JPH03157972A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03157972A
JPH03157972A JP29803589A JP29803589A JPH03157972A JP H03157972 A JPH03157972 A JP H03157972A JP 29803589 A JP29803589 A JP 29803589A JP 29803589 A JP29803589 A JP 29803589A JP H03157972 A JPH03157972 A JP H03157972A
Authority
JP
Japan
Prior art keywords
silicon oxide
semiconductor substrate
trench
forming
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29803589A
Other languages
Japanese (ja)
Inventor
Kenji Saito
賢治 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29803589A priority Critical patent/JPH03157972A/en
Publication of JPH03157972A publication Critical patent/JPH03157972A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce characteristics change and disconnection by forming silicon oxide before a trench is filled, and filling the trench at the same time as the formation of a side wall. CONSTITUTION:Silicon oxide 4 and a conductive film 5 are formed on the surface of a semiconductor substrate 1; the film 5, the silicon 4 and the substrate 1 are etched in order, thereby forming a trench 2 in a first region of the surface. Silicon oxide 11 is formed on the surface of the film 5 and inside the trench 2; the film 5 is left only in a second region, and a gate electrode 5A is formed. Impurity is ion-implanted in a third region, and a low concentration impurity diffusion layer 7 is formed on the surface of the substrate 1; silicon oxide 8 is deposited on the whole surface; a side wall 9 is formed on the side wall of the film 5 by etching; and a high concentration diffusion layer 10 is formed by ion implantation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に溝型素子分
離を備えたMO8型半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing an MO8 type semiconductor device with trench type element isolation.

〔従来の技術〕[Conventional technology]

MOSメモリ集積回路の高密度化に伴ない、メモリセル
が微細化され、隣接するセル同士が接近するため、セル
同士を完全に絶縁分離する必要が生じてきた。このため
半導体基板に溝を掘り、この溝を絶縁物で埋め、セル同
士を絶縁することにより分離する方法が用いられている
。この溝分離を用いた従来の半導体装置の形成方法を第
3図(a)〜(f)を用いて説明する。
As the density of MOS memory integrated circuits has increased, memory cells have become smaller and adjacent cells have come closer to each other, making it necessary to completely insulate and separate the cells from each other. For this reason, a method is used in which a trench is dug in the semiconductor substrate and the trench is filled with an insulating material to insulate and isolate the cells from each other. A conventional method for forming a semiconductor device using this groove separation will be explained with reference to FIGS. 3(a) to 3(f).

まず第3図(a)に示すように、P型シリコン等の半導
体基板1の所定の領域に溝2を形成する。
First, as shown in FIG. 3(a), a groove 2 is formed in a predetermined region of a semiconductor substrate 1 made of P-type silicon or the like.

次で半導体基板1の表面と溝2の内側に酸化シリコン1
2を形成する。次にリソグラフィー技術を用いて、溝2
に例えばリン等のP型不純物を含んだ酸化シリコン3を
埋め込む。
Next, silicon oxide 1 is placed on the surface of the semiconductor substrate 1 and inside the groove 2.
form 2. Next, using lithography technology, groove 2
For example, silicon oxide 3 containing a P-type impurity such as phosphorus is embedded in the area.

次に第3図(b)に示すように、熱酸化により半導体基
板1の表面に第一の酸化シリコン4を形成し、次に第一
の酸化シリコン40表面に多結晶シリコンのような低抵
抗値の導電性膜5を形成する。
Next, as shown in FIG. 3(b), a first silicon oxide 4 is formed on the surface of the semiconductor substrate 1 by thermal oxidation, and then a low-resistance film such as polycrystalline silicon is formed on the surface of the first silicon oxide 40. A conductive film 5 of a certain value is formed.

次に、フォトレジスト6を所定の領域に形成し、フォト
レジストをマスクにして導電性膜5をエツチングして所
定の領域のみに残す。
Next, a photoresist 6 is formed in a predetermined area, and the conductive film 5 is etched using the photoresist as a mask, leaving only the predetermined area.

