JPS63117461A - Semiconductor memory device and manufacture thereof - Google Patents

Semiconductor memory device and manufacture thereof

Info

Publication number
JPS63117461A
JPS63117461A JP61264278A JP26427886A JPS63117461A JP S63117461 A JPS63117461 A JP S63117461A JP 61264278 A JP61264278 A JP 61264278A JP 26427886 A JP26427886 A JP 26427886A JP S63117461 A JPS63117461 A JP S63117461A
Authority
JP
Japan
Prior art keywords
diffusion layer
film
type
type diffusion
diffused layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61264278A
Other languages
Japanese (ja)
Inventor
Hiroaki Okubo
宏明 大窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61264278A priority Critical patent/JPS63117461A/en
Publication of JPS63117461A publication Critical patent/JPS63117461A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To easily realize the high integration by narrowing the interval between thin grooves and to realize the manufacture with good reproducibility and uniformly by a method wherein a p-type boron-diffused layer is deposited on the side wall of a thin groove and its bottom and an n-type arsenic-diffused layer which is thinner than this n-type diffused layer is deposited on this p-type diffused layer with a view to forming a capacitive electrode on this n-type diffused layer through an insulating film. CONSTITUTION:After a field oxide film 7 has been formed on a p-type semiconductor substrate 5, a thin groove 6 is formed; boron ions are implanted; the assembly is heat-treated. If, during this ion implantation process, the substrate 5 is turned while it is inclined at an angle bigger than an angle theta which is formed between a diagonal line of the thin groove 6 and its side wall, a P-type diffused layer 9 can be formed. Then, an opening is made at a memory cell capacitor part 11; arsenic ions are implanted; the assembly is heat-treated. If, during this ion implantation process, the substrate 5 is turned while it is inclined at an angle bigger than an angle phi which is formed between the diagonal line of the narrow groove 6 and its side wall, an n-type diffused layer 10 can be formed. Then, an SiO2 film is formed on the surface of the substrate 5 which is not thermally oxidized. In succession, a polysilicon film which does not contain phosphorus (P) is deposited. By removing the polysilicon film and the SiO2 film other than the cell capacitor part 11, a capacitive insulating film 12 composed of the SiO2 film and a capacitor electrode 14 composed of the polysilicon film are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体記憶装置およびその製造方法に関し、
特に半導体基板上に細孔に設けられた電荷蓄積部とその
製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor memory device and a method for manufacturing the same.
In particular, the present invention relates to a charge storage section provided in a pore on a semiconductor substrate and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

近年、半導体記憶装置は、高集積化の要請から、半導体
基板に平面的に形成していた電荷蓄積部を、半導体基板
に設けた細孔を利用して形成することにより電荷蓄積部
に要する半導体基板表面の面積を小さくすることが試み
られている。
In recent years, due to the demand for higher integration in semiconductor memory devices, charge storage parts that were previously formed flat on a semiconductor substrate have been formed using pores in the semiconductor substrate to reduce the amount of semiconductor required for the charge storage part. Attempts have been made to reduce the area of the substrate surface.

この電荷蓄積部に設けられる容量絶縁膜下のp型半導体
基板仁はn型拡散層が形成されるのが普通である。その
理由は、p−n接合により、容量増加の効果があること
と、容量電極を接地でき回路動作上好ましいからである
An n-type diffusion layer is usually formed in the p-type semiconductor substrate layer under the capacitive insulating film provided in this charge storage section. The reason for this is that the pn junction has the effect of increasing the capacitance and that the capacitor electrode can be grounded, which is preferable for circuit operation.

