JPS58102540A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS58102540A
JPS58102540A JP20222181A JP20222181A JPS58102540A JP S58102540 A JPS58102540 A JP S58102540A JP 20222181 A JP20222181 A JP 20222181A JP 20222181 A JP20222181 A JP 20222181A JP S58102540 A JPS58102540 A JP S58102540A
Authority
JP
Japan
Prior art keywords
region
semiconductor substrate
potential
type
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20222181A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sakai
坂井 弘之
Tsutomu Fujita
勉 藤田
Kenji Kawakita
川北 憲司
Toyoki Takemoto
竹本 豊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20222181A priority Critical patent/JPS58102540A/en
Publication of JPS58102540A publication Critical patent/JPS58102540A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To facilitate the circuit design and stabilize the operation, by allowing the potential to be taken from a semiconductor substrate. CONSTITUTION:The numeral 11 represents a P type semiconductor substrate, and the numeral 12 an N<+> buried layer, and this N<+> buried layer region is formed over the entire island region wherein a transistor is formed. Next, after an N type epitaxial layer 14 is etched in a fixed amount, an oxide film 15 is formed by a selective oxidation. Thereafter, a collector wall 16 to decrease series resistance is formed. Then, in the island region wherein a transistor is formed, a base layer 17 is formed down to the depth of approx. 0.45mum, and, in the island region wherein a P type diffused region 13' is formed, a P type diffused region 17' is formed down to the depth of 0.45mum in the same process as the base layer 17' to take the potential of the semiconductor substrate. Thus, the P type diffused region 17' is joined to the P type diffused region 13' and the P type semiconductor substrate 11 in continuity, accordingly the potential of the P type semiconductor substrate 11 can be taken from the surface.

Description

【発明の詳細な説明】 本発明は半導体装置とくに絶縁分離の半導体集積回路の
関するものであり、従来の絶縁分離の半導体集積回路で
は、通常、半導体基板の電位は裏面から取っていたが、
本発明はこ扛を表面から取ることを可能にし、回路設計
を容易に、かつ動作を安定にすることを可能としたもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and in particular to an insulation-separated semiconductor integrated circuit.In conventional insulation-separated semiconductor integrated circuits, the potential of the semiconductor substrate is normally taken from the back side.
The present invention makes it possible to remove the knife from the surface, making it possible to easily design the circuit and stabilize the operation.

近年、半導体集積回路はますます高密度化、高速化の必
要に迫られ、絶縁分離による半導体集積回路の研究が盛
んに行なわれている。一般に、バイポーラ半導体集積回
路では縦形σNP)iTr(トランジスタ)を主に用い
るため、回路を構成する場合半導体基板は最も低い電位
に落として使用している。通常は半導体基板の電位をア
ースに落として、エミッタ接地として広く用いら扛てい
る。
In recent years, semiconductor integrated circuits have been required to have higher density and higher speed, and research on semiconductor integrated circuits using insulation isolation has been actively conducted. In general, bipolar semiconductor integrated circuits mainly use vertical σNP)iTr (transistors), so when configuring the circuit, the semiconductor substrate is used at the lowest potential. Normally, the potential of the semiconductor substrate is lowered to earth, and it is widely used as emitter grounding.

従来の絶縁分離の半導体集積回路における半導体基板電
位の取り方を第1図に示す。第1図において、1はたと
えばp型半導体基板、2はn+埋込み層、3はチャネル
・ストッパー用のp型拡散領域であり、厚い分離酸化膜
形成時に生じるn型反転層により島領域と島領域がリー
クするのを防ぐ効果を持っている。4はn型エピタキシ
ャル層、6は分離酸化膜であり、この酸化膜により島領
域を絶縁分離している。6はコレクタ直列抵抗を下げる
ためのコレクタ・ウオール、7はトランジスタのベース
層、8はエミッタ、9はコンタクト部開口用の酸化膜で
あり、1oはム1配線である。
FIG. 1 shows how to take a semiconductor substrate potential in a conventional semiconductor integrated circuit with insulation isolation. In FIG. 1, 1 is, for example, a p-type semiconductor substrate, 2 is an n+ buried layer, and 3 is a p-type diffusion region for a channel stopper. It has the effect of preventing leakage. 4 is an n-type epitaxial layer, and 6 is an isolation oxide film, which insulates and isolates the island region. 6 is a collector wall for lowering the collector series resistance, 7 is a base layer of the transistor, 8 is an emitter, 9 is an oxide film for opening a contact portion, and 1o is a mu1 wiring.

