JPS5870550A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS5870550A JPS5870550A JP16913381A JP16913381A JPS5870550A JP S5870550 A JPS5870550 A JP S5870550A JP 16913381 A JP16913381 A JP 16913381A JP 16913381 A JP16913381 A JP 16913381A JP S5870550 A JPS5870550 A JP S5870550A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- region
- sio2
- regions
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/763—Polycrystalline semiconductor regions
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は半導体装置の構造、特に半導体集積回路におけ
る絶縁分離の構造に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a semiconductor device, particularly to the structure of insulation in a semiconductor integrated circuit.
従来量も広く用いられるPN接合による絶縁分離は、素
子領域と半導体基板の間に接合容量が存在するために周
波数特性K11j限を受けゐのみならず、PNP)ラン
ジスタやPNPN素子(サイリスタ素子)等の寄生素子
を生み、ラッチアップ等色々のトラブルの原因となって
いた。そこで、5iOseの絶縁物で周囲を包む絶縁物
分離や、空隙(よるエアーギャップアイソレージ曹ン(
ビームリード方式)等が提案されて来たが、色々と製造
上の困難があって未だ量産工程に安価に用いられるとは
言い難い。Insulation isolation using a PN junction, which is also widely used in the past, is not only limited by the frequency characteristic K11j due to the presence of junction capacitance between the element region and the semiconductor substrate, but also is used for PNP transistors, PNPN elements (thyristor elements), etc. This creates parasitic elements and causes various problems such as latch-up. Therefore, we decided to use insulator isolation by wrapping the surrounding area with 5iOse insulator, and air gap isolation (
Although methods such as the beam lead method have been proposed, there are various manufacturing difficulties and it is still difficult to say that they can be used inexpensively in mass production processes.
第1図には従来のビームリード方式による半導体装置の
一部の概略断面が示されている。このビームリード方式
は、M配線の代りにムUのビーム(梁)状リードを形成
し、このリードにより集積回路を構成する個々の素子を
互に支持しているので、ウェハの裏面から素子と素子の
関08i結晶をエツチングすることが出来、空隙による
絶縁分離が可能である。しかしながら、製造方法が困難
で高価のため、この空隙による絶縁分離はほとんど使用
されていない。この方式は、ハイブリッドICにおいて
、ケースと集積回路チップを接続する技術として使われ
ているにすぎない。FIG. 1 shows a schematic cross section of a part of a semiconductor device using a conventional beam lead method. In this beam lead method, instead of the M wiring, a M-U beam-shaped lead is formed, and the individual elements that make up the integrated circuit are mutually supported by these leads. The Seki08i crystal of the device can be etched, and insulation separation can be achieved by voids. However, because the manufacturing method is difficult and expensive, this gap-based isolation is rarely used. This method is only used as a technology for connecting the case and the integrated circuit chip in hybrid ICs.
第1図についてもう少し説明すると、素子の製造のため
の拡散は通常のトランジスタ製造の場合と同じでよい。To explain a little more about FIG. 1, the diffusion for manufacturing the device may be the same as for normal transistor manufacturing.
出発材料はSb、ムS等0Null不純物を高濃度にド
ープし九シリコン基板1で、その基板の上にN型のエピ
タキシアル層2を成長させ、P型不純物@を拡散してペ
ース領域3を、次にN型不純物(P t A、等)を高
濃度に拡散してエミッタ4とコレクタ電極引出領域4′
とを形成する。The starting material is a silicon substrate 1 heavily doped with null impurities such as Sb and S. An N-type epitaxial layer 2 is grown on the substrate, and a P-type impurity is diffused to form a space region 3. Next, N-type impurities (P t A, etc.) are diffused at a high concentration to form the emitter 4 and the collector electrode extraction region 4'.
to form.
―いて、各コンタクト部を設けるため5ins Sf選
選択的開開孔、白金シリサイドを形成し、白金、金を蒸
着またはメッキによりウェハー表面に被着させてビーム
リード6、7.8 k形成する。これらのビームリード
を支持体としてウェハの裏面より各々の素子の周りの8
1結晶を取如去り、素子の周りKCVD法で8ixN4
又はStowのms’t−形成して保農膜とする。ビー
ムリード6、7.8はそれぞれエミッタ、ペース、コレ
クメ電極である。かかる半導体素子は、PN接合による
絶縁分離の場合に比べて、半導体基板及び絶縁分離領域
との接合容量が全く無くなるため、100MHz以上の
周波数で使用する場合にその威力を発揮する。しかしビ
ームリードの形成工程が複雑で高価、その後の取゛如扱
いが困s轡でほとんど使用されていない。Then, 5-inch Sf selective openings and platinum silicide are formed to provide each contact portion, and platinum and gold are deposited on the wafer surface by vapor deposition or plating to form beam leads 6 and 7.8 k. Using these beam leads as supports, the 8
1 crystal is removed and the area around the element is 8ixN4 by KCVD method.