次に第3図(C)に示すように、リソグラフィ技術を用
いて半導体基板1の表面の所定の領域に、酸化シリコン
4を貫通するのに十分な加速エネルギで、半導体基板1
と反対導電型不純物をイオン注入して、半導体基板1の
表面に低濃度の不純物拡散層7を形成する。
Next, as shown in FIG. 3C, a predetermined region of the surface of the semiconductor substrate 1 is coated with acceleration energy sufficient to penetrate the silicon oxide 4 using lithography technology.
A low concentration impurity diffusion layer 7 is formed on the surface of the semiconductor substrate 1 by ion-implanting impurities of the opposite conductivity type.

次に第3図(d)に示すように、半導体基板1の表面に
不純物を含む酸化シリコン8をCVD技術等により全面
に堆積させる。
Next, as shown in FIG. 3(d), silicon oxide 8 containing impurities is deposited over the entire surface of the semiconductor substrate 1 by CVD technology or the like.

次に、第3図(e)に示すように、酸化シリコン8を全
面にわたりRIE法のような異方性エツチングで不純物
を含む酸化シリコン8の膜厚ぶんのエツチング(以下エ
ッチバックという)をおこなう。その結果、導電性膜5
の側壁のみに不純物を含む酸化シリコン8の一部である
サイドウオール9が形成される。
Next, as shown in FIG. 3(e), the entire surface of the silicon oxide 8 is etched by the thickness of the silicon oxide 8 containing impurities by anisotropic etching such as the RIE method (hereinafter referred to as etch-back). . As a result, the conductive film 5
A sidewall 9, which is a part of silicon oxide 8 containing impurities, is formed only on the sidewall.

次に第3図(f)に示すように、所定の領域に半導体基
板1と反対導電型の不純物をイオン注入し、高濃度の拡
散層10を形成し、LDD構造のトランジスタを完成さ
せる。
Next, as shown in FIG. 3(f), impurity ions of a conductivity type opposite to that of the semiconductor substrate 1 are implanted into a predetermined region to form a highly doped diffusion layer 10, thereby completing a transistor with an LDD structure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来の溝型素子分離のMOSメ
モリ集積回路の製造方法では、不純物を多く含んだ酸化
シリコン3で溝を埋めてから、第一の酸化シリコン4を
形成しているので、酸化時の高温熱処理により、不純物
を含む酸化シリコン3からリンやポロン等の不純物が蒸
発したり拡散したりして、第一の酸化シ゛リコン4中に
はいり込み、表面電荷となってトランジスタ特性に変動
をもたらすという欠点を持っている。又溝を埋めてから
サイドウオール9を形成するため、エッチバック時に第
4図に示すように溝の頂部がえぐられ、表面に凸凹がで
き、後工程で配線が断線するという欠点がある。
However, in the conventional method for manufacturing a MOS memory integrated circuit with trench type element isolation described above, the trench is filled with silicon oxide 3 containing a large amount of impurities, and then the first silicon oxide 4 is formed. Due to the high-temperature heat treatment, impurities such as phosphorus and poron evaporate or diffuse from the impurity-containing silicon oxide 3 and enter the first silicon oxide 4, becoming surface charges and causing fluctuations in transistor characteristics. It has the disadvantage of Furthermore, since the sidewalls 9 are formed after filling the grooves, there is a drawback that the tops of the grooves are gouged out during etchback as shown in FIG. 4, creating unevenness on the surface and causing interconnections to break in subsequent steps.

本発明の目的は上記欠点を除去し、特性変動や断線の少
い溝型素子分離を備えた半導体装置の製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a method for manufacturing a semiconductor device equipped with groove-type element isolation that causes less variation in characteristics and less disconnection.

