JPS6360550B2 - - Google Patents

Info

Publication number
JPS6360550B2
JPS6360550B2 JP54106247A JP10624779A JPS6360550B2 JP S6360550 B2 JPS6360550 B2 JP S6360550B2 JP 54106247 A JP54106247 A JP 54106247A JP 10624779 A JP10624779 A JP 10624779A JP S6360550 B2 JPS6360550 B2 JP S6360550B2
Authority
JP
Japan
Prior art keywords
region
base region
emitter
deep
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54106247A
Other languages
Japanese (ja)
Other versions
JPS5630750A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10624779A priority Critical patent/JPS5630750A/en
Publication of JPS5630750A publication Critical patent/JPS5630750A/en
Publication of JPS6360550B2 publication Critical patent/JPS6360550B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration

Description

【発明の詳細な説明】 本発明はセルフアラインエミツタ型のバイポー
ラトランジスタ及びその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a self-aligned emitter type bipolar transistor and a method for manufacturing the same.

以下の説明に於ては、説明の便宜上npn型トラ
ンジスタを想定して述べるがpnp型でも本質的に
同じでありこれも当然本発明に含まれる。集積回
路に於けるバイポーラトランジスタはp型シリコ
ン基板上に成長させたn型エピタキシヤル層をコ
レクターとし、このエピタキシヤル層の表面に平
面的にベース領域とエミツタ領域を形成するのが
普通である。次にこの一般的な従来構造及びその
製造方法について第1図を用いて簡単に説明す
る。第1図aはp型基板1上のn型エピタキシヤ
ル層3に素子分離用のp型領域4及びコレクター
抵抗減少用の埋込層2を形成したあと酸化膜5及
び6をマスクとして深いベース7を拡散により形
成した状態を示してある。第1図bは酸化膜6を
除いた後浅いベース領域8を形成した状態であ
る。第1図eはさらに酸化膜12をマスクとして
エミツタ領域9を形成した後コンタクトホールを
あけてコレクターコンタクト用拡散層10を形成
し更にアルミ電極11を付けた状態を示してあ
る。
In the following description, for convenience of explanation, an npn type transistor will be assumed, but a pnp type is essentially the same and is naturally included in the present invention. In a bipolar transistor in an integrated circuit, an n-type epitaxial layer grown on a p-type silicon substrate is used as a collector, and a base region and an emitter region are generally formed two-dimensionally on the surface of this epitaxial layer. Next, this general conventional structure and its manufacturing method will be briefly explained using FIG. 1. In Figure 1a, after forming a p-type region 4 for element isolation and a buried layer 2 for reducing collector resistance in an n-type epitaxial layer 3 on a p-type substrate 1, a deep base layer is formed using oxide films 5 and 6 as masks. 7 is shown formed by diffusion. FIG. 1b shows a state in which a shallow base region 8 is formed after the oxide film 6 is removed. FIG. 1e shows a state in which an emitter region 9 is further formed using the oxide film 12 as a mask, a contact hole is opened, a collector contact diffusion layer 10 is formed, and an aluminum electrode 11 is attached.