Or Stow's ms't-forming is used as a farm maintenance film. Beam leads 6, 7.8 are emitter, pace, and collector electrodes, respectively. Such a semiconductor element exhibits its power when used at a frequency of 100 MHz or higher, since the junction capacitance between the semiconductor substrate and the insulation isolation region is completely eliminated compared to the case of isolation using a PN junction. However, the beam lead formation process is complicated and expensive, and its subsequent handling is difficult, so it is rarely used.
本発明の目的は、上記欠点を解消して非常に簡単な絶縁
物分離によ)形成されて寄生素子のない、寄生容量の非
常に小さな、しかも集積密度の高い半導体装置を提供す
るものである。An object of the present invention is to eliminate the above-mentioned drawbacks and provide a semiconductor device which is formed by very simple isolation of insulators, has no parasitic elements, has very small parasitic capacitance, and has high integration density. .
この発明の半導体装置は、半導体基板の表面上に誘電体
薄膜(例えば5ins膜)を介して、その周囲が誘電体
薄層で取り囲まれた半導体結晶薄層であって、咳薄層に
は、−導電型の第一領域と、前記第一領域と隣り合うよ
うに反対導電型の不純物を高濃度にドープし九第二領域
と、前記第一。The semiconductor device of the present invention includes a semiconductor crystal thin layer surrounded by a dielectric thin layer on the surface of a semiconductor substrate via a dielectric thin film (for example, a 5-ins film), and the thin layer includes: - a first region of a conductivity type, a second region doped with an impurity of an opposite conductivity type to a high concentration so as to be adjacent to the first region; and a second region of the first region.
第二領域の引出部を除いて前記第一、第二領域の上に形
成されたー導電製の半導体結晶層の第三領域と、前記第
三領域の上に形成された反対導電型の半導体結晶層の第
四領域とt有し、前記第一。A third region of a conductive semiconductor crystal layer formed on the first and second regions except for the lead-out portion of the second region, and a semiconductor of an opposite conductivity type formed on the third region. a fourth region of the crystalline layer and said first region;
第二および第四の領域を外部へ電気的に接続する手段、
即ち、各領域上の絶縁被膜に選択的に開孔部を設け、前
記開孔部を通して、金属又は多結晶半導体を各領域に接
合させて各領域の電極を形成し、さらに他の素子への配
線を形成して成るものである。means for electrically connecting the second and fourth regions to the outside;
That is, openings are selectively formed in the insulating film on each region, and metal or polycrystalline semiconductor is bonded to each region through the openings to form electrodes for each region, and furthermore, electrodes for other elements are formed. It is formed by forming wiring.
次に1図面を参照して本発明をより詳細に説明する。The invention will now be explained in more detail with reference to one drawing.
第2図は本発明の一実施例の半導体装置の概略断面図で
あり、ga図(a)〜(g)は第2図の半導体装置をつ
くるための方法を製造工程順に示し丸断面図である。出
発材料は厚さ250〜500μmのシリコン基板9で、
導電製はN型、pHのいずれでも嵐く、比抵抗は基板に
素子の一部の電位を与える場合や基板の熱抵抗を少しで
も低くするため、比抵抗0.10−国以下の基板を使え
ばよい。続いてシリコン基板9の表面より、酸素(又は
窒素)イオンOt−打込エネルギー1s ojlceV
以上、ドース量1.2X1G51 以上でイオン注入
する。この注入条件では、イオンは平均飛程距離Rp=
3800A以上の位置を中心に打込まれる。打込まれ九
イオン層は、続いて1000℃以上Ngガス雰囲気の中
で熱処理すると、打込まれた酸素イオンがStと反応し
て5ins薄層1Gが形成される0表面のシリコン遷移
層は熱処理によ如単結晶性を回復する(第3図(a))
。FIG. 2 is a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention, and FIGS. be. The starting material is a silicon substrate 9 with a thickness of 250 to 500 μm,
The conductive material is suitable for both N type and pH, and the specific resistance is used when applying the potential of a part of the element to the substrate, or in order to lower the thermal resistance of the substrate as much as possible. Just use it. Subsequently, oxygen (or nitrogen) ions are implanted from the surface of the silicon substrate 9 with an implantation energy of 1s ojlceV.
