film to silicon nitride film. There is. However, since these storage capacitors utilize the surface of a semiconductor substrate to form a MOS fM structure, there is a natural limit to obtaining a large capacitor value as the cell area becomes smaller.

このようなことから、最近、H、S unaml らは
、”A Corrugatecl Capacitor
 C(!11 (CCC) for Megabit 
Dynamic MO3Memories″’ 、I 
nternational E 1cctrlcDev
ices MeetingTecl+n1cal Di
gest 、講演番号26.9.1)I)、806〜8
08Dec、 1982で第1図に示す構造の溝型キャ
パシタを有するMOSメモリを発表した。即ち、第1図
中の1は例えばp型シリコン基板であり、この基板1の
表面から内部に亙って深い(例えば3〜5μm程度)溝
部2が設けられている。この溝部2内h\6間ロ部周辺
に屋って$1層多結晶シリコンからなるキャパシタ電極
3がキャパシタ絶縁膜4を介して設けられている。この
キャパシタ絶縁膜4(まSi 02 /Si 3 N4
 /Si 02の3層膜ブ)′1らなる。こうした基板
1、溝部2、キャパシタ絶縁膜4及びキャパシタ電極3
によって溝をキャ1<シタ5が構成されている。また、
前記溝型キャノ<シタ、5−に隣接するシリコン基板1
の表面には互(Xに電気的に分離されたn+型のソース
、ドレイン領域6.7が設けられている。これらソース
、]ζしづ′ン領域6.7間を少なくとも含む基板1音
す分上tこは、ゲート酸化膜8を介して第2層多結晶シ
1ノコンからなるゲート電極9が設けられて(Xる。こ
うしたソース、トレイン領域6、ア、グー1−1m (
L I賛8及びゲート電極9によって転送トランジスタ
10が構成されている。更に、前記ソース領域6は前記
溝型キャパシタ、5−の絶縁1! 4 Iこ接しており
、かつ前記ドレイン領域7は図示しないビット線と接続
されている。なお、図中の9′は隣接するメモリセルの
グー1〜電極である。
For this reason, recently, H. S. unaml et al.
C(!11 (CCC) for Megabit
Dynamic MO3Memories'', I
international E 1cctrlcDev
ices MeetingTecl+n1cal Di
gest, lecture number 26.9.1) I), 806-8
On 08 Dec 1982, a MOS memory having a trench type capacitor with the structure shown in FIG. 1 was announced. That is, 1 in FIG. 1 is, for example, a p-type silicon substrate, and a deep (for example, about 3 to 5 μm) groove portion 2 is provided extending from the surface of this substrate 1 to the inside. A capacitor electrode 3 made of $1 layer polycrystalline silicon is provided around the bottom part of the trench 2 with a capacitor insulating film 4 interposed therebetween. This capacitor insulating film 4 (Si 02 /Si 3 N4
It consists of a three-layer film of /Si02)'1. Such a substrate 1, a groove 2, a capacitor insulating film 4, and a capacitor electrode 3
The groove is configured such that ca1<shita5. Also,
The silicon substrate 1 adjacent to the groove-shaped cap 5-
N+ type source and drain regions 6.7 electrically isolated from each other are provided on the surface of the substrate. On top of this, a gate electrode 9 made of a second layer of polycrystalline silicon is provided via a gate oxide film 8 (X).
A transfer transistor 10 is configured by the LI electrode 8 and the gate electrode 9. Furthermore, the source region 6 is the insulation 1! of the trench capacitor 5-. 4 I, and the drain region 7 is connected to a bit line (not shown). Note that 9' in the figure is the electrode of the adjacent memory cell.

しかしながら、前述した第1図図示のMOSメモリは文
献中にも一部記載しであるように一つの溝型キャパシタ
と他の溝型キャパシタとの間で生じるパンチスルー現象
による情報の干渉にJ:す、メモリセル間の溝型キャパ
シタの距離を短くできず、高密度のメモリセルを実現で
きないとう欠点があった。即ち、一般にメモリセルを構
成づる転送トランジスタのドレインの接合容聞は、ヒツ
ト線容量を減らすために減少させることが要求されてい
る。このため、p型シリコン基板の11Mlffを下げ
る必要があるが、これによってM OS IM 造のキ
ャパシタ付近の基板に空乏層が広がり、パンデスルー現
象が生じ易くなる。こうしたバンプスルー現象は、一般
にシリコン基板表面近傍からの不純物イオン注入で防止
できる。しかしながら、第1図図示のようなシリコン基
板1に深い溝部2を形成して作られる溝型キャパシタ、
巨−では、シリコン基板1の深い部分にまで不純物のイ
オン注入を行なうことが困難であるため、隣接する溝型
キャパシタの底部付近同志でパンチスルー現争が生じ、
それを防止できないという重大な欠点があった。
However, as described in the literature, the MOS memory shown in FIG. However, there was a drawback that the distance between the trench capacitors between memory cells could not be shortened, making it impossible to realize high-density memory cells. That is, it is generally required that the drain junction capacity of a transfer transistor constituting a memory cell be reduced in order to reduce the human line capacitance. For this reason, it is necessary to lower 11Mlff of the p-type silicon substrate, but this spreads a depletion layer in the substrate near the MOS IM capacitor, making it easy to cause the pan-de-through phenomenon. Such a bump-through phenomenon can generally be prevented by implanting impurity ions from near the surface of the silicon substrate. However, a trench capacitor made by forming a deep trench 2 in a silicon substrate 1 as shown in FIG.
In the case of large capacitors, it is difficult to implant impurity ions deep into the silicon substrate 1, so a punch-through problem occurs between the bottoms of adjacent trench capacitors.
The major drawback was that it could not be prevented.