従来、p型半導体基板に細孔を設けて、電気蓄積部を形
成する場合は、第3図に示すように、リンシリケートガ
ラス(PSG)膜3により、リン(P)を基板1内に拡
散させてn型拡散層4を形成していた。すなわち、p型
半導体基板1表面に設けた細孔2の表面にCVD法によ
り、PSGWA3を形成した後、熱処理により細孔の側
面部および底面部にリンによるn型拡散層4を形成して
いた。
Conventionally, when forming an electric storage part by providing pores in a p-type semiconductor substrate, as shown in FIG. In this way, an n-type diffusion layer 4 was formed. That is, after forming PSGWA 3 on the surface of a pore 2 provided on the surface of a p-type semiconductor substrate 1 by CVD, an n-type diffusion layer 4 made of phosphorus was formed on the side and bottom portions of the pore by heat treatment. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の方法では、(1)CVDにより形成され
るPSG膜中のリン濃度や熱処理の温度および時間の制
御が難しく、n型拡散層の再現性が悪く、(2)細孔が
深い細孔の場合、底面部までPSG膜を均一に形成する
ことは困難であり、(3)後工程で受けるヒートサイク
ルによりリン拡散層が拡がり、細孔間がパンチスルーに
より短絡し、(4)細孔間隔の短縮が難しく高集積化に
適応しに<<、(5)α線によるソフトエラーに対する
対策がなされていない等の欠点がある。
In the conventional method described above, (1) it is difficult to control the phosphorus concentration in the PSG film formed by CVD and the temperature and time of heat treatment, resulting in poor reproducibility of the n-type diffusion layer; and (2) the pores are deep. In the case of pores, it is difficult to uniformly form a PSG film all the way to the bottom, (3) the phosphorus diffusion layer expands due to heat cycles in the post-process, and short circuits occur between the pores due to punch-through; There are drawbacks such as difficulty in shortening the hole spacing, making it difficult to adapt to high integration, and (5) no measures against soft errors caused by alpha rays.

本発明の目的は、このような欠点を除き、細孔間隔を短
縮して高集積化が容易であり、かつ再現性よく均一に製
造することのできる半導体記憶装置およびその製造方法
を提供することにある。
An object of the present invention is to provide a semiconductor memory device and a method for manufacturing the same, which can eliminate such drawbacks, shorten the pore spacing, facilitate high integration, and be uniformly manufactured with good reproducibility. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

第1の発明の横或は、p型半導体基板の表面から基板内
部へ向けて形成された細孔の表面に設けられた絶縁膜と
容量電極からなる電荷蓄積部と、絶縁ゲート型電界効果
トランジスタとを含んでなる半導体記憶装置において、
前記細孔の側面部および底面部にホウ素によるP型拡散
層と、このn型拡散層上にこのn型拡散層よりも浅い砒
素によるn型拡散層とが積層して形成され、このn型拡
散層上に前記絶縁膜を介して前記容量電極が設けられて
いることを特徴とする。
A charge storage section comprising an insulating film and a capacitive electrode provided on the surface of a pore formed from the surface of a p-type semiconductor substrate toward the inside of the substrate, and an insulated gate field effect transistor according to the first invention. A semiconductor memory device comprising:
A P-type diffusion layer made of boron is formed on the side and bottom portions of the pore, and an n-type diffusion layer made of arsenic, which is shallower than this n-type diffusion layer, is laminated on this n-type diffusion layer, and this n-type The capacitor electrode is provided on the diffusion layer with the insulating film interposed therebetween.

また、第2の発明の半導体記憶装置の製造方法は、p型
半導体基板の表面から基板内部へ向けて形成された細孔
の側面部および底面部にホウ素イオンを注入し熱処理を
行ってn型拡散層を形成する工程と、このn型拡散層上
に砒素イオンを注入し熱処理を行って浅いn型拡散層を
形成する工程と、このn型拡散層上に絶縁膜を介して容
量電極を設け電荷蓄積部を形成する工程とを含むことを
特徴とする。
Further, in the method for manufacturing a semiconductor memory device according to the second invention, boron ions are implanted into the side and bottom portions of the pores formed from the surface of the p-type semiconductor substrate toward the inside of the substrate, and heat treatment is performed to form the n-type semiconductor memory device. A process of forming a diffusion layer, a process of implanting arsenic ions onto this n-type diffusion layer and performing heat treatment to form a shallow n-type diffusion layer, and a process of forming a capacitor electrode on this n-type diffusion layer via an insulating film. and forming a charge storage section.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(e)は本発明の一実施例における半導
体記憶装置の製造工程順に示す断面図である。
FIGS. 1A to 1E are cross-sectional views showing the steps of manufacturing a semiconductor memory device according to an embodiment of the present invention.