さてバイポーラトランジスタでは本来浅いベー
ス領域が必要なのはエミツタの直下のみで良いに
もかかわらず、上記の様な製造方法をとると目合
せマージンの必要性から深いベース領域7とエミ
ツタ領域9直下の本来の浅いベース領域との間が
数μm程度も離れてしまいそれらを電気的に接続
する必要が生ずるので浅いベース領域をこの接続
部を兼ねて8の如く大きく形成していたのであ
る。従つて浅いベース領域8に起因する外因性の
ベース抵抗rbは一般的なパターンでは100Ω前後
の大きな値になるという欠点があつた。こうした
ベース抵抗の大きさがいかにバイポーラトランジ
スタを用いたデジタル回路に於いて重要かは次の
様な簡単な考察で容易に理解できる。今、例とし
てECL(Emitter Coupled Logic)を考えるとそ
の伝播遅延時間はベース応答τbとコレクタ応答τc
の和であらわされる。ECLの様にスピードが要
求される論理回路では可能な限り高速になる様な
電流レベルで設計されるためにコレクターに付加
される抵抗は小さく、コレクタ応答は充分小さく
なる。従つてベース応答が全体の遅延時間に占め
る割合は多くなる。ベース応答τbは、ベースの接
合容量Cjと拡散容量Cdの和にベース抵抗rbをかけ
合わせた(τb=rb(Cj+Cd))ものにほぼ等しい。
従つてベース抵抗の大小は直接論理回路の演算速
度に関係し、外因性のベース抵抗が大きい従来構
造のバイポーラトランジスタでは高速化に限界が
あつた。
Now, although bipolar transistors originally require a shallow base region only directly below the emitter, when the manufacturing method described above is used, the deep base region 7 and the original deep base region directly below the emitter region 9 are required due to the need for alignment margin. Since the shallow base region is separated by several micrometers and it becomes necessary to electrically connect them, the shallow base region is formed as large as 8 to serve as the connecting portion. Therefore, the extrinsic base resistance r b caused by the shallow base region 8 has a drawback that it takes a large value of about 100Ω in a general pattern. The importance of the size of the base resistance in digital circuits using bipolar transistors can be easily understood from the following simple consideration. Now, if we consider ECL (Emitter Coupled Logic) as an example, its propagation delay time is the base response τ b and the collector response τ c
It is expressed as the sum of Logic circuits that require speed, such as ECL, are designed with a current level that is as fast as possible, so the resistance added to the collector is small, and the collector response is sufficiently small. Therefore, the base response occupies a large proportion of the total delay time. The base response τ b is approximately equal to the sum of the junction capacitance C j and the diffusion capacitance C d of the base multiplied by the base resistance r bb =r b (C j +C d )).
Therefore, the magnitude of the base resistance is directly related to the operation speed of the logic circuit, and there is a limit to the speed-up of bipolar transistors with conventional structures that have a large extrinsic base resistance.

本発明の目的はセルフアラインエミツタ構造を
取ることによつてベース抵抗が小さく、スイツチ
ング速度の速いバイポーラトランジスタを製造す
る方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a bipolar transistor having a self-aligned emitter structure, which has a low base resistance and a high switching speed.

本発明による製造方法は、上記本発明による構
造のバイポーラトランジスタを容易かつ確実に製
造し得る方法を与えるものであり、シリコン基板
上のシリコンエピタキシヤル層表面のあらかじめ
定められた部分に比較的高濃度の深いベース領域
となすべき深い不純物領域を形成し、その深い不
純物添加領域上に、一部領域を開孔したマスク層
を形成し、これをマスクとしてエツチングにより
前記深いベース領域の底部を越えあるいは底部に
及ぶかもしくは極めて近づく程度の深さを有する
U字あるいはV字形の断面形状の窪みを形成し、
その後前記マスク層を残したままこの窪みの底部
表層に前記深いベース領域に連続した浅いベース
領域を熱拡散し、次いで前記マスク層をマスクと
したイオン注入によつてこの窪みの底部の浅いベ
ース領域の表層にエミツタ領域を形成することを
特徴とするものであり、本発明の構造をセルフア
ライン方式で製造し得る卓絶した効果を発揮する
ものである。
The manufacturing method according to the present invention provides a method for easily and reliably manufacturing the bipolar transistor having the structure according to the present invention. A deep impurity region to be formed as a deep base region is formed, and a mask layer with holes partially formed is formed on the deep impurity doped region, and etching is performed using this as a mask to cross over the bottom of the deep base region or forming a recess with a U- or V-shaped cross-section having a depth that reaches or approaches the bottom;
Thereafter, a shallow base region continuous to the deep base region is thermally diffused into the surface layer at the bottom of this recess while leaving the mask layer, and then ion implantation is performed using the mask layer as a mask to form a shallow base region at the bottom of this recess. The structure of the present invention is characterized by forming an emitter region on the surface layer, and exhibits an outstanding effect in that the structure of the present invention can be manufactured by a self-aligning method.

以下第2図aからdに至る一連の工程図を用い
て本発明の典型的な一実施例についてその構造及
び製造方法を説明し本発明の説明にかえる。
Hereinafter, the structure and manufacturing method of a typical embodiment of the present invention will be explained using a series of process diagrams shown in FIGS. 2a to 2d, and the present invention will be explained.