上述した従来のMO8型半導体装置の製造方法では、素
子分離用の溝を不純物を含む酸化シリコンで埋めてから
第一の酸化シリコンを形成し、その後サイドウオールを
形成するのに対し、本発明では、溝を埋める前に第一の
酸化シリコンを形成し、その後溝埋めとサイドウオール
の形成を同時に行なうという相違点を有する。
In the conventional method for manufacturing an MO8 type semiconductor device described above, trenches for element isolation are filled with silicon oxide containing impurities, first silicon oxide is formed, and then sidewalls are formed. , the difference is that the first silicon oxide is formed before filling the trench, and then the trench filling and sidewall formation are performed simultaneously.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、−導電型半導体基板
表面に第一の酸化シリコンを形成する工程と、前記第一
の酸化シリコン上に導電性薄膜を形成する工程と、前記
半導体基板と前記第一の酸化シリコンと前記導電性薄膜
をエツチングし第一の領域に溝を形成する工程と、前記
導電性薄膜を選択的にエツチングし第二の領域にゲート
電極を形成する工程と、前記ゲート電極をマスクとして
5− 逆導電型不純物をイオン注入し前記半導体基板表面に低
濃度拡散層を形成する工程と、前記溝とゲート電極表面
を含む全面を絶縁物で覆ったのち異方性エツチングをほ
どこし溝を埋めると同時にゲート電極の側面にサイドウ
オールを形成する工程とを含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes: - forming a first silicon oxide on the surface of a conductive type semiconductor substrate; forming a conductive thin film on the first silicon oxide; etching the first silicon oxide and the conductive thin film to form a groove in the first region; selectively etching the conductive thin film to form a gate electrode in the second region; Using the electrode as a mask, 5- ion-implanting impurities of opposite conductivity type to form a low concentration diffusion layer on the surface of the semiconductor substrate; and after covering the entire surface including the groove and the surface of the gate electrode with an insulating material, anisotropic etching is performed. The method includes the steps of filling the trench and simultaneously forming a sidewall on the side surface of the gate electrode.

〔実施例〕〔Example〕

以下、図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図(a)〜(h)は本発明の第1の実施例を説明す
るための工程順に示した半導体チップの断面図である。
FIGS. 1A to 1H are cross-sectional views of a semiconductor chip shown in order of steps for explaining a first embodiment of the present invention.

まず第1図(a)に示すように、P壓シリコン等の半導
体基板1の表面に、第一の酸化シリコン4とゲート電極
用低抵抗値の多結晶シリコン等の導電性膜5を形成する
First, as shown in FIG. 1(a), a first silicon oxide 4 and a conductive film 5 such as low resistance polycrystalline silicon for a gate electrode are formed on the surface of a semiconductor substrate 1 made of P silicon or the like. .

次に第1図(b)に示すように、リソグラフィー工程を
経て、導電性膜5と第1の酸化シリコン4と半導体基板
1を順次エツチングし、半導体基板10表面の第一の領
域に溝2を形成する。
Next, as shown in FIG. 1(b), through a lithography process, the conductive film 5, the first silicon oxide 4, and the semiconductor substrate 1 are sequentially etched, and grooves are formed in the first region of the surface of the semiconductor substrate 10. form.

次に第1図(c)に示すように、導電性膜50表6 面と溝2の内側に第二の酸化シリコン11を、例えば熱
酸化法で形成する。
Next, as shown in FIG. 1(c), a second silicon oxide 11 is formed on the surface of the conductive film 50 and inside the groove 2 by, for example, a thermal oxidation method.

次に第1図(d)に示すように、再度リソグラフィー工
程を経て第二の領域にのみ導電性膜5を残し、不要な導
電性膜5を除去してゲート電極5Aを形成する。
Next, as shown in FIG. 1(d), a lithography process is performed again to leave the conductive film 5 only in the second region and remove unnecessary conductive film 5 to form a gate electrode 5A.