まず、第1図(a)に示すように、p型半導体基板(以
下基板という)5に選択酸化法により素子分離のための
フィールド酸化膜7を形成したのち、パターニングした
フォトレジスト膜8をマスクとし反応性イオンエツチン
グ法(以下、RIE法という)により、幅1.2μm、
長さ1.2μm、深さ5μmの細孔6を形成し、公知の
イオン注入法により100〜150keVの条件でホウ
素イオンを1013〜1014個/cT12注入し熱処
理を行う。
First, as shown in FIG. 1(a), a field oxide film 7 for element isolation is formed on a p-type semiconductor substrate (hereinafter referred to as substrate) 5 by selective oxidation, and then a patterned photoresist film 8 is used as a mask. By reactive ion etching method (hereinafter referred to as RIE method), a width of 1.2 μm,
A pore 6 having a length of 1.2 μm and a depth of 5 μm is formed, and 10 13 to 10 14 boron ions/cT 12 are implanted by a known ion implantation method under conditions of 100 to 150 keV, followed by heat treatment.

このイオン注入の際、ホウ素イオンを基板5に垂直に打
込むと同時に、矢印のように基板11を細孔6の対角線
と側面で形成される角度θ以上に傾けながら回転させる
ことにより、細孔6の底面部および側面部にはホウ素イ
オンの注入によるn型拡散層9が形成される。
During this ion implantation, boron ions are implanted perpendicularly into the substrate 5, and at the same time, the substrate 11 is rotated as shown by the arrow at an angle greater than the angle θ formed by the diagonal line of the pore 6 and the side surface. An n-type diffusion layer 9 is formed on the bottom and side surfaces of the substrate 6 by implanting boron ions.

次に、第1図(b)に示すように、フォトレジスト膜8
を除去後、再びフォトレジスト膜8′を塗布し、記憶容
量セル部11に開孔を設け、イオン注入法により100
〜150keVの条件で砒素イオンを1o 13〜10
14個/clI+2注入し熱処理を行う。このイオン注
入の際、矢印のように基板5を細孔6の対角線と側面と
で形成される角度φ以上に傾けながら回転させることに
より、細孔6の底面部および側面部には砒素イオンの注
入によるn型拡散層10が形成される。ここで熱処理の
条件によって、n型拡散層10はn型拡散層9よりも浅
く形成することができる。
Next, as shown in FIG. 1(b), the photoresist film 8
After removing the photoresist film 8', a photoresist film 8' is applied again, an opening is made in the storage capacitor cell part 11, and a 100%
Arsenic ion 1o 13-10 under ~150keV condition
14 pieces/clI+2 are injected and heat treated. During this ion implantation, by rotating the substrate 5 while tilting it at an angle greater than the angle φ formed by the diagonal line and the side surface of the pore 6 as shown by the arrow, arsenic ions are deposited on the bottom and side surfaces of the pore 6. An n-type diffusion layer 10 is formed by implantation. Depending on the heat treatment conditions, the n-type diffusion layer 10 can be formed shallower than the n-type diffusion layer 9.

次に、第1図(c)に示すように、約ioo。Next, as shown in FIG. 1(c), about ioo.

℃のドライ酸素雰囲気中で熱酸化を行ない基板5表面に
約150人の5i02膜を形成する。続いてCVD法に
よりリン(P)を含むポリシリコン膜を堆積する。この
時細孔6は、ポリシリコン膜により埋る。そしてセル容
量部11以外のポリシリコン膜と5i02膜を除去して
SiO□膜からなる容量絶縁膜12およびポリシリコン
膜からなる容量電極14を形成する。
A 5i02 film of approximately 150 layers is formed on the surface of the substrate 5 by thermal oxidation in a dry oxygen atmosphere at .degree. Subsequently, a polysilicon film containing phosphorus (P) is deposited by CVD. At this time, the pores 6 are filled with the polysilicon film. Then, the polysilicon film and the 5i02 film other than the cell capacitor portion 11 are removed to form a capacitor insulating film 12 made of a SiO□ film and a capacitor electrode 14 made of a polysilicon film.

