JPS6223153A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPS6223153A
JPS6223153A JP60164574A JP16457485A JPS6223153A JP S6223153 A JPS6223153 A JP S6223153A JP 60164574 A JP60164574 A JP 60164574A JP 16457485 A JP16457485 A JP 16457485A JP S6223153 A JPS6223153 A JP S6223153A
Authority
JP
Japan
Prior art keywords
silicon substrate
trench
capacitor
memory capacitor
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60164574A
Other languages
Japanese (ja)
Inventor
Shinichi Sato
真一 佐藤
Masahiro Yoneda
昌弘 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60164574A priority Critical patent/JPS6223153A/en
Publication of JPS6223153A publication Critical patent/JPS6223153A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Abstract

PURPOSE:To produce the capacitance of a memory capacitor largely while inhibiting the extension of a depletion layer in an silicon substrate by forming a P-N junction region around a trench formed into the memory capacitor by P-type and N-type impurities. CONSTITUTION:An inter-element isolation thick oxide film 2 is shaped into an silicon substrate 1, and the ions of phosphorus 3 and boron 4 are implanted near the surface of the silicon substrate 1 in a memory capacitor corresponding section to form a P-N junction. A trench 9 is shaped into the silicon substrate 1 while using an silicon oxide film 10 and a photo-resist film 11 as masks. The photo-resist film 11 is removed, phosphorus 3' and boron 4' are diffused into the silicon substrate 1 through a thermal diffusion, a P-N junction region is shaped around the trench 9, the silicon oxide film 10 employed as the mask is removed, a thin insulating film 5 for a capacitor is formed, and a cell plate 6 by polycrystalline silicon is shaped, thus acquiring memory capacitor structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 こ“の発明は、集積回路、特にMOSダイナミックRA
Mのメモリキャパシタを改善した半導体記憶装置に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is applicable to integrated circuits, especially MOS dynamic RA.
The present invention relates to a semiconductor memory device with an improved memory capacitor of M.

〔従来の技術〕[Conventional technology]

従来、MOSダイナミックRAMのメモリキャパシタは
、平坦なシリコン基板と電極との間に薄い絶縁膜を形成
し、信号電荷の蓄積を行っていた。
Conventionally, in a memory capacitor of a MOS dynamic RAM, a thin insulating film is formed between a flat silicon substrate and an electrode to accumulate signal charges.

ところが、集装置の増大に伴ってメモリセル面積が縮小
され、メモリキャパシタ容量が減少するため、ソフトエ
ラー等の問題が顕在化してきた。
However, as the number of integrated devices increases, the area of memory cells is reduced and the capacitance of memory capacitors is reduced, resulting in problems such as soft errors.

その対策として、メモリセル面積を増やさず、)モリキ
ャパシタ容量を増加する手段として、シリコン基板中に
深い溝を形成し、表面積を増やすことKよってメモリキ
ャパシタ容量を増加するト/ンチキャパシタ構造が提案
されてきた。以下、さらに図面によって従来技術を説明
する。
As a countermeasure to this problem, as a means of increasing the memory capacitor capacity without increasing the memory cell area, a trench/inch capacitor structure has been proposed that increases the memory capacitor capacity by forming deep grooves in the silicon substrate and increasing the surface area. It has been. The prior art will be further explained below with reference to the drawings.

第2図は従来の平坦なキャパシタの断面図を示す。この
図において、1はシリコン基板、2は素子間分離用の厚
い酸化膜を示す。メモリキャパシタはシリコン基板1と
セルプレートロとの間の薄い絶縁膜5を利用する。なお
、7はMOS)ランジスタのソース・ドメイン拡散層、
8はゲート電極である。
FIG. 2 shows a cross-sectional view of a conventional flat capacitor. In this figure, 1 indicates a silicon substrate, and 2 indicates a thick oxide film for isolation between elements. The memory capacitor utilizes a thin insulating film 5 between the silicon substrate 1 and the cell plate. In addition, 7 is the source domain diffusion layer of the transistor (MOS),
8 is a gate electrode.

メモリキャパシタ容量を増加するため、キャパシタ領域
のシリコン基板1中に、例えばリン3とホルン4をイオ
ン注入することによってPN接合領域を形成する方法も
よく行われている。
In order to increase the capacitance of a memory capacitor, a method of forming a PN junction region by ion-implanting, for example, phosphorus 3 and horn 4 into the silicon substrate 1 in the capacitor region is also commonly used.