次に第1図(e)に示すように、ゲート電極5Aをマス
クとし半導体基板1の表面の第三の領域に半導体基板1
と反対導電型(N型)の不純物をイオン注入して、半導
体基板1表面に低濃度の不純物拡散層7を形成する。
Next, as shown in FIG. 1(e), using the gate electrode 5A as a mask, a third region of the surface of the semiconductor substrate 1 is placed on the semiconductor substrate 1.
A low concentration impurity diffusion layer 7 is formed on the surface of the semiconductor substrate 1 by ion-implanting an impurity of the opposite conductivity type (N type).

次に第1図(f)に示すように、全面にリンやポロン等
の不純物を含む酸化シリコン8を堆積する。
Next, as shown in FIG. 1(f), silicon oxide 8 containing impurities such as phosphorus and poron is deposited on the entire surface.

次に第1図(g)に示すように、不純物を含む酸化シリ
コン8を全面にわたりRIE法のような異方性エツチン
グで、不純物を含む酸化シリコン8の膜厚ぶんのエツチ
ングをおこなう。その結果、導電性膜5の側壁にサイド
ウオール9が形成される。
Next, as shown in FIG. 1(g), the entire surface of the impurity-containing silicon oxide 8 is etched by anisotropic etching such as RIE to a thickness equivalent to the thickness of the impurity-containing silicon oxide 8. As a result, a sidewall 9 is formed on the sidewall of the conductive film 5.

次に第1図(h)に示すように、ゲート電極5A及びサ
イドウオール9をマスクとし半導体基板1と反対導電型
の不純物をイオン注入し、高濃度の拡散層10を形成す
ることにより、溝型素子分離を持つLDD構造のトラン
ジスタが完成する。
Next, as shown in FIG. 1(h), using the gate electrode 5A and sidewall 9 as a mask, impurity ions of the opposite conductivity type to the semiconductor substrate 1 are implanted to form a highly concentrated diffusion layer 10. A transistor having an LDD structure with type element isolation is completed.

このように第1の実施例においては、不純物を含む酸化
シリコン8で溝2を埋めると同時に全面を覆い、次でエ
ッチバックによりサイドウオール9を形成するため、従
来のように溝2を埋めた酸化シリコンの表面がえぐられ
ることはなくなる。
In this way, in the first embodiment, the trench 2 is filled with impurity-containing silicon oxide 8 and the entire surface is covered at the same time, and then the sidewall 9 is formed by etching back, so the trench 2 is not filled as in the conventional method. The silicon oxide surface will no longer be gouged.

第2図(a)〜(d)は本発明の第2の実施例を説明す
るための工程順に示した半導体チップの断面図である。
FIGS. 2(a) to 2(d) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a second embodiment of the present invention.

まず第2図(a)に示すように、第1の実施例の第1図
(e)までの半導体基板1表面に低濃度の不純物拡散層
7を形成するところまで同様の工程とする。この工程に
ひきつづき全面に多結晶シリコン13を堆積する。
First, as shown in FIG. 2(a), steps similar to those of the first embodiment up to FIG. 1(e) are performed up to the point where a low concentration impurity diffusion layer 7 is formed on the surface of the semiconductor substrate 1. Following this step, polycrystalline silicon 13 is deposited on the entire surface.

次に第2図(b)に示すように、多結晶シリコン13を
、全面にわたり多結晶シリコン13の膜厚ぶんエツチン
グをおこなう。
Next, as shown in FIG. 2(b), the entire surface of the polycrystalline silicon 13 is etched by the thickness of the polycrystalline silicon 13.

次に第2図(c)に示すように、全面にわたりリンやポ
ロン等の不純物を含む酸化シリコン8を堆積する。
Next, as shown in FIG. 2(c), silicon oxide 8 containing impurities such as phosphorus and poron is deposited over the entire surface.