その後再び熱酸化を行ない、記憶セル容量部11以外に
約300人の薄い5i0213を形成する。
Thereafter, thermal oxidation is performed again to form about 300 thin layers of 5i0213 in areas other than the memory cell capacitor portion 11.

この時容量電極14の表面は厚い5iO21i (以下
、第1層間絶縁膜という)15で覆われる。
At this time, the surface of the capacitor electrode 14 is covered with a thick 5iO21i (hereinafter referred to as a first interlayer insulating film) 15.

次に、第1図(d)に示すように、基板5表面にリン(
P)を含むポリシリコン膜を堆積させた後、このポリシ
リコン膜および薄い5i02膜13をパターニングし、
ゲート酸化膜13′およびゲート電極(ワード線)16
を形成する。続いてフィールド酸化膜7、ゲート電極1
6、および第1層間絶縁膜15をマスクとして砒素イオ
ンを注入し、拡散してビット線となるn+型不純物層1
7を形成する。
Next, as shown in FIG. 1(d), phosphorus (
After depositing a polysilicon film containing P), this polysilicon film and the thin 5i02 film 13 are patterned,
Gate oxide film 13' and gate electrode (word line) 16
form. Next, field oxide film 7 and gate electrode 1
6, and an n+ type impurity layer 1 in which arsenic ions are implanted using the first interlayer insulating film 15 as a mask and diffused to become a bit line.
form 7.

次に、第1図(e)に示すように、全面に第2の層間膜
20としての5i02膜18およびPSG膜19を形成
したのち、n+型不純物層17上の一部に対応する5i
02膜18およびPSG膜19に開孔21を設ける。続
いて全面に^l膜を蒸着し、パターニングしてn+型不
純物層17と接続する人!配線(ビット線)22を形成
し、半導体記憶装置を製造する。
Next, as shown in FIG. 1(e), after forming a 5i02 film 18 and a PSG film 19 as a second interlayer film 20 on the entire surface, a 5i02 film 18 and a PSG film 19 are formed on the entire surface, and then
Openings 21 are provided in the 02 film 18 and the PSG film 19. Next, someone deposits a ^l film over the entire surface, patterns it, and connects it to the n+ type impurity layer 17! Wiring (bit line) 22 is formed and a semiconductor memory device is manufactured.

第2図(a)、(b)は本発明の第2の実施例を製造工
程順に示した断面図である。まず、第2図(a)に示す
ように、基板5にフィールド酸化膜7を形成したのち、
パターニングしたフォトレジスト膜8をマスクとし、R
IE法により細孔6を形成する。
FIGS. 2(a) and 2(b) are cross-sectional views showing a second embodiment of the present invention in the order of manufacturing steps. First, as shown in FIG. 2(a), after forming a field oxide film 7 on a substrate 5,
Using the patterned photoresist film 8 as a mask, R
Pores 6 are formed by the IE method.

次に、第2図(b)に示すように、フォトレジスト膜8
を除去したのち、再びフォトレジスト膜8′を塗布し、
記憶容量セル部11に開孔を設け、イオン注入法により
ホウ素イオンおよび砒素イオンを100〜150keV
の条件で1011゜1014個/ cs 2注入し、熱
処理を行う、このイオン注入の際、矢印のように基板5
を細孔6の対角線と側面とで形成される角度φ以上に傾
けながら回転させることにより、細孔6の底面部および
側面部には、ホウ素イオンによるn型拡散層と、砒素イ
オンによるn型拡散層が形成される。ここで、ホウ素と
砒素のシリコン中での拡散係数等の違いからn型拡散層
はn型拡散層よりも浅く形成できる。
Next, as shown in FIG. 2(b), the photoresist film 8
After removing the photoresist film 8', a photoresist film 8' is applied again.
An opening is provided in the storage capacitor cell portion 11, and boron ions and arsenic ions are implanted at 100 to 150 keV by ion implantation.
Under these conditions, 1011°1014 ions/cs2 are implanted and heat treated. During this ion implantation, the substrate 5 is implanted as shown by the arrow.
By rotating the pore 6 while tilting it at an angle greater than the angle φ formed by the diagonal line and the side surface of the pore 6, an n-type diffusion layer made of boron ions and an n-type diffusion layer made of arsenic ions are formed at the bottom and side portions of the pore 6. A diffusion layer is formed. Here, the n-type diffusion layer can be formed shallower than the n-type diffusion layer due to the difference in the diffusion coefficients of boron and arsenic in silicon.