第2図aは不純物濃度1015/cm2のp型基板10
1上にある不純物濃度2.5×1016/cm3のn型エピ
タキシヤル層103(厚さ3μm)、分離用のp型
領域104、うめこみ層102及び酸化膜105
をマスクとして形成された深いベース領域となす
p型領域107を示してある。この深いp型領域
107はXj=1.2μm程度でありシート抵抗は20Ω
程度である。
Figure 2a shows a p-type substrate 10 with an impurity concentration of 10 15 /cm 2
1, an n-type epitaxial layer 103 (3 μm thick) with an impurity concentration of 2.5×10 16 /cm 3 , a p-type region 104 for isolation, a buried layer 102 and an oxide film 105
A p-type region 107 is shown as a deep base region formed using the mask as a mask. This deep p-type region 107 has a thickness of approximately 1.2 μm and a sheet resistance of 20Ω.
That's about it.

第2図bでは第1図aの酸化膜105をいつた
ん取り除きCDV酸化膜を約5000Å成長させた後
エミツタを形成する部分の酸化膜を除去し106
のように成形し、その直下のシリコンを等方性の
エツチング液を用いて約1.5μm程度エツチングし
たところである。このときCVD酸化膜の直下も
図に示す様にほぼ円筒状にシリコンがエツチング
される。第2図cは先ず浅いベース領域108を
熱拡散によつてXj0.4μm程度に形成し、酸化膜
106をコレクタコンタクト拡散用の窓をあけた
のち、n型不純物をイオン注入法で付き込みエミ
ツタ領域109とコレクタコンタクト用拡散11
0をXjが約0.3μm程度になるように浅く形成した
ところを示してある。ここで浅いベース領域10
8は熱拡散で形成するために第1図bの説明で述
べたCVD酸化膜直下の円形状の部分にも入り込
み、深いベース領域107と接触する。一方、エ
ミツタ領域109はイオン注入で形成するため
に、深いベース領域には接しない。第2図dは第
2図cで示したCVD酸化膜106を一たん除去
した後、全面にCVD酸化膜を再び成長させてエ
ミツタ109、ベース107、コレクタ110に
それぞれコンタクト用の穴をあけたのち電極のア
ルミ配線111を施したところである。この第2
図dの状態が本発明の構造の典型的な一例であ
る。
In FIG. 2b, the oxide film 105 in FIG. 1a is removed, a CDV oxide film is grown to a thickness of approximately 5000 Å, and then the oxide film in the area where the emitter will be formed is removed 106.
It was molded as shown in the figure below, and the silicon directly below it was etched to about 1.5 μm using an isotropic etching solution. At this time, silicon is etched directly under the CVD oxide film into a substantially cylindrical shape as shown in the figure. In Fig. 2c, a shallow base region 108 is first formed by thermal diffusion to a thickness of approximately X j 0.4 μm, a window for collector contact diffusion is opened in the oxide film 106, and then an n-type impurity is implanted by ion implantation. Emitter region 109 and collector contact diffusion 11
0 is shown formed shallowly so that X j is approximately 0.3 μm. Here the shallow base region 10
Since the layer 8 is formed by thermal diffusion, it also penetrates into the circular portion directly under the CVD oxide film mentioned in the explanation of FIG. 1B, and comes into contact with the deep base region 107. On the other hand, since the emitter region 109 is formed by ion implantation, it does not contact the deep base region. Figure 2 d shows that after the CVD oxide film 106 shown in Figure 2 c has been removed, a CVD oxide film is grown again on the entire surface, and contact holes are formed in the emitter 109, base 107, and collector 110. This is where aluminum wiring 111 for electrodes was later applied. This second
The state shown in FIG. d is a typical example of the structure of the present invention.

以上述べた本実施例の構造によれば第2図dに
示すごとく深いベース領域107とエミツタ領域
109との間に存在する浅いベース領域108の
長さは約0.5μm程度となり、第1図で述べた従来
構造のトランジスタに比べ約1/5〜1/10に減少さ
せることができる。従つて外因性のベース抵抗も
1/5〜1/10に減少させることが出来るためにトラ
ンジスタの高速化が容易に達成できる。
According to the structure of this embodiment described above, the length of the shallow base region 108 existing between the deep base region 107 and the emitter region 109 is about 0.5 μm, as shown in FIG. It can be reduced to about 1/5 to 1/10 compared to the conventional transistor structure described above. Therefore, since the extrinsic base resistance can also be reduced to 1/5 to 1/10, higher speed transistors can be easily achieved.