次に第2図(d)に示すように、不純物を含む酸化シリ
コン8を全面にわたりRIE法のような異方性エツチン
グで、不純物を含む酸化シリコン8の膜厚ぶんのエツチ
ングをおこないサイドウオールを形成する。この時同時
に溝2のくぼみが埋まる。次に第四の領域に半導体基板
1と反対導電型の不純物をイオン注入し、高濃度の拡散
層10を形成することによりLDD構造のトランジスタ
を形成する。
Next, as shown in FIG. 2(d), the entire surface of the impurity-containing silicon oxide 8 is etched by anisotropic etching such as the RIE method to the thickness of the impurity-containing silicon oxide 8 to form a sidewall. Form. At this time, the depression in groove 2 is filled at the same time. Next, an impurity of a conductivity type opposite to that of the semiconductor substrate 1 is ion-implanted into the fourth region to form a highly doped diffusion layer 10, thereby forming a transistor with an LDD structure.

この第2の実施例では、溝をはじめに多結晶シリコンで
埋めているために、溝の淵にかかる応力が緩和されると
いう利点がある。
In this second embodiment, since the groove is first filled with polycrystalline silicon, there is an advantage that the stress applied to the edge of the groove is alleviated.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、従来素子分
離の溝を不純物を含む酸化シリコンで埋めてからゲート
電極用の導電性膜を形成していたのを、溝を形成する前
に半導体基板を酸化するこ9− とにより、第一の酸化シリコンへの不純物の拡散が防止
でき、第一の酸化シリコンの特性を高めることができる
。その結果MO8型半導体装置の性能を向上させる効果
がある。又、従来溝を埋めてから、サイドウオール形成
のため、酸化シリコンを堆積させてエッチバックしてい
たのを、溝埋めとサイドウオール形成を同時におこなう
ことにより、溝の頂部を平坦にすることができ、その結
果、後工程の配線において、表面の凸凹による断線がな
くなり、配線の信頼性の向上に格段の効果を上げること
ができる。
As explained in detail above, according to the present invention, the conductive film for the gate electrode is formed after filling the trench for device isolation with silicon oxide containing impurities. By oxidizing the substrate 9-, diffusion of impurities into the first silicon oxide can be prevented, and the characteristics of the first silicon oxide can be improved. As a result, there is an effect of improving the performance of the MO8 type semiconductor device. Additionally, instead of filling the trench and then depositing silicon oxide and etching back to form the sidewall, we can now flatten the top of the trench by filling the trench and forming the sidewall at the same time. As a result, there is no disconnection due to surface irregularities in the wiring in the subsequent process, and it is possible to significantly improve the reliability of the wiring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の第1及び第2の実施例を説
明するための半導体チップの断面図、第3図及び第4図
は従来の製造方法を説明するための半導体チップの断面
図である。 1・・・・・・半導体基板、2・・・・・・溝、3・・
・・・・不純物を含む酸化シリコン、4・・・・・・第
一の酸化シリコン、5・・・・・・導電性膜、5A・・
・・・・ゲート電極、6・・・・・・lO− フォトレジスト、7・・・・・・低濃度拡散層、8・旧
・・不純物を含む酸化シリコン、9・・・・・・サイド
ウオール、10・・・・・・高濃度拡散層、11・・印
・第二の酸化シリコン、12・・・・・・酸化シリコン
、13・・団・多結晶シリコン。
1 and 2 are cross-sectional views of a semiconductor chip for explaining the first and second embodiments of the present invention, and FIGS. 3 and 4 are cross-sectional views of a semiconductor chip for explaining a conventional manufacturing method. FIG. 1... Semiconductor substrate, 2... Groove, 3...
... Silicon oxide containing impurities, 4 ... First silicon oxide, 5 ... Conductive film, 5A ...
...Gate electrode, 6...lO- photoresist, 7...Low concentration diffusion layer, 8. Old...Silicon oxide containing impurities, 9...Side Wall, 10... High concentration diffusion layer, 11... Mark, second silicon oxide, 12... Silicon oxide, 13... Group, polycrystalline silicon.