以下、第1図(C)〜(e)の手順に従って半導体記憶
装置を製造する。
Hereinafter, a semiconductor memory device is manufactured according to the steps shown in FIGS. 1(C) to 1(e).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体記憶装置の電荷蓄
積部の細孔の側面部および底面部にホウ素によるn型拡
散層とこのn型拡散層よりも浅く砒素によるn型拡散層
を形成することにより、1)p−n接合による容量を増
加でき、2)容量電極の接地ができ、3)細孔部の空乏
層幅が減少できるため、細孔間のパンチスルーを低減し
、細孔間隔を短縮でき、4)ポテンシャルのため少数キ
ャリアが細孔部に集まりにくくなることによるソフトエ
ラーの低減等の効果がある。
As explained above, the present invention forms an n-type diffusion layer made of boron and an n-type diffusion layer made of arsenic shallower than this n-type diffusion layer on the side and bottom portions of the pores of the charge storage portion of a semiconductor memory device. As a result, 1) the capacitance due to the p-n junction can be increased, 2) the capacitive electrode can be grounded, and 3) the width of the depletion layer in the pore can be reduced, which reduces punch-through between the pores and 4) Minority carriers are less likely to gather in the pores due to the potential, resulting in reduction of soft errors.

また、製造方法については、細孔部に形成されるn型拡
散層および浅いn型拡散層をホウ素イオンおよび砒素イ
オンの注入により、細孔の深さに依存せずに再現性よく
、かつ均一に形成することができ、製造歩留を向上させ
る効果がある。
In addition, regarding the manufacturing method, the n-type diffusion layer and the shallow n-type diffusion layer formed in the pores are implanted with boron ions and arsenic ions, so that the n-type diffusion layer and the shallow n-type diffusion layer are formed uniformly and reproducibly without depending on the depth of the pore. This has the effect of improving manufacturing yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明の一実施例における半導
体記憶装置の製造工程を示す断面図、第2図(a)、(
b)は本発明の第2の実施例の製造工程を示す断面図、
第3図は従来の製造工程における電荷蓄積部を示す断面
図である。 1.5・・・p型半導体基板、2.6・・・細孔、3゜
19・・・PSG膜、4,10・・・n型拡散層、7・
・・フィールド酸化膜、8・・・フォトレジスト膜、9
・・・p型拡散層、11・・・記憶セル容量部、12・
・・容量絶縁膜、13.18・・・SiO□膜、13′
・・・ゲート酸化膜、14・・・容量電極、15・・・
第1層間絶縁膜、16・・・ゲート電極、17・・・n
+型不純物層、20・・・第2層間絶縁膜、21・・・
開孔、22・・・Al配線。 ガI図
FIGS. 1(a) to (e) are cross-sectional views showing the manufacturing process of a semiconductor memory device according to an embodiment of the present invention, and FIGS.
b) is a sectional view showing the manufacturing process of the second embodiment of the present invention;
FIG. 3 is a cross-sectional view showing a charge storage section in a conventional manufacturing process. 1.5...p-type semiconductor substrate, 2.6...pore, 3゜19...PSG film, 4,10...n-type diffusion layer, 7.
...Field oxide film, 8...Photoresist film, 9
. . . p-type diffusion layer, 11 . . . storage cell capacitor portion, 12.
...Capacitive insulating film, 13.18...SiO□ film, 13'
...gate oxide film, 14...capacitance electrode, 15...
First interlayer insulating film, 16...gate electrode, 17...n
+ type impurity layer, 20... second interlayer insulating film, 21...
Opening hole, 22...Al wiring. Ga I diagram

Claims (2)