本発明の製造方法によれば断面形がU字あるい
はV字形の溝様の窪みの中に浅いベース領域10
8を熱拡散で、エミツタ109をイオン注入で形
成することで、本発明の構造を容易かつ確実にセ
ルフアライン実現し得る。
According to the manufacturing method of the present invention, a shallow base region 10 is formed in a groove-like depression having a U-shaped or V-shaped cross section.
By forming the emitter 8 by thermal diffusion and the emitter 109 by ion implantation, the structure of the present invention can be easily and reliably realized in self-alignment.

以上の説明では説明の便宜上典型的でしかも簡
単な一実施例についてのみ述べて来たが、本発明
はこの様な実施例にのみ限定されるものではな
い。たとえば、第2図のシリコンエピタキシヤル
層103の上にポリシリコン層を設け、CVD酸
化膜106の下のサイドエツチ量をコントロール
する方法なども当然本発明の重要な一実施例であ
る。さらに、高速化あるいは高出力化に主眼を置
いた通常のトランジスタの場合、エミツタ領域は
ストライプ状にするのが望ましいので前記窪みは
真に溝様となるのが普通であるが、高集積化に主
眼を置いた場合はストライプ以外の形状例えば正
方形、円形状に形成するのが望ましい。従つて特
許請求の範囲で述べた「U字あるいはV字形の断
面形状の窪み」もしくは「態様に開孔」等々の形
状は当然これらの変形に伴つて変化すべきもので
あり、本発明にはこれらの変形が包含されている
こともまた当然である。
In the above description, only one typical and simple embodiment has been described for convenience of explanation, but the present invention is not limited to such an embodiment. For example, a method of forming a polysilicon layer on the silicon epitaxial layer 103 shown in FIG. 2 and controlling the amount of side etching under the CVD oxide film 106 is, of course, an important embodiment of the present invention. Furthermore, in the case of ordinary transistors whose main focus is on high speed or high output, it is desirable to have the emitter region in the form of a stripe, so the recesses are normally groove-like. If the main focus is on it, it is desirable to form it in a shape other than stripes, such as a square or a circle. Therefore, the shape of the "U-shaped or V-shaped depression in cross section" or "open hole in the form" described in the claims should naturally change with these deformations, and the present invention does not include these. It is also natural that variations of are included.

たとえば高集積化のためには、サイズの縮小と
負荷の高抵抗化が必要になる。従来構造の場合、
仮にエミツタサイズを4×4μmとし、同じく4
×4μmのグラフトベース(比較的xjの深い高濃度
領域)をエミツタより4μm程度離れた所に設け
たとすると、グラフトベースからエミツタ直下ま
での薄いベース領域は約4μmの長さになる。従
つてこの薄いベース領域の厚みを0.6μm、エミツ
タの深さを0.2μmとすると、グラフトベースから
エミツタ領域までの外因性ベース抵抗はほぼ800
Ωという大きな値になつてしまう。しかしもし本
発明を実施する時には、トランジスタの基本的な
サイズは同じにしたまま外因性ベース抵抗の値を
大幅に軽減することができる。この場合もその構
造は第2図で示した実施例に順ずるが、高集積化
を前提としているのでグラフトベースは第2図と
異なり、エミツタの片サイドのみに設ける方が望
ましい。エミツタの形成する領域であるU字形も
しくはV字形断面形状の窪みの深さは約1.5μmと
し、薄いベース領域を0.6μmの厚みで形成した
後、エミツタ領域を0.2μmの深さで作る。この結
果グラフトベースからエミツタまでの距離は約
0.7μmとなる。その理由は以下の通りである。
For example, increasing integration requires reducing the size and increasing the resistance of the load. In the case of conventional structure,
Assuming that the emitter size is 4 × 4 μm, the same
If a ×4 μm graft base (relatively deep xj high concentration region) is provided at a distance of about 4 μm from the emitter, the thin base region from the graft base to just below the emitter will have a length of about 4 μm. Therefore, if the thickness of this thin base region is 0.6 μm and the depth of the emitter is 0.2 μm, the extrinsic base resistance from the graft base to the emitter region is approximately 800 μm.
This results in a large value of Ω. However, if the present invention is implemented, the value of the extrinsic base resistance can be significantly reduced while the basic size of the transistor remains the same. In this case as well, the structure is similar to the embodiment shown in FIG. 2, but since high integration is assumed, it is preferable to provide the graft base only on one side of the emitter, unlike in FIG. The depth of the depression with a U-shaped or V-shaped cross section, which is the region where the emitter vines are formed, is approximately 1.5 μm, and after forming a thin base region with a thickness of 0.6 μm, the emitter region is formed with a depth of 0.2 μm. As a result, the distance from the graft base to the emitter is approximately
It becomes 0.7 μm. The reason is as follows.