Ion implantation is performed at a dose of 1.2×1G51 or more. Under these implantation conditions, the ions have an average range Rp=
It is driven mainly at positions above 3800A. The implanted 9 ion layer is then heat treated in an Ng gas atmosphere above 1000°C, and the implanted oxygen ions react with St to form a 5ins thin layer 1G.The silicon transition layer on the surface is heat treated. As a result, single crystallinity is restored (Figure 3 (a)).
.
この後、81(h薄層10の上の単結晶層の上にエピタ
キシアル成長により厚さ2〜Sμmm OP illの
単結晶シリコン層(0,1〜0.01Ω−a+)11を
形成しその表面に810m膜1 g (〜5GGOA)
を熱酸化やCVD法で被着する(第3図(bl)。次に
810+膜16’に選択的にエツチングによシ取り去り
、N型不純物(P、ム畠等)を高flkFitJs−2
〜5Ω/口)に810sll[1Gに達するようにドー
プしてN11l領域12t−形成する(第3図(C))
。After this, a single crystal silicon layer (0.1 to 0.01 Ω-a+) 11 with a thickness of 2 to S μmm OP ill is formed by epitaxial growth on the single crystal layer on the thin layer 10 of 81 (h). 1 g of 810m film on the surface (~5GGOA)
is deposited by thermal oxidation or CVD method (Fig. 3 (bl)). Next, the 810+ film 16' is selectively etched away, and N-type impurities (P, Muhatake, etc.) are deposited with high flkFitJs-2.
~5Ω/hole) and doped to reach 810sll [1G to form an N11l region 12t (Fig. 3(C))
.
次に第3図(d)の平面図の様に、シリコン窒化膜をマ
スクとして、領域xt、tf、tzt残すように周囲の
単結晶層tSiOz層に酸化してしまう。次に第3図(
d)の四辺形■、■、■および■上の酸化膜、窒化膜を
除去してpH不純物(例えばB) t−ドープしながら
シリコンを気相成長させると、四辺形■、■、■および
■の上には単結晶シリコンのP型領域13(比抵抗0.
1〜0.01Ω−国、厚さ1〜5μ−m)が、ナの他の
領域の上には多結晶シリコン層22が成長する(第3図
(e))。四辺形■、■、■、■はトランジスタ素子の
一部となる部分である。さらにNll不純物(例えばp
hol。Next, as shown in the plan view of FIG. 3(d), using the silicon nitride film as a mask, the surrounding single crystal layer tSiOz layer is oxidized so as to leave regions xt, tf, and tzt. Next, Figure 3 (
If the oxide film and nitride film on the quadrilaterals ■, ■, ■, and ■ in d) are removed and silicon is vapor-phase grown while doping with pH impurities (e.g., B), the quadrilaterals ■, ■, ■, and Above (2) is a P-type region 13 of single crystal silicon (specific resistance 0.
1 to 0.01 ohm and thickness of 1 to 5 .mu.m), but a polycrystalline silicon layer 22 is grown on the other regions of the film (FIG. 3(e)). The quadrilaterals ■, ■, ■, ■ are parts that become part of the transistor element. Furthermore, Nll impurities (e.g. p
hol.
AI等)t−ドープしながらシリコンを気相成長させる
と、P型領域13の上にはN型領域14(比抵抗0.5
〜lsΩ−国、厚さ2〜154m)が、多結晶シリコン
層22の上にはさらに多結晶層23がそれぞれ成長する
。次に表面よシー面にNff1不純物を高濃度(Pil
=1〜10Ω/口)に拡散すると、N型不純物高濃度の
単結晶領域15と多結晶領域15’が形成される(第3
図(f))。When silicon is grown in vapor phase while being doped with t-type (Al, etc.), an N-type region 14 (specific resistance 0.5
~lsΩ-country, thickness 2 to 154 m), and a polycrystalline layer 23 is further grown on the polycrystalline silicon layer 22, respectively. Next, a high concentration of Nff1 impurity (Pil) is applied to the surface and sea surfaces.