第1図から明らかなように、従来の絶縁分離の半導体集
積回路では、半導体基板の電位を表面から取るために、
p型半導体基板と表面までをつなぐようなp型拡散領域
が形成されていない。そのため、通常半導体基板の電位
は裏面から取らなければならなかった。p型半導体基板
の電位を表面から取ろうとすると、トランジスタ形成部
以外の部分に表面からp型半導体基板に達するようなp
型拡散領域を新たに形成しなけ扛ば々らず、工程的にも
大幅に増えることになる。つまり、絶縁分離というのは
、pn接合分離においては島と島を分離するため表面か
ら半導体基板に達するように形成している拡散領域を、
絶縁物によって置き換えた分離方式であるので、表面か
ら半導体基板に達する゛ような拡散領域は必然的に形成
しない構造となる。そのため、従来の絶縁分離では半導
体基板の電位は裏面から取らざるを得なかった。
As is clear from FIG. 1, in the conventional semiconductor integrated circuit with insulation isolation, in order to take the potential of the semiconductor substrate from the surface,
A p-type diffusion region that connects the p-type semiconductor substrate to the surface is not formed. Therefore, the potential of the semiconductor substrate usually had to be taken from the back side. When attempting to take the potential of a p-type semiconductor substrate from the surface, there is a p
Unless a new mold diffusion region is formed, the process will be complicated and the number of steps will increase significantly. In other words, insulation isolation refers to the diffusion region that is formed from the surface to the semiconductor substrate in order to separate the islands in pn junction isolation.
Since this is an isolation method in which an insulator is used, the structure inevitably does not include a diffusion region that reaches the semiconductor substrate from the surface. Therefore, in conventional insulation isolation, the potential of the semiconductor substrate had to be taken from the back side.

p型半導体基板の電位を裏面から取らねばならないこと
は、回路設計において大きな弊害を生じさせ、回路の誤
動作の原因となることがしばしばある。一般に半導体集
積回路を形成したチップをパッケージに実装する時は、
半導体基板の裏面にムu −Si共晶合金を使って接着
している。したが     ゛って半導体基板の電位は
裏面から取ることができる。しかしながら、チップをパ
ッケージに接着し6  、  、・ ている時の裏面のコンタクトは非常に悪く、コンタクト
抵抗が異常に大きくなる場合がある。このため、回路設
計においである回路部を半導体基板と結線する場合は、
チップを接着したパッケージと必要な箇所との結線が必
要になって<之。この時、チップとパッケージとのコン
タクトが悪いとコンタクト抵抗が大きくなるため、電流
はコンタクト部を流れないで半導体基板中を流nること
になり、半導体基板は同電位でなく電圧降下を生じるこ
とになる。こうなると、半導体集積回路中で半導体基板
の電位が違うため、回路の誤動作を生じる可能性がでて
くる。このため、回路設計においては、ある特定の回路
部と半導体基板とを短い距離で配線する必要φ;生じて
くる。また、寄生トランジスタ等の影響でラッチアップ
が生じることもあり、半導体基板の電位を表面から取る
ことは汎用的な回路設計においては不可欠となってくる
Having to take the potential of the p-type semiconductor substrate from the back side causes a serious problem in circuit design and often causes malfunction of the circuit. Generally, when mounting a chip with a semiconductor integrated circuit into a package,
It is bonded to the back surface of the semiconductor substrate using a Mu-Si eutectic alloy. Therefore, the potential of the semiconductor substrate can be taken from the back side. However, when the chip is bonded to the package, the contact on the back side is very poor, and the contact resistance may become abnormally large. For this reason, when connecting a certain circuit section to a semiconductor substrate in circuit design,
It became necessary to connect the package with the chip glued to the necessary locations. At this time, if the contact between the chip and the package is poor, the contact resistance will increase, so the current will not flow through the contact area but through the semiconductor substrate, causing a voltage drop instead of the semiconductor substrate being at the same potential. become. In this case, the potential of the semiconductor substrate in the semiconductor integrated circuit will be different, which may cause malfunction of the circuit. Therefore, in circuit design, it becomes necessary to wire a certain specific circuit section and the semiconductor substrate over a short distance. In addition, latch-up may occur due to the influence of parasitic transistors, etc., so it is essential in general-purpose circuit design to take the potential of the semiconductor substrate from the surface.