従って、従来の構造ではメモリセル間の溝型キャパシタ
間に長い距離をあける必要が生じ高密度のメモリセルを
実現するのは極めて困難であった。
Therefore, in the conventional structure, it is necessary to leave a long distance between the trench capacitors between memory cells, making it extremely difficult to realize a high density memory cell.

また、第1図の構造では、シリコン基板1の深い所で溝
型キャパシター5−により空乏層が伸び、α線の入射に
より生じた電荷をファネリング現象で集め易い為、ソフ
トエラーに対して弱いという欠点があった。
In addition, in the structure shown in FIG. 1, the depletion layer is extended by the trench capacitor 5- deep in the silicon substrate 1, and the charge generated by the incidence of α rays is likely to be collected by the funneling phenomenon, so it is said to be vulnerable to soft errors. There were drawbacks.

〔発明の目的〕[Purpose of the invention]

本発明は、単位面積当りのキャパシタ値が大きい溝型キ
ャパシタを備え、かつ該溝型キャパシターの距離を著し
く短縮でき、更に耐ソフトエラー性に優れた半導体層1
1!装置を提供しようとするものである。
The present invention provides a semiconductor layer 1 which is equipped with a trench capacitor having a large capacitor value per unit area, can significantly shorten the distance between the trench capacitors, and has excellent soft error resistance.
1! The aim is to provide equipment.

〔発明の概要〕[Summary of the invention]

本発明は、第1導電型の半導体層と、この牛導体層の表
面から内部に亙って設けられた溝部と、この溝部内面の
半導体層に設けられた該半導体層より高i度の第1導電
型の不純物拡散領域と、前記溝部内面の不純物拡散領域
に設けられた該拡散領域より接合深さが浅い第2導電型
の不純物拡散領域と、前記溝部内から少なくとし開口部
周辺に亙ってキャパシタ用絶縁膜を介して設()られた
電極とからなり、前記電極を第1の:1−ドパシタ電極
とし、前記第2導電型の不純物拡散領域を第2のキャパ
シタ電極とした構造のit型キ17パシタを具備したこ
とを特徴とするものである。こうした(M造において、
第1導電型の不純物拡散領域により、溝型キャパシタの
深い部分での空乏層の伸びを抑制して隣接する溝型キャ
パシタ間のパンチスルー現象を防止して高密度のメモリ
セルを可能とし、かつ第1導電型の不純物拡散領域の同
様の作用により耐ソフトエラー性を向上し、更に第1導
電型の不純物拡散領域と第2導電型の不純物拡散領域と
の間の接合容量により単位面積当りのキャパシタ値を増
大した半導体記憶装置を得ることができる。
The present invention includes a semiconductor layer of a first conductivity type, a groove provided from the surface to the inside of the conductor layer, and a semiconductor layer with a higher i degree than the semiconductor layer provided in the semiconductor layer on the inner surface of the groove. a first conductivity type impurity diffusion region, a second conductivity type impurity diffusion region provided in the impurity diffusion region on the inner surface of the trench and having a junction depth shallower than the diffusion region; and an electrode provided through a capacitor insulating film, wherein the electrode is a first :1-dopasitor electrode, and the impurity diffusion region of the second conductivity type is a second capacitor electrode. It is characterized by being equipped with an IT-type key 17 pacita. In these (M construction)
The impurity diffusion region of the first conductivity type suppresses the extension of the depletion layer in the deep part of the trench capacitor, thereby preventing the punch-through phenomenon between adjacent trench capacitors, thereby enabling high-density memory cells, and A similar effect of the first conductivity type impurity diffusion region improves soft error resistance, and furthermore, the junction capacitance between the first conductivity type impurity diffusion region and the second conductivity type impurity diffusion region improves the soft error resistance per unit area. A semiconductor memory device with increased capacitor value can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第2図及び第3図を参照して詳
細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 2 and 3.