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板表面に第一の酸化シリコンを形成す
る工程と、前記第一の酸化シリコン上に導電性薄膜を形
成する工程と、前記半導体基板と前記第一の酸化シリコ
ンと前記導電性薄膜をエッチングし第一の領域に溝を形
成する工程と、前記導電性薄膜を選択的にエッチングし
第二の領域にゲート電極を形成する工程と、前記ゲート
電極をマスクとして逆導電型不純物をイオン注入し前記
半導体基板表面に低濃度拡散層を形成する工程と、前記
溝とゲート電極表面を含む全面を絶縁物で覆ったのち異
方性エッチングをほどこし溝を埋めると同時にゲート電
極の側面にサイドウォールを形成する工程とを含むこと
を特徴とする半導体装置の製造方法。
a step of forming a first silicon oxide on a surface of a semiconductor substrate of one conductivity type; a step of forming a conductive thin film on the first silicon oxide; and a step of forming a conductive thin film on the semiconductor substrate, the first silicon oxide, and the conductive thin film. a step of selectively etching the conductive thin film to form a groove in the first region; a step of selectively etching the conductive thin film to form a gate electrode in the second region; and ionizing impurities of opposite conductivity using the gate electrode as a mask. A process of implanting and forming a low concentration diffusion layer on the surface of the semiconductor substrate, and after covering the entire surface including the groove and the surface of the gate electrode with an insulating material, anisotropic etching is performed to fill the groove and at the same time form a low concentration diffusion layer on the side of the gate electrode. 1. A method of manufacturing a semiconductor device, comprising the step of forming a wall.
JP29803589A 1989-11-15 1989-11-15 Manufacture of semiconductor device Pending JPH03157972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29803589A JPH03157972A (en) 1989-11-15 1989-11-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29803589A JPH03157972A (en) 1989-11-15 1989-11-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03157972A true JPH03157972A (en) 1991-07-05

Family

ID=17854280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29803589A Pending JPH03157972A (en) 1989-11-15 1989-11-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03157972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177239A (en) * 1992-07-30 1994-06-24 Nec Corp Manufacture of trench element isolation structure
JP2007184418A (en) * 2006-01-06 2007-07-19 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177239A (en) * 1992-07-30 1994-06-24 Nec Corp Manufacture of trench element isolation structure
JP2007184418A (en) * 2006-01-06 2007-07-19 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH0637275A (en) Semiconductor memory and manufacture thereof
JP2002076112A (en) Semiconductor element capable of reducing junction leakage current and narrow width effect and its manufacturing method
JPH0351108B2 (en)
JP2003037267A (en) Manufacturing method for semiconductor device
JPH03157972A (en) Manufacture of semiconductor device
JPH10321822A (en) Structure of semiconductor device and its manufacture
JP3326990B2 (en) Bipolar transistor and method of manufacturing the same
JPS5846648A (en) Manufacture of semiconductor device
JPH09139382A (en) Manufacture of semiconductor device
JPH0485968A (en) Mos semiconductor device and manufacture thereof
JPH07273183A (en) Semiconductor device and its fabrication
US6808999B2 (en) Method of making a bipolar transistor having a reduced base transit time
JP3138715B2 (en) Method of forming collector plug
JPH0443673A (en) Semiconductor device and its manufacture
JPS61134058A (en) Manufacture of semiconductor device
JPS6251248A (en) Manufacture of semiconductor device
JP3123598B2 (en) LSI and manufacturing method thereof
JP2925936B2 (en) Method for manufacturing semiconductor memory device
JPH0372652A (en) Manufacture of semiconductor device
JPH08191135A (en) Semiconductor device and manufacture thereof
JPH07335873A (en) Method of manufacturing semiconductor device
JPS62266865A (en) Semiconductor device
JPH0831567B2 (en) Semiconductor device and manufacturing method thereof
JPH01248558A (en) Manufacture of semiconductor memory and device therefor
JPS6122663A (en) Manufacture of semiconductor integrate circuit