本発明はこのような問題の検討に鑑み、従来の絶縁分離
では表面から半導体基板の電位を取ることができないと
いう欠点を克服し、表面から半導体基板の電位を取るこ
とを可能とし、回路設計を容易にかつ誤動作のない正確
な動作をする半導体集積回路を提供するものである。
In consideration of these problems, the present invention overcomes the drawback that conventional insulation isolation cannot take the potential of the semiconductor substrate from the surface, makes it possible to take the potential of the semiconductor substrate from the surface, and improves circuit design. An object of the present invention is to provide a semiconductor integrated circuit that operates easily and accurately without malfunction.

以下、第2図とともに本発明の詳細な説明する。The present invention will be described in detail below with reference to FIG.

第2図(ム)〜(jc)に本発明の一実施例のバイポー
ラ半導体集積回路の概略製造工程を示す。
FIGS. 2(m) to 2(jc) schematically show the manufacturing process of a bipolar semiconductor integrated circuit according to an embodiment of the present invention.

第2図(A)で11はp型半導体基板を示す。(ム)に
おいて12はn+埋込み層であり、ここではムS。
In FIG. 2(A), 11 indicates a p-type semiconductor substrate. In (Mu), 12 is an n+ buried layer, and here MuS.

sbなどの不純物を使い、拡散により形成し°Cいる。It is formed by diffusion using impurities such as sb.

このn+埋込み層領域はトランジスタを形成する島領域
全体に形成されている。13.13’はp型拡散領域で
あり、Bのイオン注入などで形成している。13はトラ
ンジスタ部を形成するn+埋込み領域12を取り囲むよ
うに形成されており、チャネル・ストッパーとして用い
絶縁分離の酸化膜形成時に生じるn型反転層により島領
域と島領域がリークするのを防いでいる。領域13“は
領域13と同一工程で、p型半導体基板11の電位を表
面から取るため島領域全体に形成さ扛ている。その後n
型エピタキシャル層14を1・2μ閣形成する■)。
This n+ buried layer region is formed over the entire island region where the transistor is formed. Reference numeral 13 and 13' denote p-type diffusion regions, which are formed by B ion implantation. 13 is formed to surround the n+ buried region 12 forming the transistor section, and is used as a channel stopper to prevent leakage between the island regions due to the n-type inversion layer generated when forming the oxide film for insulation isolation. There is. The region 13'' is formed in the same process as the region 13 over the entire island region in order to take the potential of the p-type semiconductor substrate 11 from the surface.
Form a mold epitaxial layer 14 with a thickness of 1.2 μm (■).