第2図はダイナミックIvl OSメモリの一部を示す
平面図、第3図は第2図のIII−nuに)合う断面図
である。図中の21は例えば2X10 /cm3のアク
セプタ不純物(ボロン等)を含むp型シリコン基板であ
る。このシリコン基板21にはフィールド酸化膜22が
設けられており、かつシリコン基板21には該フィール
ド酸化膜22で分離された複数の島状の活性領域(メモ
リセル領域)238〜23cが形成されている。これら
活性領域23a、23bの一部及び活性領域23Cの両
端部には夫々溝型キVパシタ24a〜24dが設けられ
ており、かつ溝型キャパシタ24a、24bは互いに隣
接して配置されている。溝型キャパシタ24aは第3図
に示す如くシリコン基板21の表面から内部に亙っで設
けられた例えば深さ3μnLの溝部25aを備えている
。この溝部25aの内面のシリコン基板21には第1.
導電型の不純物拡散領域としてのn型拡散領域26aが
形成されている。このn型拡散領域26aは例えば深さ
が0゜4μmで、前記基板21の濃度より高い、例えば
2 X 10” /cm3の濃度を有する。また、前記
溝部25a内面のn型拡散領域26aには、該n型拡散
領域26aより浅い第2導電型の不純物拡散領域として
のn型拡散領M27aが形成されている。このn型拡散
領域27aは深さが0.2μmηで、濃度が例えば1 
X 10 ”/cm3のものである。
FIG. 2 is a plan view showing a part of the dynamic Ivl OS memory, and FIG. 3 is a cross-sectional view corresponding to III-nu in FIG. 2. 21 in the figure is a p-type silicon substrate containing, for example, an acceptor impurity (boron, etc.) of 2×10 2 /cm 3 . A field oxide film 22 is provided on the silicon substrate 21, and a plurality of island-shaped active regions (memory cell regions) 238 to 23c are formed on the silicon substrate 21, separated by the field oxide film 22. There is. Groove type capacitors 24a to 24d are provided in a portion of these active regions 23a, 23b and at both ends of the active region 23C, respectively, and the groove type capacitors 24a, 24b are arranged adjacent to each other. As shown in FIG. 3, the trench capacitor 24a includes a trench 25a having a depth of, for example, 3 μnL, extending from the surface of the silicon substrate 21 to the inside thereof. The silicon substrate 21 on the inner surface of the groove 25a has a first groove.
An n-type diffusion region 26a is formed as a conductive type impurity diffusion region. The n-type diffusion region 26a has a depth of, for example, 0°4 μm, and has a concentration higher than that of the substrate 21, for example, 2×10”/cm3. , an n-type diffusion region M27a as a second conductivity type impurity diffusion region shallower than the n-type diffusion region 26a is formed.The n-type diffusion region 27a has a depth of 0.2 μmη and a concentration of, for example, 1.
X 10”/cm3.

この日型拡散領域27aの前記溝型キャパシタ24bと
反対側の側部表面には延出部28aが形成されている。
An extending portion 28a is formed on the side surface of the day-shaped diffusion region 27a on the side opposite to the trench capacitor 24b.

前記溝部25a内から少なくとも該溝部25aの開口部
周辺に亙って第1層多結晶シリコンからなる電極29が
キャパシタ用絶縁膜としての例えば厚さ200人の酸化
シリコン膜30aを介して設けられている。こうした溝
型キャパシタ24aにおいて、前記電極29は第1のキ
ャパシタ電極として、前記n型拡散領域27aは第2の
キャパシタ電極として機能する。なお、電極29は各溝
型キャパシタ24a〜241)の共通電極となっている
。一方、前記溝型キャパシタ24bは溝部25b、n型
拡散領域26b、n型拡散領域27b1電極29及び酸
化シリコン膜3obとから構成されている。また、前記
溝型キャパシタ24C124dは詳細に示していないが
、前記溝型キャパシタ24a、2’4bと同様な構造に
なっている。
An electrode 29 made of a first layer of polycrystalline silicon is provided from inside the groove 25a to at least around the opening of the groove 25a via a silicon oxide film 30a having a thickness of, for example, 200 mm as an insulating film for the capacitor. There is. In such a trench capacitor 24a, the electrode 29 functions as a first capacitor electrode, and the n-type diffusion region 27a functions as a second capacitor electrode. Note that the electrode 29 serves as a common electrode for each of the groove capacitors 24a to 241). On the other hand, the trench capacitor 24b is composed of a trench 25b, an n-type diffusion region 26b, an n-type diffusion region 27b1, an electrode 29, and a silicon oxide film 3ob. Although the trench type capacitor 24C124d is not shown in detail, it has a similar structure to the trench capacitors 24a, 2'4b.

ここで溝型キャパシタの製造方法について第4図(a)
〜(C)を参照して簡単に説明する。まず、p型シリコ
ン基板21にj■択的にフィールド酸化膜22を形成す
ると共に、島状の活性領域23a、23b (23cは
図示せず)を形成した後、活性領域23a、23bの表
面に厚さ約1000人の酸化膜31を形成する。つづい
て、フォトレジストを塗布し、写真蝕刻法により酸化膜
31の溝部形成予定部上にレジストパターン(図示せず
)を形成した後、該レジストパターンをマスクとして反
応性イオンエツチングによりシリコン基板21を選択的
にエツチングして例えば深さ3μmの溝部25a、25
bを形成する(第4図(a)図示)。この後レジストパ
ターンを剥離した。
Here, Fig. 4(a) shows a method for manufacturing a trench type capacitor.
This will be briefly explained with reference to (C). First, a field oxide film 22 is selectively formed on a p-type silicon substrate 21, and island-shaped active regions 23a and 23b (23c is not shown) are formed. An oxide film 31 having a thickness of approximately 1,000 wafers is formed. Subsequently, a photoresist is applied and a resist pattern (not shown) is formed on the portion of the oxide film 31 where the groove is to be formed by photolithography, and then the silicon substrate 21 is etched by reactive ion etching using the resist pattern as a mask. For example, grooves 25a, 25 with a depth of 3 μm are formed by selective etching.
b (as shown in FIG. 4(a)). After that, the resist pattern was peeled off.