第3図はMOSダイナミックRAMのメモリセル部の等
価回路を示す。ビット線BLから伝えられた信号は、ワ
ードIIi!WLの昇圧によってスイッチングトランジ
スタFETをオンし、メモリキャパシタに信号電荷を蓄
積する。メモリキャパシタ容量は薄い絶縁膜5で形成さ
れたキャパシタC0Xと、PN接合で形成されたキャパ
シタCj との和になる。
FIG. 3 shows an equivalent circuit of a memory cell portion of a MOS dynamic RAM. The signal transmitted from the bit line BL is word IIi! The switching transistor FET is turned on by boosting WL, and signal charges are accumulated in the memory capacitor. The memory capacitor capacity is the sum of the capacitor C0X formed by the thin insulating film 5 and the capacitor Cj formed by the PN junction.

一方、第4図は従来のトレンチキャパシタ構造を示す断
面図である。シリコン基板1中に深いトレンチ9を形成
することKよって、表面積が増加する。しかしながら、
α粒子によって発生した電子はシリコン基板1中で拡散
するが、シリコン基板1中に深く形成されたトレンチ9
の周囲に幅の広い空乏層が形成され、シリコン基板1中
で発生した電子と距離的にも近くなり、電子が容易に大
量に収集される。そのため、キャパシタに蓄えられた信
号が反転し、誤動作を生じる。いわゆるソフトエラーが
発生し易くなる。
On the other hand, FIG. 4 is a sectional view showing a conventional trench capacitor structure. Forming deep trenches 9 in the silicon substrate 1 increases the surface area. however,
Electrons generated by α particles diffuse in the silicon substrate 1, but trenches 9 formed deep in the silicon substrate 1
A wide depletion layer is formed around the silicon substrate 1, and the distance is close to the electrons generated in the silicon substrate 1, so that a large amount of electrons can be easily collected. Therefore, the signal stored in the capacitor is inverted, causing malfunction. So-called soft errors are more likely to occur.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように精成されたトレンチキャパシタ構造の場合
、シリコン基板1中にキャパシタを作るため、α粒子に
よりソフトエラーの影響を受は易く、十分な対策とはな
らないという問題点があった。
In the case of the trench capacitor structure refined as described above, since the capacitor is formed in the silicon substrate 1, it is easily affected by soft errors due to α particles, and there is a problem that it is not a sufficient countermeasure.

この発明は、このような問題点を解決するためKなされ
たもので、容量増大をはかるとともに。
This invention was made to solve these problems, and to increase capacity.

ソフトエラーを大幅に改善できる半導体記憶装置を提供
することを目的とする。
An object of the present invention is to provide a semiconductor memory device that can significantly improve soft errors.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体記憶装置は、メモリキャパシタ中
く形成したトレンチの周囲に、P凰およびNff1の不
純物によってPN接合領域を形成したものである。
In the semiconductor memory device according to the present invention, a PN junction region is formed around a trench formed in a memory capacitor using impurities of P and Nff1.

〔作用〕[Effect]

この発明においては、メモリキャパシタ中に形成したト
レンチの周囲に、PN接合領域が形成されているためメ
モリキャパシタ容量が大きくとれ、シリコン基板中への
空乏層の広がりが抑えられる。
In this invention, since a PN junction region is formed around the trench formed in the memory capacitor, the capacitance of the memory capacitor can be increased and the spread of the depletion layer into the silicon substrate can be suppressed.

〔実施例〕〔Example〕

第1図(a)〜(C)はこの発明によるメモリキャパシ
タを工程順に示した断面図である。まず、シリコン基板
1中に素子間分離用の厚い酸化膜2が形成された後、メ
モリキャパシタ相当部のシリコン基板1の表面付近に、
リン3およびボロン4をイオン注入することによってP
N接合を形成する。
FIGS. 1A to 1C are cross-sectional views showing a memory capacitor according to the present invention in the order of steps. First, after a thick oxide film 2 for element isolation is formed in the silicon substrate 1, near the surface of the silicon substrate 1 in the area corresponding to the memory capacitor,
P by ion implantation of phosphorus 3 and boron 4
Form an N junction.