次に、第2図(C)においては、n型エピタキシャル層
14を所定量エツチングした後、選択酸化により1.5
μ論 厚の酸化膜15を形成する。高圧酸化を用いると
、温度1000℃、6・6気圧の条件では約90分で1
.6μmの酸化膜16が形成され4る。この時、n+埋
込領域12をムss p形拡散領域13および131を
Bで形成していると、1000℃でのム8の拡散係数は
約2×1015CI!/シで Bの拡散係数は約1.2×1o14C4/J!cで、 
Bの拡散係数はムSの拡散係数の約6倍程度である。そ
のため、選択酸化工程ではn+埋込み領域12の持ち一
ヒがりは約0.2μ”1p形拡散領域131の持ち上が
りは約0.8μmという結果が得ら扛た。この選択酸化
時に領域131は大きく拡散するわけである。
Next, in FIG. 2(C), after etching the n-type epitaxial layer 14 by a predetermined amount, selective oxidation is performed to 1.5
μ theory A thick oxide film 15 is formed. When high-pressure oxidation is used, at a temperature of 1000°C and 6.6 atm, 1
.. An oxide film 16 of 6 μm is formed. At this time, if the n+ buried region 12 is made of Mu ss and the P-type diffusion regions 13 and 131 are made of B, the diffusion coefficient of Mu 8 at 1000° C. is approximately 2×10 15 CI! /The diffusion coefficient of B is approximately 1.2×1o14C4/J! At c,
The diffusion coefficient of B is about 6 times that of Mu S. Therefore, in the selective oxidation process, the lift of the n+ buried region 12 was approximately 0.2 μm, and the lift of the p-type diffusion region 131 was approximately 0.8 μm. During this selective oxidation, the region 131 was greatly diffused. That's why.

その後、直列抵抗を下げるためのコレクタ・ウオール1
6を形成する。このコレクタ・ウオールはムSやBに比
べて拡散係数の大きいpを拡散などによって形成するの
が望ましい。
After that, collector wall 1 to lower the series resistance.
form 6. It is desirable that this collector wall is formed by diffusion, etc., of p having a larger diffusion coefficient than those of S and B.

しかるのち、トランジスタを形成する島領域にはベース
層17を約0o46μ璽の深さまで形成する。そして、
半導体基板の電位を取るため、p型拡散領域13fを形
成した島領域にもベース層17と同一工程でp型拡散領
域17’を0.46μlの深さまで形成する。これで第
2図中)に示すごとく、p形拡散領域17’とp形拡散
領域13’及p型半導体基板11は連続してつながり、
p型半導体基板11の電位を表面から取ることが可能に
なったわけである。なお、トランジスタのペース抵抗を
下げ、高周波特性を良くするために、グラフト・ペース
として高濃度p”!散領域を形成することがよくあるが
、この高濃度p÷拡散領域を電位を取るために形成した
p型拡散領域171と同一工程で形成することもできる
。しかるのち、n+型エミッタト8を形成し、表面の絶
縁膜19を選択的ゆ去して、ム1配線20.211 2
21 23を形成し、第2図停)に示す半導体集積回路
が形成される。Trはトランジスタ部、Vは半導体基板
電位部であり、ムl配線23の端子Sが基板電位となる
Thereafter, a base layer 17 is formed to a depth of approximately 0.46 μm in the island region where the transistor is to be formed. and,
In order to obtain the potential of the semiconductor substrate, a p-type diffusion region 17' is formed to a depth of 0.46 μl in the same step as the base layer 17 in the island region where the p-type diffusion region 13f is formed. Now, as shown in FIG. 2, the p-type diffusion region 17', the p-type diffusion region 13', and the p-type semiconductor substrate 11 are continuously connected.
This makes it possible to take the potential of the p-type semiconductor substrate 11 from the surface. Note that in order to lower the transistor's paste resistance and improve its high frequency characteristics, a highly concentrated p''! diffused region is often formed as a graft paste. It can also be formed in the same process as the formed p-type diffusion region 171.After that, the n+ type emitter 8 is formed, and the insulating film 19 on the surface is selectively removed to form the M1 wiring 20, 211, 2.
21 and 23 are formed to form the semiconductor integrated circuit shown in FIG. Tr is a transistor portion, V is a semiconductor substrate potential portion, and terminal S of the multilayer wiring 23 has a substrate potential.