次いで、写真蝕刻法により転送1〜ランジスタのソース
領域の一部に対応する前記酸化膜31を選択的に除去し
た後、全面にp型不純物、例えばボロンをドープした酸
化シリコン膜(又は多結晶シリコン膜)32をCVD法
により堆積し、更に該ボロンドープ酸化シリコン膜32
を拡散源にしてボロンを溝部25a、25b内面のp型
シリコン基板21に熱拡散してn型拡散領域26a、2
6bを形成する(第4図(b)図示)。つづいて、ボロ
ンドープ酸化シリコン膜32を除去し、全面にリンドー
プ酸化シリコン膜(又は砒素1−−プ配化シリコン膜、
リンや砒素をドープした多結晶シリコンIl’J)33
をCVD法により堆積した後、該リンドープ酸化シリコ
ン膜33を拡散源にしてリンをp型拡散領域に26a、
26bに熱拡散して同拡散領域26.a、26bに夫々
n型拡1ik領域27a、27b及び延出部28a、2
8bを形成する(第4図(C)図示)。この後、図示し
ないが、リンドープ酸化シリコン膜を除去し、酸化膜も
除去し、更に、再度熱酸化処理を施して溝部内面を含む
露出した基板表面に酸化シリコン膜を形成し、ひきつづ
き全面に第1層多結晶シリコン膜を堆積し、これをパタ
ーニングして溝部内から少なくともその間口部周辺に亙
って電極を形成し、この電極をマスクとして前記酸化シ
リコン膜を選択的にエツチングしキャパシタ用の酸化シ
リコン膜を形成する。
Next, the oxide film 31 corresponding to part of the source region of the transfer 1 to transistor is selectively removed by photolithography, and then a silicon oxide film (or polycrystalline silicon The boron-doped silicon oxide film 32 is deposited by the CVD method.
is used as a diffusion source to thermally diffuse boron into the p-type silicon substrate 21 on the inner surface of the grooves 25a and 25b to form n-type diffusion regions 26a and 2.
6b (as shown in FIG. 4(b)). Subsequently, the boron-doped silicon oxide film 32 is removed, and the entire surface is covered with a phosphorous-doped silicon oxide film (or an arsenic 1-doped silicon film).
Polycrystalline silicon doped with phosphorus or arsenic Il'J)33
After depositing by CVD method, phosphorus is deposited in the p-type diffusion region 26a, using the phosphorus-doped silicon oxide film 33 as a diffusion source.
26b and the same diffusion region 26. n-type expansion regions 27a, 27b and extension portions 28a, 2 in a, 26b, respectively.
8b (as shown in FIG. 4(C)). After this, although not shown, the phosphorus-doped silicon oxide film is removed, the oxide film is also removed, and a thermal oxidation treatment is performed again to form a silicon oxide film on the exposed substrate surface including the inner surface of the groove. A one-layer polycrystalline silicon film is deposited and patterned to form an electrode from inside the trench to at least around the opening thereof, and using this electrode as a mask, the silicon oxide film is selectively etched to form a capacitor. Form a silicon oxide film.

また、前記各溝型キャパシタ24a〜24dに隣接した
各活性領域23a〜23cには転送トランジスタ348
〜34dが形成されている。転送i・ランジスタ34a
は、前記溝型キャパシタユニに隣接する活性領域23a
の表面に互いに電気的に分離して設けられたn型のソー
ス、ドレイン領域35a、36aと、これらソース、ド
レイン領域35’a、36a問を少なくとも含む活性領
域23a部分上にグー1〜酸化膜37aを介して設(プ
られたグーl−電極38aとから構成されている。
Furthermore, a transfer transistor 348 is provided in each active region 23a to 23c adjacent to each trench type capacitor 24a to 24d.
~34d is formed. Transfer i transistor 34a
is an active region 23a adjacent to the trench type capacitor unit
N-type source and drain regions 35a and 36a provided electrically isolated from each other on the surface of the active region 23a, which includes at least these source and drain regions 35'a and 36a, are covered with goo 1 to oxide films. 37a, and an electrode 38a.