= 1 to 10Ω/hole), a single crystal region 15 and a polycrystalline region 15' with high N-type impurity concentration are formed (third
Figure (f)).
次に、多結晶領域2ス23をKOH液、又はHNOs
(HF少量)系等でエツチングして織り去る。この場
合、エツチング液の選択性により多結晶部分が主に除去
され、エツチング終止点は8i0−膜16の所でエツチ
ング速度が変化するので容易に見出すことが出来る。単
結晶領域13゜14.15に対しても多結晶シリコンに
比べて約1/1Gのエツチング速度を持つので、第三図
(glに示す様に単結晶領域13,14.15の断面は
台形となる。Next, the polycrystalline region 2 layer 23 is coated with KOH liquid or HNOs.
(a small amount of HF) etc. and weave it away. In this case, polycrystalline portions are mainly removed due to the selectivity of the etching solution, and the etching end point can be easily found because the etching rate changes at the 8i0- film 16. Even for single crystal regions 13°14.15, the etching rate is approximately 1/1G compared to polycrystalline silicon, so the cross section of single crystal regions 13 and 14.15 is trapezoidal, as shown in Figure 3 (gl). becomes.
そして、単結晶領域13,14.1!$の表面に、シリ
;ン酸化物(又は窒化物)16′を被着させ、領域11
,12.15に電極形成の丸めの開孔部を設け。And single crystal regions 13, 14.1! Silicon oxide (or nitride) 16' is deposited on the surface of the region 11.
, 12.15 is provided with a round opening for electrode formation.
AI 、 MQ等の金属を被着、選択的除去全行って配
線部を設ける(第二図)。Metals such as AI and MQ are deposited and selectively removed to form wiring sections (Figure 2).
NW領域i&12’はNPN型トランジスタの工きツタ
、エミッタ引出領域である。Nll領域12′は、 N
ff1高濃度不純物領域12がその後の熱処理で、領域
13111へ拡がったものである。pH領域13.11
はNPN型トランジスタのペース、ペース引出領域で、
N型領域14.15はNPNII)ランジスタのコレク
タ領域である。エミッタ領域12′とコレクタ領域14
の間の距離がペース幅とな)、この距離と、ニオツタ領
域1 &12’の不純−浸度を調整することによシ所望
の電流増幅率を得ることができる。電極17,18.1
9’を夫々トランジスタのエミッタ、ペース、コレクタ
電極として形成すれば、第2図に示し九構造となる。The NW region i &12' is an emitter extraction region of an NPN transistor. The Nll region 12' is Nll
The ff1 high concentration impurity region 12 has expanded to a region 13111 during subsequent heat treatment. pH range 13.11
is the pace and pace extraction region of the NPN transistor,
The N-type region 14.15 is the collector region of the NPN II transistor. Emitter region 12' and collector region 14
The distance between them is the pace width), and by adjusting this distance and the degree of impurity penetration of the NIOTS regions 1 &12', a desired current amplification factor can be obtained. Electrodes 17, 18.1
If 9' are formed as the emitter, paste, and collector electrodes of a transistor, respectively, the structure shown in FIG. 2 is obtained.
かかる構造のトランジスタは1周囲が全て絶縁性膜で覆
われているので、寄生容量が非常に小さくて高周波特性
に優れる。しかもコレクタ領域の電極取出しが、従来例
(第1図)の様に、エミッタ、ペース電極取出し6,7
と同一面でなく、エミッタ、ペースの真上でコレクタ電
極を引出すため、コレクタ直列抵抗を容易に小さくでき
る。また、コレクタ電極引出領域を別に設けなくともよ
いので、集積度を非常に向上させることが出来る。Since the transistor with this structure is entirely covered with an insulating film, the parasitic capacitance is extremely small and the transistor has excellent high frequency characteristics. Moreover, the electrodes in the collector region are different from the conventional example (Fig. 1), with emitter and pace electrodes 6 and 7.
Since the collector electrode is drawn out directly above the emitter and paste, rather than on the same plane as the emitter, the collector series resistance can be easily reduced. Further, since there is no need to separately provide a collector electrode lead-out area, the degree of integration can be greatly improved.