以上述べたように、第2図によ扛ば、従来の絶縁分離に
おいてはチャネル・ストッパーとして用9べ〕′ いたp形拡散領域を所定の島領域に形成することにより
、その後のエピタキシャル成長、選択酸化による絶縁分
離酸化膜形成工程においてn型エピタキシャル層中にp
形拡散領域が大きく持ち上がることを利用している。な
お、トランジスタを形成する島領域全体にはn+埋込領
域が形成されているが、拡散係数の違いにより、n+埋
込領域の持ち上がりは小さく、トランジスタの特性には
あまり影響しない。この持ち上がったp形拡散領域とペ
ース領域と同′時に形成さ牡るp形拡散領域をつなぐこ
とにより、p形半導体基板とp型拡散領域は表面までつ
ながり、半導体基板の電位を表面から取ることが可能に
なる。それ故、従来の絶縁分離のように半導体基板の電
位を裏面から取るという制約が徐かれ、回路設計をきわ
めて容易にすることができる。また、半導体集積回路中
で、任意の位置で半導体基板の電位を取ることができる
ので、半導体基板中で電圧師下を起こすことをなくし、
また寄生トランジスタによるラッチアップなどの影響を
極力小さくして回路の誤動作な生じさせない効果を有す
る。
As described above, as shown in FIG. 2, by forming a p-type diffusion region, which was used as a channel stopper in conventional insulation isolation, in a predetermined island region, subsequent epitaxial growth and selection are possible. In the step of forming an insulating isolation oxide film by oxidation, p is added to the n-type epitaxial layer.
It takes advantage of the fact that the shape diffusion area is raised greatly. Note that although the n+ buried region is formed in the entire island region where the transistor is formed, due to the difference in diffusion coefficient, the rise of the n+ buried region is small and does not affect the characteristics of the transistor much. By connecting this raised p-type diffusion region to the p-type diffusion region formed at the same time as the space region, the p-type semiconductor substrate and the p-type diffusion region are connected to the surface, and the potential of the semiconductor substrate can be taken from the surface. becomes possible. Therefore, the restriction that the potential of the semiconductor substrate is taken from the back surface as in conventional insulation isolation is removed, and circuit design can be made extremely easy. In addition, since the potential of the semiconductor substrate can be taken at any position in the semiconductor integrated circuit, it is possible to eliminate voltage drop in the semiconductor substrate.
It also has the effect of minimizing the effects of latch-up and the like caused by parasitic transistors, thereby preventing circuit malfunctions.

以上のように本発明は絶縁分離において半導5体基板の
電位を表面から取ること可能にし、回路設計を容易に、
かつ誤動作のない正確な半導体集積回路の製造に大きく
寄与し、工業的価値の非常に高いものである。
As described above, the present invention makes it possible to take the potential of the semiconductor five-piece substrate from the surface in insulation isolation, and facilitates circuit design.
Moreover, it greatly contributes to the production of accurate semiconductor integrated circuits without malfunctions, and is of extremely high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の絶縁分離を用いた半導体集積回路の要部
断面図、第2図(ム)〜(jE)は本発明の一実施例に
かかるバイポーラ半導体集積回路の要部製造工程図であ
る。 11・・・・・・p型半導体基板、12・・・・・・n
+埋込み領域、13.13’・・・・・・p型拡散領域
、16・・・・・分離酸化膜、17.17’・・・・・
・ベース層形成用p型拡散領域。
FIG. 1 is a sectional view of a main part of a semiconductor integrated circuit using conventional insulation isolation, and FIGS. be. 11...p-type semiconductor substrate, 12...n
+Buried region, 13.13'...p-type diffusion region, 16...isolation oxide film, 17.17'...
- P-type diffusion region for base layer formation.