前記n+型ソース領域35aは前記溝型キャパシタ24
aを構成するn型拡散領域27aの延出部28aと接続
されている。一方、前記転送トランジスタ34bは、n
+型のソース、ドレイン領域35b、36b、ゲ−1・
酸化膜37b及びグー1−電極38bとから構成されて
おり、がっソース領域35bは前記溝型キャパシタ24
bを構成するn型拡散領域27bの延出部28bに接続
されている。また、前記転送トランジスタ34. C1
34更は、前記各転送トランジスタ34a、3/1bと
同様、ソース、トレイン領域、ゲ−1へ酸化膜くいずれ
も図示せず)及びグー1・電極38c、38dから構成
されている。なお、前記転jストランジスタ348.3
4bのゲート電極38a、38bは前記溝型キャパシタ
24c、24dの電極29上に酸化膜(図示せず)を介
して横切り、かつ前記転送トランジスタ34c、34d
のグー1〜電極38c、38dは前記溝型キャパシタ2
4a、271以の電極29上を酸化膜39a、39bを
介して横切っている。更に、前記各溝型キャパシタ24
゜9工〜24d及び前記各転送トランジスタ348〜3
4dを含むシリコン基板21上には層間絶縁膜4′Oh
(被覆されており、かつ該層間絶縁膜4o上にはA1か
らなるビット線41.41 =が前記各ゲート電極38
a〜38dと直交する方向に設けられている。一方のピ
ッl−紳41は、前記転送トランジスタ34a、34b
のドレイン領域36′a、36bにコンタクトホール4
2a、42bを介して夫々接続されている。他方のピッ
I−線41′は、前記転送1〜ランジスタ34C,34
dの共通のドレイン領域(図示ゼず)にコンタクトホー
ル42Gを介して接続されている。これらピッl−lf
! 41.41−を含む層間絶縁膜40上には保護絶縁
膜43が被覆されている。
The n+ type source region 35a is connected to the trench capacitor 24.
It is connected to the extending portion 28a of the n-type diffusion region 27a that constitutes a. On the other hand, the transfer transistor 34b is n
+ type source and drain regions 35b, 36b, gate 1.
It is composed of an oxide film 37b and a goo electrode 38b, and the goo source region 35b is connected to the trench type capacitor 24.
It is connected to the extending portion 28b of the n-type diffusion region 27b constituting the region b. Further, the transfer transistor 34. C1
34 Furthermore, like each of the transfer transistors 34a and 3/1b, it is composed of a source, a train region, an oxide film on the gate 1 (all of which are not shown), and gate 1 electrodes 38c and 38d. Note that the transfer transistor 348.3
The gate electrodes 38a, 38b of the trench type capacitors 24c, 24d cross over the electrodes 29 of the trench type capacitors 24c, 24d via an oxide film (not shown), and the gate electrodes 38a, 38b of the transfer transistors 34c, 34d
Goo 1 to electrodes 38c and 38d are the groove capacitor 2
The electrodes 4a and 271 and above are crossed through oxide films 39a and 39b. Furthermore, each trench type capacitor 24
゜9-24d and each of the transfer transistors 348-3
An interlayer insulating film 4'Oh is formed on the silicon substrate 21 including 4d.
(A bit line 41.41 made of A1 is coated and on the interlayer insulating film 4o is connected to each gate electrode 38.
It is provided in a direction perpendicular to a to 38d. One of the pins 41 is connected to the transfer transistors 34a and 34b.
Contact holes 4 are formed in drain regions 36'a and 36b of
2a and 42b, respectively. The other pin I-line 41' is connected to the transfer 1 to transistors 34C and 34.
d to a common drain region (not shown) through a contact hole 42G. These pi-lf
! A protective insulating film 43 is coated on the interlayer insulating film 40 including 41 and 41-.

しかして、本発明の半導体記憶装置によれば、溝型キャ
パシタ(例えば24. a、2/l b)の夫々の記憶
ノードを構成するn型拡散領域27a、27bの外部に
は約2 X 10 ”/cmaの不純物濃度をもつn型
拡散領域26a、26bが形成されているため、溝型キ
ャパシタ24a、24b周囲のシリコン基板21への空
乏層の伸びを前記p型拡散領域26a、26bの存在に
J:り著しく抑制できる。事実、記憶ノードの電位がn
型シリコン基板21に対して5■の霜泣差の時、p型拡
Il!<領域26a、26bとn型拡散領域27a、2
7bの間に伸びる空乏層幅は約0.2μmηであった。
Therefore, according to the semiconductor memory device of the present invention, approximately 2×10 Since the n-type diffusion regions 26a and 26b having an impurity concentration of 0.5 cm are formed, the extension of the depletion layer to the silicon substrate 21 around the trench capacitors 24a and 24b is reduced by the presence of the p-type diffusion regions 26a and 26b. In fact, when the potential of the storage node is n
When there is a frost difference of 5 cm with respect to the type silicon substrate 21, p-type expansion Il! <Regions 26a, 26b and n-type diffusion regions 27a, 2
The width of the depletion layer extending between 7b was approximately 0.2 μmη.

その結果、溝型キャパシタ24a、24b間の距離(A
>をn型拡散領域26a、26bが重なる0゜6μ「口
まで近付けても両者間のパンデスルー現象を防止できる
。なお、第1図図示の溝型−1−ドパシタ、5工の楢造
では、溝型キャパシタ間の距離を約2μmで既にパンチ
スルー現象が生じた。これは距離にして3倍以上の改善
である。しかも、本発明ではピッ1へ線の接合容量は全
く増加しない。従って、溝型キャパシタ間のパンチスル
ー現象を防止することにより、高密度のメモリセルを実
現できる。
As a result, the distance (A
Even if the n-type diffusion regions 26a and 26b are brought close to the 0°6 μm opening where they overlap, the pan death-through phenomenon between them can be prevented.In addition, in the groove-type -1-dopasita shown in FIG. A punch-through phenomenon already occurred when the distance between the trench capacitors was about 2 μm.This is an improvement of more than three times in terms of distance.Furthermore, in the present invention, the junction capacitance of the line to pin 1 does not increase at all.Therefore, By preventing the punch-through phenomenon between trench capacitors, high-density memory cells can be realized.