抵抗素子1−&!縁線間挿入したい場合には、第2図に
示すように電極20ft設ければ、電極18゜200関
e)pill緒晶薄層11が抵抗体として作用する。次
に、ダイオードを配鱒関に挿入したい場合には第2図に
示すように、電極21を設ければ、領域1r、tzの間
のPN接合によるダイオードを利用することが出来る。Resistance element 1-&! If it is desired to insert the electrode between the edge lines, as shown in FIG. 2, if a 20 ft electrode is provided, the electrode 18° 200 ft. (e) Pill thin layer 11 acts as a resistor. Next, if it is desired to insert a diode into the trout channel, as shown in FIG. 2, if an electrode 21 is provided, a diode formed by a PN junction between the regions 1r and tz can be used.
以上の半導体装置全土から見ると第4図の様になる。When viewed from the whole area of the above semiconductor device, it becomes as shown in FIG.
次に本発明の第二〇実施例として、第一の実施例の改善
例を第5図(aHbl K示す。この改善は、エミッタ
とペースの接合面のうち、側面はトランジスタの周波数
特性、電流増幅率の点から無い方が好しいので、第5図
+1) 、 (b)に示す様に、エミッタ領域1a ペ
ース領域11の境界に810gの細い(2〜5μ−m)
領域22を設けたものである。Next, as a 20th embodiment of the present invention, an improvement example of the first embodiment is shown in FIG. From the viewpoint of amplification factor, it is preferable not to have it, so as shown in Figure 5+1) and (b), a thin 810g (2 to 5μ-m) is placed at the boundary between the emitter region 1a and the pace region 11.
A region 22 is provided.
51oz領域22を設けることにより、工iクターペー
ス間の側面容量が無くなり、周波数特性を大巾に改善す
ることが出来る。本発明によると、実効エミッターペー
スの面積を無限小に出来るので、この点からも高嵩液化
、高集積化、さらに小さい電流で充分な電流増巾率が得
られるので低消費電力化にも適し九半導体装置を得るこ
とができる。By providing the 51 oz region 22, the lateral capacitance between the engineer paces is eliminated and the frequency characteristics can be greatly improved. According to the present invention, the area of the effective emitter pace can be made infinitely small, so from this point of view, it is also possible to achieve high liquid volume, high integration, and also to obtain a sufficient current amplification rate with a small current, making it suitable for reducing power consumption. Nine semiconductor devices can be obtained.
尚、本発明による半導体装置の平面形状は、第3図(d
)で示し丸もので説明したが、これに拘束されず丸形、
多角形等任意の形状にして良く、何ら制限はない。又、
NPN型トランジスタについて述べたが、NとPt−入
れ換えて、PNPII)ランジスタについても同様な構
造を実現することが出来る。The planar shape of the semiconductor device according to the present invention is shown in FIG.
) and explained using a round shape, but you are not limited to this and can also use a round shape,
It may have any shape, such as a polygon, and there are no restrictions. or,
Although the NPN type transistor has been described, a similar structure can be realized for a PNP II transistor by replacing N with Pt.
第1図は従来のビームリード方式による空隙絶縁分離を
し九トランジスタ部の概略断面図、第2図は本発明の第
1の実施例の半導体装置の概略断面図、第3図1m)〜
(g)は本発明の第1の実施例の半導体装置t−実現す
るための工1i順の各段階での概略断面図、第4図は第
二図の半導体装置を表面から見た図、第5図(alは本
発明の第2の実施例の半導体装置の概略断面図、第5図
(blは、第5図1m)の水平面23に於ける平面図で
ある。l・・・・・・高濃度Nll領域、2・・・・・
・N型エピタキシアル領域、3・・・・・・Pal拡散
領域、4.4’・・・・・・高濃度Nll拡散領域、5
.5′・・・・・・誘電体薄膜、6,7.8・・・・・
・白金、金電極、9・・・・・・半導体基板、10・・
・・・・誘電体薄膜、11.ll’。
13・・・・・・P温領域、1&12’・・・・・・高
濃度N型領域、14・・・・・・NW領領域15・・・
・・・高濃度N型領域、15′・・・・・・高濃度N型
多結晶領域、16.16’・・・・・・誘電体薄膜、1
7,18,19,20,21.22・・・・・・P型多
結晶領域、23・・・・・・N型多結晶領域。
代理人 弁理士 内 * f H””j”f悴
1 図
茅2−関
v−3琶(し)
V、づ m’ (C)
竿5釦(e)
軛ト 3 [ン1(I−〕Fig. 1 is a schematic cross-sectional view of a nine-transistor section with air gap insulation and isolation using the conventional beam lead method, Fig. 2 is a schematic cross-sectional view of a semiconductor device according to the first embodiment of the present invention, and Fig. 3 is a schematic cross-sectional view of a semiconductor device according to a first embodiment of the present invention.