すなわち、第3図に示すごとく、深いベース1
07の厚みが約1.2μm、溝の深さが1.5μmである
から205で示す角度は約35度となり、点203
と点202の距離は約0.9μmとなる。しかしエミ
ツタ109は点202よりも0.2μm程度、左方に
しみ出すので、結局グラフトベースとエミツタの
間隔は約0.7μmとなる。従つて外因性ベース抵抗
は約140Ωとなる。
In other words, as shown in Figure 3, deep base 1
Since the thickness of 07 is about 1.2 μm and the depth of the groove is 1.5 μm, the angle indicated by 205 is about 35 degrees, and the point 203
The distance between the point 202 and the point 202 is approximately 0.9 μm. However, since the emitter 109 protrudes to the left by approximately 0.2 μm from the point 202, the distance between the graft base and the emitter is approximately 0.7 μm. The extrinsic base resistance is therefore approximately 140Ω.

この様に従来構造による時と本発明の構造によ
る時とでは外因性ベース抵抗をほぼ1/6に減少で
きるわけである。
In this way, the extrinsic base resistance can be reduced to approximately 1/6 between the conventional structure and the structure of the present invention.

次に本発明を実施したトランジスタを用いて
ECLのNORゲートを構成してみる。消費パワー
を減少させるために負荷抵抗が大きくすることは
前述したが、ここではさらにエミツタフオロワー
を用いた出力方式を省略しパワーを減少させるこ
とを考える。
Next, using a transistor implementing the present invention,
Let's configure the ECL NOR gate. It has been mentioned above that the load resistance is increased in order to reduce power consumption, but here we will further consider omitting the output method using an emitter fan to reduce power.

論理振幅は拡散電位以下にする必要があるの
で、例えば0.48Vに設定する。この場合、もし0.5
mA程度の消費電流を考えるとすれば、NORゲ
ートには980Ω程度の負荷抵抗をつけると良い。
この様に構成したNORゲートをフアン・インと
フアン・アウトとで1で接続した場合、ゲート一
段当りの遅延時間は520psec程度となる。従来構
造の場合は約860psecになるから、本発明の効果
は明白である。
Since the logic amplitude needs to be below the diffusion potential, it is set to 0.48V, for example. In this case, if 0.5
Considering the current consumption of about mA, it is recommended to attach a load resistance of about 980Ω to the NOR gate.
When the NOR gates configured in this manner are connected with one fan in and one fan out, the delay time per gate stage is about 520 psec. In the case of the conventional structure, it is about 860 psec, so the effect of the present invention is obvious.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,b,cは従来構造cをその工程と共
に示した概略断面図であり、第2図a,b,c,
dは本発明の一実施例について第1図にならつて
示したものである。第3図はエミツタとグラフト
ベース間の距離を計算するための概念図である。 1,101……シリコン基板、2,102……
うめこみ層、3,103……シリコンエピタキシ
ヤル層、4,104……分離用p型領域、5,1
05……酸化膜、6,106……酸化膜、7,1
07……深いベース領域、8,108……浅いベ
ース領域、9,109……エミツタ領域、10,
110……コレクタコンタクト用拡散、11,1
11……アルミニウム電極、112……酸化膜。
Figures 1a, b, and c are schematic sectional views showing the conventional structure c along with its steps, and Figures 2a, b, and c are
d shows an embodiment of the present invention in accordance with FIG. FIG. 3 is a conceptual diagram for calculating the distance between the emitter and the graft base. 1,101...Silicon substrate, 2,102...
Filling layer, 3,103... Silicon epitaxial layer, 4,104... P-type region for isolation, 5,1
05... Oxide film, 6,106... Oxide film, 7,1
07... Deep base region, 8,108... Shallow base region, 9,109... Emitter region, 10,
110... Diffusion for collector contact, 11,1
11... Aluminum electrode, 112... Oxide film.