また、溝型キャパシタ(例えば24a)において、n型
拡散領域26aにより基板21への空乏層の伸びを抑制
できると共に、該p型拡散領域26aがポテンシャルバ
リアとして作用するため、α線の入射により生じたキャ
リアが溝型キャパシタ24aのn型拡散領域27aにフ
ァネリング現象によって集まるのを阻止でき、耐ソフ1
〜エラー性に優れた半導体記憶装置を実現できる。
In addition, in the trench capacitor (for example, 24a), the n-type diffusion region 26a can suppress the extension of the depletion layer toward the substrate 21, and since the p-type diffusion region 26a acts as a potential barrier, It is possible to prevent carriers from gathering in the n-type diffusion region 27a of the trench capacitor 24a due to the funneling phenomenon, and
- A semiconductor memory device with excellent error resistance can be realized.

更に、本発明ではn型拡散領域26aとn型拡散領域2
7aとの間のpnn接合容量酸化シリコン膜30aを介
在したn型拡散領域27aと電極29との間の静電容量
にm畳されるため、単位面積当りのキャパシタ値が高い
溝型キャパシタ24p工を実現でき、ひいてはメモリセ
ルを高密度化できる。事実、前記pn接合容量は前記静
電容量値の約3割に達することがわかった。
Furthermore, in the present invention, the n-type diffusion region 26a and the n-type diffusion region 2
7a, the trench type capacitor 24p has a high capacitance value per unit area. This makes it possible to achieve higher density memory cells. In fact, it has been found that the pn junction capacitance reaches approximately 30% of the capacitance value.

なお、上記実施例ではキャパシタ用絶縁膜として、酸化
シリコン膜を用いたが、これに限定されない。例えば、
酸化シリコン膜て窒化シリコン膜をサンドインチ状に挟
んだ複合膜、窒化シリコン膜、あるいは酸化シリコンと
酸化タンタルの二目膜等を用いてもよい。
Note that in the above embodiment, a silicon oxide film is used as the capacitor insulating film, but the present invention is not limited to this. for example,
A composite film in which a silicon oxide film and a silicon nitride film are sandwiched in a sandwich manner, a silicon nitride film, or a second film of silicon oxide and tantalum oxide may be used.

上記実施例では、半導体層としてn型シリコン基板を用
いたが、n型シリコン基板を用いてもよい。この場合、
第1導電型の不奸物拡11に領域は11型に、第2邊電
型の不IT!物拡r4′!領域(、jp型に、転送1−
ランジスタはpヂトンネルM OS I・ランシスタよ
りなる。
In the above embodiment, an n-type silicon substrate was used as the semiconductor layer, but an n-type silicon substrate may also be used. in this case,
The first conductivity type impurity expansion 11 has a region of 11 type, and the second conductivity type impurity expansion 11! Expansion r4'! area (, jp type, transfer 1-
The transistor consists of a pzitunnel MOS I transistor.

上記実施例では、ダfナミックへ108メ[りを例にし
て説明したが、スタティックへ・1OSメエリにも同(
mに適用できる。この場合、例えばフリップフロップ型
のヒルの双安定〕−ドに前j」;シた溝型キt・パンク
を82ければよい。
In the above embodiment, explanation was given using 108 meters to digital as an example, but the same applies to static and 1OS meters.
Applicable to m. In this case, for example, a flip-flop type hill bistable 82 may be provided with a groove-type chip puncture at the front.