その後、シリコン酸化膜10および7オトンジスト膜1
1をマスクに、シリコン基板1中に公知のRIE技術に
よってトレンチ9を形成する(第1図(a))。次K、
7オトンジスト膜11を除去した後、リン3′およびボ
ロン4′を熱拡散によってシリコン基板1中に拡散させ
、トレンチ9周辺KPN接合領域を形成する(第1図(
b))。この時。
After that, the silicon oxide film 10 and the silicon oxide film 1
1 as a mask, a trench 9 is formed in the silicon substrate 1 by a known RIE technique (FIG. 1(a)). Next K,
7 After removing the otonist film 11, phosphorus 3' and boron 4' are diffused into the silicon substrate 1 by thermal diffusion to form a KPN junction region around the trench 9 (see FIG. 1).
b)). At this time.

トンフチ9以外は、シリコン酸化膜10によって覆われ
ているため、前記のリン3′およびボロン4′はシリコ
ン基板1中に拡散しない。その後、マスクに用いたシリ
コン酸化膜10を除去した後、キャパシタ用の薄い絶縁
膜5を形成し、多結晶シリコンによるセルブV−トロを
形成することによってメモ1戸キャパシタ構造が得られ
る(第1図(C))。
Since the area other than the edge 9 is covered with the silicon oxide film 10, the phosphorus 3' and boron 4' do not diffuse into the silicon substrate 1. Thereafter, after removing the silicon oxide film 10 used as a mask, a thin insulating film 5 for the capacitor is formed, and a cell V-toro made of polycrystalline silicon is formed to obtain a one-memo capacitor structure (first Figure (C)).

このようにして得られたメモリキャパシタ構造は、トレ
ンチ9の周囲にPN接合領域が形成されているため、第
3図におけるキャパシタCjが得られ、より大きなメモ
リキャパシタ容量を確保できる。
Since the memory capacitor structure thus obtained has a PN junction region formed around the trench 9, the capacitor Cj shown in FIG. 3 is obtained, and a larger memory capacitor capacity can be ensured.

さらに、PN接合によってトレンチ9の周囲に空乏層の
幅が広がるのが抑制されるため、シリコン基板1中で発
生した電子を収集し難い構造になっている。この結果、
ン7トエラー発生率を著しく改善できる。
Furthermore, since the PN junction suppresses the width of the depletion layer from expanding around the trench 9, the structure is such that it is difficult to collect electrons generated in the silicon substrate 1. As a result,
The error rate can be significantly improved.

なお、上記実施例では、PN接合形成不純物として、リ
ンおよびポロンを用いて説明したが、P型およびN型不
純物であれば何でもよく1例えばP型不純物としては、
ポロン以外にAA#Ga。
In the above embodiments, phosphorus and poron were used as the PN junction forming impurities, but any P-type and N-type impurities may be used.For example, as the P-type impurity,
AA#Ga besides Poron.

In e Ti等が挙げられ、Nfi不純物としては、
リン以外にAs、Sb、Bi等が挙げられることはいう
までもない。
Examples of Nfi impurities include In e Ti, etc.
Needless to say, other than phosphorus, As, Sb, Bi, etc. can be mentioned.