(g) is a schematic cross-sectional view at each step of the process 1i for realizing the semiconductor device t-1i of the first embodiment of the present invention, and FIG. 4 is a diagram of the semiconductor device shown in FIG. 2 viewed from the surface. FIG. 5 (al is a schematic sectional view of the semiconductor device of the second embodiment of the present invention, and FIG. 5 (bl is a plan view of the horizontal plane 23 of FIG. 5). l... ...High concentration Nll region, 2...
・N-type epitaxial region, 3...Pal diffusion region, 4.4'...High concentration Nll diffusion region, 5
.. 5'...Dielectric thin film, 6,7.8...
・Platinum, gold electrode, 9... Semiconductor substrate, 10...
...Dielectric thin film, 11. ll'. 13... P temperature region, 1 &12'... High concentration N type region, 14... NW region 15...
...High concentration N-type region, 15'...High concentration N-type polycrystalline region, 16.16'...Dielectric thin film, 1
7, 18, 19, 20, 21.22... P-type polycrystalline region, 23... N-type polycrystalline region. Agent Patent Attorney Uchi * f H""j"f 1 fig. ]
Claims (1)
1導電派の第1領域および咳第1領域と隣り合う第2導
電型の第2領域と、前記第1.第2領域の一部を除いた
表面上に形成された第1導電型の第3領域と、鋏第3領
域上く形成された第2導電型の第4領域と、前記第1.
第2および第4領域から導出された導体層とを含むこと
t−特徴とする半導体装置。a first region of the first conductive group formed on the surface of the semiconductor substrate via an insulating thin film and a second region of the second conductive type adjacent to the first region; a third region of the first conductivity type formed on the surface excluding a part of the second region; a fourth region of the second conductivity type formed on the third region of the scissors;
and a conductor layer led out from the second and fourth regions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16913381A JPS5870550A (en) | 1981-10-22 | 1981-10-22 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16913381A JPS5870550A (en) | 1981-10-22 | 1981-10-22 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5870550A true JPS5870550A (en) | 1983-04-27 |
Family
ID=15880890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16913381A Pending JPS5870550A (en) | 1981-10-22 | 1981-10-22 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5870550A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5957235A (en) * | 1994-03-07 | 1999-09-28 | Komatsu Ltd. | Traveling drive apparatus in a working vehicle |
-
1981
- 1981-10-22 JP JP16913381A patent/JPS5870550A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5957235A (en) * | 1994-03-07 | 1999-09-28 | Komatsu Ltd. | Traveling drive apparatus in a working vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4038680A (en) | Semiconductor integrated circuit device | |
US4160991A (en) | High performance bipolar device and method for making same | |
USRE26778E (en) | Dielectric isolation for monolithic circuit | |
US4236294A (en) | High performance bipolar device and method for making same | |
US3911471A (en) | Semiconductor device and method of manufacturing same | |
US4170502A (en) | Method of manufacturing a gate turn-off thyristor | |
JPH0241170B2 (en) | ||
JP2605030B2 (en) | Quadrature bipolar transistor | |
JP2528592B2 (en) | Method of manufacturing bipolar transistor | |
US4665425A (en) | Fabrication of vertical NPN and PNP bipolar transistors in monolithic substrate | |
US4109273A (en) | Contact electrode for semiconductor component | |
US4721685A (en) | Single layer poly fabrication method and device with shallow emitter/base junctions and optimized channel stopper | |
US3959039A (en) | Method of manufacturing vertical complementary bipolar transistors each with epitaxial base zones | |
JPS5870550A (en) | Semiconductor device | |
JPH0645340A (en) | Semiconductor device and its manufacture | |
JPS5852843A (en) | Manufacture of semiconductor integrated circuit device | |
JPS6095969A (en) | Manufacture of semiconductor integrated circuit | |
JPS61265867A (en) | Semiconductor device | |
US4122482A (en) | Vertical complementary bipolar transistor device with epitaxial base zones | |
JP2663632B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS5984469A (en) | Manufacture of semiconductor device | |
JPS627704B2 (en) | ||
JP3120441B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS62141768A (en) | Semiconductor device and manufacture thereof | |
JPS62141767A (en) | Semiconductor device and manufacture thereof |