〔光明の効果〕 以上詳述した如く、本発明にJ: it l;J’ !
ド泣面偵当りのキャパシタ値が人きい溝型=l: ドパ
シタを11!5え、かつ該溝型キ亀・パンク間の距離を
、バンプスルー現象を生じることなく著しく短縮してメ
1リレルの高密度化を可能どし、更に耐ソフト土う・−
性べ向上でき、ひい−Cは高密度、高信頼11−の゛i
′/芹休記1体装置を提供できる。
[Effect of Light] As detailed above, the present invention has J: it l; J'!
The capacitor value per contact point is 11!5, and the distance between the capacitor and the puncture is significantly shortened without causing a bump-through phenomenon. This makes it possible to increase the density of
The performance can be improved, and H-C has high density and high reliability.
'/Serikyuki one-piece device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のダイナミックMOSメrりを示づ断面
図、第2図は、本光明の一実施例4示づ一ダイナミック
MOSメモリの平面図、第3図は、第2図の■−■線に
沿う断面図、第今図(a)〜(C)は本実施例の溝型キ
ャパシタを形成するための工程を示す断面図である。 21・・・n型シリコン基板、22・・・フィールド酸
化膜、23a〜23C・・・活性領域(メモリセル)、
24 a 〜24 d ・・・溝型キャパシタ、25a
、25b・・・溝部、26a、26b・・・1)型拡散
領域(第1導電型の不純物拡散領域)、27a、27b
・・・11型拡散領域(第2導電型の不純物拡散領域)
、28a、28b・・・延出部、29・・・第1層多結
晶シリコンからなる電極、30a、30b・・・酸化シ
リコン膜(キャパシタ用絶縁膜〉、32・・・ボロンド
ープ酸化シリコン膜、33・・・リンドープ酸化シリコ
ン膜、34a〜34d・・・転送トランジスタ、35a
、35 b−n++ソース領域、3.6a、36b・・
・n+型トドレイン領域38a〜38d・・・第2層多
結晶シリコンからなるグー1〜電極、41.41・・・
ビット線。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a sectional view showing a conventional dynamic MOS memory, FIG. 2 is a plan view of a dynamic MOS memory according to a fourth embodiment of the present invention, and FIG. - Figures (a) to (C) are cross-sectional views taken along the line -■, showing steps for forming the trench type capacitor of this embodiment. 21... N-type silicon substrate, 22... Field oxide film, 23a to 23C... Active region (memory cell),
24a to 24d...Trench capacitor, 25a
, 25b...groove portion, 26a, 26b...1) type diffusion region (first conductivity type impurity diffusion region), 27a, 27b
...11 type diffusion region (second conductivity type impurity diffusion region)
, 28a, 28b... Extension portion, 29... Electrode made of first layer polycrystalline silicon, 30a, 30b... Silicon oxide film (insulating film for capacitor), 32... Boron-doped silicon oxide film, 33... Phosphorus-doped silicon oxide film, 34a to 34d... Transfer transistor, 35a
, 35 b-n++ source region, 3.6a, 36b...
・N+ type drain regions 38a to 38d...Group 1 to electrode made of second layer polycrystalline silicon, 41.41...
bit line. Applicant's agent Patent attorney Takehiko Suzue

Claims (3)

【特許請求の範囲】[Claims] (1)第1導電型の半導体層と、この半導体層の表面か
ら西部に亙って設けられた溝部と、この溝部内面の半導
体層に設(プられた該半導体層より高濃度の第1導電型
の不純物拡散領域と、前記溝部内面の不純物拡散領域に
設けられた該拡散領域J:り接合深さが浅い第2導電型
の不純物拡11に領域と、前記溝部内から少なくとも開
口部周辺にガってキャパシタ用絶縁膜を介して設けられ
た電極とからなり、前記電極を第1のキャパシタ電極ど
し、前記第2導電型の不純物拡散領域を第2の°1−ド
パシタ電極とした構造の溝型キャパシタを貝14vシた
ことを特徴どする半導体記憶装置。
(1) A semiconductor layer of a first conductivity type, a trench provided extending from the surface of this semiconductor layer to the west, and a first conductivity type semiconductor layer with a higher concentration than the semiconductor layer provided in the semiconductor layer on the inner surface of the trench. A conductivity type impurity diffusion region and the diffusion region J provided in the impurity diffusion region on the inner surface of the trench: a second conductivity type impurity diffusion region 11 with a shallow junction depth; and an electrode provided through a capacitor insulating film, the electrode being a first capacitor electrode, and the second conductivity type impurity diffusion region being a second °1-dopasitor electrode. A semiconductor memory device characterized by having a trench-type capacitor of a 14V structure.
(2)溝型キャパシタの第1導電型、第2導電型の不純
物拡散領域が二重拡散法により形成されたものであるこ
とを特徴とする特許請求の範囲第1項記載の半導体記憶
装置。
(2) The semiconductor memory device according to claim 1, wherein the first conductivity type and second conductivity type impurity diffusion regions of the trench capacitor are formed by a double diffusion method.
(3)第1導電型の半導体層の表面に互いに電気的に分
離して設けられた第2導電型のソース、ドレイン領域と
、これらソース、トレイン領域間を少なくとも含む半導
体層部分上にグー1〜絶縁膜を介して設けられたゲート
電極とからなる転送トランジスタを備え、かつ前記ソー
ス、ドレイン領域の一方が溝型キャパシタの第2導電型
の不純物拡散領域に接続し、他方がビット線と接続して
いることを特徴とする特許請求の範囲第1項記載の半導
体記憶装置。
(3) The source and drain regions of the second conductivity type provided electrically isolated from each other on the surface of the semiconductor layer of the first conductivity type, and a gooey layer on the semiconductor layer portion including at least between these source and train regions. ~Equipped with a transfer transistor consisting of a gate electrode provided through an insulating film, one of the source and drain regions is connected to the second conductivity type impurity diffusion region of the trench capacitor, and the other is connected to the bit line. A semiconductor memory device according to claim 1, characterized in that:
JP58236851A 1983-12-15 1983-12-15 Semiconductor memory device Pending JPS60128658A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58236851A JPS60128658A (en) 1983-12-15 1983-12-15 Semiconductor memory device
KR1019840007692A KR890004765B1 (en) 1983-12-15 1984-12-06 Semiconductor memory device
EP84115474A EP0169938B1 (en) 1983-12-15 1984-12-14 Semiconductor memory device having trenched capacitor
DE8484115474T DE3477532D1 (en) 1983-12-15 1984-12-14 Semiconductor memory device having trenched capacitor
US07/857,727 US5428236A (en) 1983-12-15 1992-03-26 Semiconductor memory device having trenched capicitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58236851A JPS60128658A (en) 1983-12-15 1983-12-15 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS60128658A true JPS60128658A (en) 1985-07-09