Claims (1)

【特許請求の範囲】[Claims] 1 シリコン基板上に設けたシリコンエピタキシ
ヤル層表面のあらかじめ定められた部分に比較的
高濃度の深いベース領域となすべき深い不純物添
加領域を形成しその深い不純物添加領域上に、一
部領域を開孔したマスク層を形成し、これをマス
クとしてエツチングにより前記深いベース領域の
底部を越えあるいは底部に及ぶかもしくは極めて
近づく程度の深さを有するU字あるいはV字形の
断面形状の窪みを形成し、その後前記マスク層を
残したままこの窪みの底部表層に前記深いベース
領域に連続した浅いベース領域を熱拡散し、次い
で前記マスク層をマスクとしたイオン注入によつ
てこの窪みの底部の浅いベース領域の表層にエミ
ツタ領域を形成することを特徴とするバイポーラ
トランジスタの製造方法。
1. A deep impurity doped region with a relatively high concentration to be a deep base region is formed in a predetermined part of the surface of a silicon epitaxial layer provided on a silicon substrate, and a part of the region is opened on the deep impurity doped region. forming a holed mask layer, and using this as a mask, etching to form a recess with a U- or V-shaped cross-section having a depth that exceeds, reaches, or approaches the bottom of the deep base region; Thereafter, a shallow base region continuous to the deep base region is thermally diffused into the surface layer at the bottom of this recess while leaving the mask layer, and then ion implantation is performed using the mask layer as a mask to form a shallow base region at the bottom of this recess. A method for manufacturing a bipolar transistor, comprising forming an emitter region on the surface layer of the bipolar transistor.
JP10624779A 1979-08-21 1979-08-21 Bipolar transistor and manufacture thereof Granted JPS5630750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10624779A JPS5630750A (en) 1979-08-21 1979-08-21 Bipolar transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10624779A JPS5630750A (en) 1979-08-21 1979-08-21 Bipolar transistor and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5630750A JPS5630750A (en) 1981-03-27
JPS6360550B2 true JPS6360550B2 (en) 1988-11-24

Family

ID=14428770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10624779A Granted JPS5630750A (en) 1979-08-21 1979-08-21 Bipolar transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5630750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323693A (en) * 1995-05-25 1996-12-10 Mitsubishi Cable Ind Ltd Cutting table for soft pipe body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713967B2 (en) * 1984-03-19 1995-02-15 株式会社日立製作所 Method for manufacturing semiconductor device
JPS6174369A (en) * 1984-09-20 1986-04-16 Sony Corp Semiconductor device
JPH0783025B2 (en) * 1987-05-21 1995-09-06 松下電器産業株式会社 Semiconductor device and manufacturing method thereof
JPH02148848A (en) * 1988-11-30 1990-06-07 Nec Corp Manufacture of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3083441A (en) * 1959-04-13 1963-04-02 Texas Instruments Inc Method for fabricating transistors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3083441A (en) * 1959-04-13 1963-04-02 Texas Instruments Inc Method for fabricating transistors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323693A (en) * 1995-05-25 1996-12-10 Mitsubishi Cable Ind Ltd Cutting table for soft pipe body

Also Published As

Publication number Publication date
JPS5630750A (en) 1981-03-27

Similar Documents

Publication Publication Date Title
US4965220A (en) Method of manufacturing a semiconductor integrated circuit device comprising an MOS transistor and a bipolar transistor
EP0097379B1 (en) Method for manufacturing semiconductor devices
US4814287A (en) Method of manufacturing a semiconductor integrated circuit device
US4933737A (en) Polysilon contacts to IC mesas
US4539742A (en) Semiconductor device and method for manufacturing the same
JPH0420265B2 (en)
US4323913A (en) Integrated semiconductor circuit arrangement
US3945857A (en) Method for fabricating double-diffused, lateral transistors
US4584594A (en) Logic structure utilizing polycrystalline silicon Schottky diodes
US4860086A (en) Semiconductor device
JPS6360550B2 (en)
US4109273A (en) Contact electrode for semiconductor component
US5204274A (en) Method of fabricating semiconductor device
US5506156A (en) Method of fabricating bipolar transistor having high speed and MOS transistor having small size
JPS61220465A (en) Semiconductor device
US5318917A (en) Method of fabricating semiconductor device
JPS6158981B2 (en)
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
JPH0824122B2 (en) Method for manufacturing semiconductor device
JPS59229867A (en) Walled emitter type semiconductor device
JPS61218169A (en) Semiconductor device and manufacture thereof
JPS6118867B2 (en)
JPH01286356A (en) Semiconductor integrated circuit
JP2536616B2 (en) Semiconductor device
JPH05864B2 (en)