またPN接合にかえてNP接合でも同様の効果が得られ
る。
Further, the same effect can be obtained by using an NP junction instead of a PN junction.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、メモリキャパシタ中に
形成したト/ンチの周囲にP型不純物およびN型不純物
によってPNまたはNP接合領域が形成されているため
、メモリキャパシタ容量を大きくとれるのみならず、シ
リコン基板中の空乏層の広がりを抑えることができ、ソ
フトエラーの発生を大幅に改善することができる利点が
ある。
As explained above, in this invention, since a PN or NP junction region is formed by P-type impurity and N-type impurity around the trenches formed in the memory capacitor, not only can the capacitance of the memory capacitor be increased, but also This has the advantage that the spread of the depletion layer in the silicon substrate can be suppressed, and the occurrence of soft errors can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1)〜(c)はこの発明の一実施例の主要工程
を示すトンンチキャパシタの断面図、第2図は従来の平
坦なキャパシタ構造を示す断面図、第3図はその等節回
路を示す図、第4図は従来のト/ンチキャパシタの構造
を示す断面図である。 図において、1はシリコン基板、2は素子分離用の厚い
酸化膜、3.3′はリン、4,4′はポロン、5は薄い
絶縁膜、6はセルブV−)、Tはソース・ドvイン拡散
層、9はトレンチ、10はシリコン酸化膜、11はフォ
ト/シスト膜である。 なお、各図中の同一符号は同一または相当部分を示す。
Figures 1 (1) to (c) are cross-sectional views of a punch capacitor showing the main steps of an embodiment of the present invention, Figure 2 is a cross-sectional view of a conventional flat capacitor structure, and Figure 3 is a cross-sectional view of a conventional flat capacitor structure. FIG. 4 is a cross-sectional view showing the structure of a conventional ton/inch capacitor. In the figure, 1 is a silicon substrate, 2 is a thick oxide film for element isolation, 3.3' is phosphorus, 4 and 4' are poron, 5 is a thin insulating film, 6 is a cell V-), and T is a source electrode. 9 is a trench, 10 is a silicon oxide film, and 11 is a photo/sist film. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] メモリキャパシタを有する半導体記憶装置において、前
記メモリキャパシタ部分のシリコン基板中またはウェル
中に、トレンチを形成し、このトレンチの表面から所要
の深さのところにP型不純物とN型不純物とによるPN
接合またはNP接合を形成し、さらに前記トレンチの表
面に薄い絶縁膜を介してセルプレートを設けたことを特
徴とする半導体記憶装置。
In a semiconductor memory device having a memory capacitor, a trench is formed in the silicon substrate or well of the memory capacitor portion, and a PN layer containing P-type impurities and N-type impurities is formed at a required depth from the surface of the trench.
A semiconductor memory device characterized in that a junction or NP junction is formed and a cell plate is further provided on the surface of the trench with a thin insulating film interposed therebetween.
JP60164574A 1985-07-23 1985-07-23 Semiconductor memory Pending JPS6223153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60164574A JPS6223153A (en) 1985-07-23 1985-07-23 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60164574A JPS6223153A (en) 1985-07-23 1985-07-23 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPS6223153A true JPS6223153A (en) 1987-01-31

Family

ID=15795754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60164574A Pending JPS6223153A (en) 1985-07-23 1985-07-23 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS6223153A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173471U (en) * 1986-04-23 1987-11-04
EP0298251A2 (en) * 1987-07-10 1989-01-11 Siemens Aktiengesellschaft High-density memory cell and process for manufacturing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184555A (en) * 1983-04-02 1984-10-19 Nippon Telegr & Teleph Corp <Ntt> Semiconductor integrated circuit device and manufacture thereof
JPS60128658A (en) * 1983-12-15 1985-07-09 Toshiba Corp Semiconductor memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184555A (en) * 1983-04-02 1984-10-19 Nippon Telegr & Teleph Corp <Ntt> Semiconductor integrated circuit device and manufacture thereof
JPS60128658A (en) * 1983-12-15 1985-07-09 Toshiba Corp Semiconductor memory device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173471U (en) * 1986-04-23 1987-11-04
JPH048209Y2 (en) * 1986-04-23 1992-03-02
EP0298251A2 (en) * 1987-07-10 1989-01-11 Siemens Aktiengesellschaft High-density memory cell and process for manufacturing

Similar Documents

Publication Publication Date Title
US4566175A (en) Method of making insulated gate field effect transistor with a lightly doped drain using oxide sidewall spacer and double implantations
EP0149799A2 (en) Semiconductor memory device
JPH0365905B2 (en)
JP3902831B2 (en) Semiconductor memory device and manufacturing method thereof
KR900002914B1 (en) Semiconductor device
JP2634163B2 (en) Semiconductor storage device
JPS61140168A (en) Semiconductor memory device
JPS6037623B2 (en) semiconductor storage device
JPS594156A (en) Semiconductor memory device
JPH0262073A (en) Semiconductor memory device
JPH0715949B2 (en) DRAM cell and manufacturing method thereof
KR890004765B1 (en) Semiconductor memory device
US5939757A (en) Semiconductor device having triple well structure
JPS6223153A (en) Semiconductor memory
JP2908146B2 (en) Semiconductor device and manufacturing method thereof
JPH0370904B2 (en)
JPS6058662A (en) Memory device for temporary storage of charge
JP3243885B2 (en) Semiconductor storage device
JP2666335B2 (en) Method for manufacturing semiconductor memory device
JP2913799B2 (en) Semiconductor device
JP2526649B2 (en) Semiconductor device
JPS62152156A (en) Semiconductor memory device
JP2864843B2 (en) Bipolar semiconductor memory device
JPH01123463A (en) Semiconductor device
JPS6367769A (en) Dynamic semiconductor storage device