Family

ID=17006734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58236851A Pending JPS60128658A (en) 1983-12-15 1983-12-15 Semiconductor memory device

Country Status (2)

Country Link
JP (1) JPS60128658A (en)
KR (1) KR890004765B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223153A (en) * 1985-07-23 1987-01-31 Mitsubishi Electric Corp Semiconductor memory
US4649625A (en) * 1985-10-21 1987-03-17 International Business Machines Corporation Dynamic memory device having a single-crystal transistor on a trench capacitor structure and a fabrication method therefor
JPS63117461A (en) * 1986-11-05 1988-05-21 Nec Corp Semiconductor memory device and manufacture thereof
JPS63200561A (en) * 1987-02-17 1988-08-18 Matsushita Electronics Corp Semiconductor dynamic random access memory
US4794091A (en) * 1985-07-25 1988-12-27 American Telephone And Telegraph Company, At&T Bell Laboratories Method of making high-performance dram arrays including trench capacitors
JPH027465A (en) * 1988-02-15 1990-01-11 Samsung Electron Co Ltd Semiconductor memory device
US5317177A (en) * 1991-06-07 1994-05-31 Texas Instruments Incorporated Semiconductor device and method of manufacturing the same
US5334547A (en) * 1988-12-27 1994-08-02 Nec Corporation Method of manufacturing a semiconductor memory having an increased cell capacitance in a restricted cell area

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456382A (en) * 1977-09-30 1979-05-07 Hewlett Packard Yokogawa Semiconductor memory cell
JPS58137245A (en) * 1982-02-10 1983-08-15 Hitachi Ltd Semiconductor memory and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456382A (en) * 1977-09-30 1979-05-07 Hewlett Packard Yokogawa Semiconductor memory cell
JPS58137245A (en) * 1982-02-10 1983-08-15 Hitachi Ltd Semiconductor memory and its manufacture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223153A (en) * 1985-07-23 1987-01-31 Mitsubishi Electric Corp Semiconductor memory
US4794091A (en) * 1985-07-25 1988-12-27 American Telephone And Telegraph Company, At&T Bell Laboratories Method of making high-performance dram arrays including trench capacitors
US4649625A (en) * 1985-10-21 1987-03-17 International Business Machines Corporation Dynamic memory device having a single-crystal transistor on a trench capacitor structure and a fabrication method therefor
JPS63117461A (en) * 1986-11-05 1988-05-21 Nec Corp Semiconductor memory device and manufacture thereof
JPS63200561A (en) * 1987-02-17 1988-08-18 Matsushita Electronics Corp Semiconductor dynamic random access memory
JPH027465A (en) * 1988-02-15 1990-01-11 Samsung Electron Co Ltd Semiconductor memory device
US5432365A (en) * 1988-02-15 1995-07-11 Samsung Electronics Co., Ltd. Semiconductor memory device
US5334547A (en) * 1988-12-27 1994-08-02 Nec Corporation Method of manufacturing a semiconductor memory having an increased cell capacitance in a restricted cell area
US5317177A (en) * 1991-06-07 1994-05-31 Texas Instruments Incorporated Semiconductor device and method of manufacturing the same
US5470778A (en) * 1991-06-07 1995-11-28 Texas Instruments Incorporated Method of manufacturing a semiconductor device
US5635740A (en) * 1991-06-07 1997-06-03 Texas Instruments Incorporated Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
KR890004765B1 (en) 1989-11-25
KR850004881A (en) 1985-07-27

Similar Documents

Publication Publication Date Title
US4792834A (en) Semiconductor memory device with buried layer under groove capacitor
US4646118A (en) Semiconductor memory device
JPS60231357A (en) Semiconductor memory device
JPH0294471A (en) Semiconductor storage device and manufacture thereof
JPH1070200A (en) Static random access memory device
JPS62286270A (en) Semiconductor memory
US5428236A (en) Semiconductor memory device having trenched capicitor
KR900000635B1 (en) Semiconductor memory device
US4635085A (en) Semiconductor memory device
JPS60128658A (en) Semiconductor memory device
JPH0673368B2 (en) Semiconductor memory device and manufacturing method thereof
JPS62193273A (en) Semiconductor memory
KR950012744B1 (en) Method of producing semiconductor memory device
KR890004767B1 (en) Semiconductor memory device
JPH0279462A (en) Semiconductor memory
JPH0374848A (en) Semiconductor device and manufacture thereof
KR890004764B1 (en) Semiconductor memory device
JPS61199657A (en) Semiconductor memory
JP3354333B2 (en) Semiconductor storage device
JPS6240765A (en) Read-only semiconductor memory and manufacture thereof
JPS61234067A (en) High density dram cell
JPS6058662A (en) Memory device for temporary storage of charge
JPS62152156A (en) Semiconductor memory device
JPH0536930A (en) Semiconductor storage device
JPS62104073A (en) Semiconductor memory and manufacture thereof