【特許請求の範囲】[Claims] (1)p型半導体基板の表面から基板内部へ向けて形成
された細孔の表面上に設けられた絶縁膜と容量電極とを
有する電荷蓄積部と、絶縁ゲート型電界効果トランジス
タとを含んでなる半導体記憶装置において、前記細孔の
側面部およびその底面部に、ホウ素によるp型拡散層と
、このp型拡散層上にこのp型拡散層よりも浅い砒素に
よるn型拡散層とが積層して形成され、このn型拡散層
上に前記絶縁膜を介して前記容量電極が設けられている
ことを特徴とする半導体記憶装置。
(1) Includes a charge storage section having an insulating film and a capacitor electrode provided on the surface of a pore formed from the surface of a p-type semiconductor substrate toward the inside of the substrate, and an insulated gate field effect transistor. In the semiconductor memory device, a p-type diffusion layer made of boron and an n-type diffusion layer made of arsenic, which is shallower than the p-type diffusion layer, are laminated on the side and bottom portions of the pore. A semiconductor memory device characterized in that the capacitor electrode is provided on the n-type diffusion layer with the insulating film interposed therebetween.
(2)p型半導体基板の表面から基板内部へ向けて形成
された細孔の側面部および底面部にホウ素イオンを注入
し熱処理を行ってp型拡散層を形成する工程と、このp
型拡散層上に砒素イオンを注入し熱処理を行つて浅いn
型拡散層を形成する工程と、このn型拡散層上に絶縁膜
を介して容量電極を設け電荷蓄積部を形成する工程とを
含むことを特徴とする半導体記憶装置の製造方法。
(2) A step of implanting boron ions into the side and bottom portions of the pores formed from the surface of the p-type semiconductor substrate toward the inside of the substrate and performing heat treatment to form a p-type diffusion layer;
Arsenic ions are implanted onto the type diffusion layer and heat treatment is performed to form a shallow n.
A method for manufacturing a semiconductor memory device, comprising the steps of forming a type diffusion layer and forming a charge storage section by providing a capacitor electrode on the n-type diffusion layer via an insulating film.
JP61264278A 1986-11-05 1986-11-05 Semiconductor memory device and manufacture thereof Pending JPS63117461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61264278A JPS63117461A (en) 1986-11-05 1986-11-05 Semiconductor memory device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61264278A JPS63117461A (en) 1986-11-05 1986-11-05 Semiconductor memory device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63117461A true JPS63117461A (en) 1988-05-21

Family

ID=17400947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61264278A Pending JPS63117461A (en) 1986-11-05 1986-11-05 Semiconductor memory device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63117461A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232455A (en) * 1983-06-16 1984-12-27 Toshiba Corp Semiconductor device
JPS60128658A (en) * 1983-12-15 1985-07-09 Toshiba Corp Semiconductor memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232455A (en) * 1983-06-16 1984-12-27 Toshiba Corp Semiconductor device
JPS60128658A (en) * 1983-12-15 1985-07-09 Toshiba Corp Semiconductor memory device

Similar Documents

Publication Publication Date Title
KR920006260B1 (en) Dynamic type semiconductor device and its manufacturing method
JPH1126597A (en) Fabrication of semiconductor device
US5460984A (en) Method of manufacturing a semi conductor device having a second well formed within a first well
JPH0334541A (en) Manufacture of semiconductor device
JPS6251216A (en) Manufacture of semiconductor device
JPS63117461A (en) Semiconductor memory device and manufacture thereof
JPH10308448A (en) Isolation film of semiconductor device and formation method thereof
JPH01319969A (en) Manufacture of semiconductor device
JPS58200554A (en) Manufacture of semiconductor device
JPH09139382A (en) Manufacture of semiconductor device
JPS603157A (en) Manufacture of semiconductor device
JP2846055B2 (en) Method for manufacturing semiconductor device
JPH0621451A (en) Manufacture of semiconductor device
JPH0778833A (en) Bipolar transistor and its manufacture
JPH02281654A (en) Semiconductor memory device
JP2633411B2 (en) Method for manufacturing semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JPS6037614B2 (en) Manufacturing method of semiconductor device
JPH03157972A (en) Manufacture of semiconductor device
JPH0230145A (en) Manufacture of semiconductor device
JPS63240068A (en) Manufacture of semiconductor device
JPH0527995B2 (en)
JPS62131538A (en) Manufacture of semiconductor device
JPS63236363A (en) Production of semiconductor device
JPH05343422A (en) Semiconductor device and manufacture of the same