Claims (2)

【特許請求の範囲】[Claims] (1)一方の導電型の半導体基板上に形成された他方の
導電型の半導体層と、前記半導体層中に選択的に形成さ
nた分離用絶縁膜にて互いに分離された第1.第2の島
領域と、前記第1の島領域に形成さnた半導体素子と、
前記第2の島領域に形成され前記第2の島領域表、面か
ら前記半導体基板に達する前記一方の導電型の領域と、
この領域上に形成された前記半導体基板用電極とを備え
た仁とを特徴とする半導体装置。
(1) A semiconductor layer of one conductivity type formed on a semiconductor substrate of the other conductivity type, and a first semiconductor layer separated from each other by an isolation insulating film selectively formed in the semiconductor layer. a second island region; a semiconductor element formed in the first island region;
a region of the one conductivity type formed in the second island region and reaching the semiconductor substrate from the surface of the second island region;
A semiconductor device comprising: a semiconductor substrate electrode formed on this region;
(2)一方の導電型の半導体基板上に、この基板と反対
の他方の導電型の第1の領域を選択的に形成する工程と
、前記第1の領域外の前記基板上に、前記一方の導電型
の第2の領域を形成する工程と、前記基板上に前記他方
の導電型の半導体層を成長させる工程と、前記半導体層
表面から前記第2.第3の領域に到達するように選択的
に絶縁膜を形成し、下方に前記第1.第2の領域をそ扛
ぞれ有する第1.第2の島領域を形成する工程と、前記
第1の島領域には半導体素子を形成し、前記第2の島領
域には前記第2の領域と接する前記一方の導電型の第3
の領域を形成する工程と、前記第3の領域上に前記半導
体基板用電極を形成する工程とを備榮たことを特徴とす
る半導体装置の製造方法。
(2) selectively forming a first region of the other conductivity type opposite to this substrate on a semiconductor substrate of one conductivity type; forming a second region of conductivity type; growing a semiconductor layer of the other conductivity type on the substrate; and growing a semiconductor layer of the second conductivity type from the surface of the semiconductor layer. An insulating film is selectively formed so as to reach the third region, and an insulating film is formed below the first region. A first region having a second region therebetween. forming a second island region, forming a semiconductor element in the first island region, and forming a third semiconductor element of the one conductivity type in contact with the second island region in the second island region;
A method for manufacturing a semiconductor device, comprising the steps of: forming a region; and forming the semiconductor substrate electrode on the third region.
JP20222181A 1981-12-14 1981-12-14 Semiconductor device and manufacture thereof Pending JPS58102540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20222181A JPS58102540A (en) 1981-12-14 1981-12-14 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20222181A JPS58102540A (en) 1981-12-14 1981-12-14 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS58102540A true JPS58102540A (en) 1983-06-18

Family

ID=16453963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20222181A Pending JPS58102540A (en) 1981-12-14 1981-12-14 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58102540A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037386A (en) * 1973-08-06 1975-04-08
JPS56140644A (en) * 1980-04-02 1981-11-04 Fujitsu Ltd Semiconductor device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037386A (en) * 1973-08-06 1975-04-08
JPS56140644A (en) * 1980-04-02 1981-11-04 Fujitsu Ltd Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US3411051A (en) Transistor with an isolated region having a p-n junction extending from the isolation wall to a surface
US4051506A (en) Complementary semiconductor device
JPH05121664A (en) Semiconductor device
JPS5917544B2 (en) semiconductor integrated circuit
JPS58102540A (en) Semiconductor device and manufacture thereof
US3777230A (en) Semiconductor device with isolated circuit elements
JPS6360550B2 (en)
JPS60187055A (en) Semiconductor integrated circuit device
US4577123A (en) Integrated logic circuit having collector node with pull-up and clamp
JP2518929B2 (en) Bipolar semiconductor integrated circuit
JPS5810834A (en) Semiconductor device
JPS61265867A (en) Semiconductor device
JPH10173040A (en) Semiconductor integrated circuit device
JPS5882562A (en) Semiconductor device
JPH0157506B2 (en)
JPS60192365A (en) Manufacture of thin film transistor
JPS6322068B2 (en)
JPH02278736A (en) Semiconductor device
JPH01286356A (en) Semiconductor integrated circuit
JPS62189752A (en) Semiconductor device
JPS59175766A (en) Semiconductor device and manufacture thereof
JPH02137334A (en) Bipolar transistor for building-in in integrated circuit device
JPS58225665A (en) Manufacture of semiconductor integrated circuit device
JPH01214156A (en) Bipolar memory
JPS5870550A (en) Semiconductor device