JPH02278736A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02278736A
JPH02278736A JP10040689A JP10040689A JPH02278736A JP H02278736 A JPH02278736 A JP H02278736A JP 10040689 A JP10040689 A JP 10040689A JP 10040689 A JP10040689 A JP 10040689A JP H02278736 A JPH02278736 A JP H02278736A
Authority
JP
Japan
Prior art keywords
type
collector
extraction electrode
buried
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10040689A
Other languages
Japanese (ja)
Inventor
Masahiko Nakamae
正彦 中前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10040689A priority Critical patent/JPH02278736A/en
Publication of JPH02278736A publication Critical patent/JPH02278736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To reduce a junction capacity between a buried collector and a substrate by forming the buried collector only of a region directly under a base region, and composing a collector extraction electrode of horizontal extraction electrode and vertical extraction electrode buried in an insulating film. CONSTITUTION:A N<+> type buried collector 2 is formed on a P-type semiconductor substrate 1, a N-type epitaxial layer 4A is formed thereon, and its lower layer forms an N<+> type epitaxial layer 4 by external diffusion of an impurity from the collector. These epitaxial layers are surrounded by a thick insulating film 3, a P<+> type graft base 7 and a P-type base 8 are formed on the layer 4A, an N<+> type emitter 9 is further formed to compose a vertical NPN transistor. A collector extraction electrode is composed of a horizontal extraction electrode 61 buried horizontally in the film 3 and connected at its end to the layer 4 and a vertical collector extraction electrode 62 for connecting it to an electrode wiring 10. Thus, a junction capacity between the collector and the substrate can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に間し、特に縦型NPNトランジス
タのコレクタ引出し電極の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to semiconductor devices, and particularly to the structure of a collector lead electrode of a vertical NPN transistor.

〔従来の技術〕[Conventional technology]

従来、NPNバイポーラトランジスタのコレクタ引出し
電極は、N+型埋込みコレクタ領域に直接接続する様に
エピタキシャル層上面からリン等のN型不純物を拡散し
て形成されていた。以下第3図を用いて製造方法と共に
説明する。
Conventionally, the collector lead electrode of an NPN bipolar transistor has been formed by diffusing an N-type impurity such as phosphorus from the upper surface of an epitaxial layer so as to be directly connected to the N+ type buried collector region. The manufacturing method will be explained below with reference to FIG.

まずP型半導体基板1の表面に選ボ的に砒素を拡散し、
N“型埋込コレクタ2を形成する。次にN型エピタキシ
ャル層を1μmの膜厚で成長する。この時、このN型エ
ピタキシャル層中へ埋込コレクタの砒素が外方拡散し、
約0.6μmの厚さまでN+型エピタキシャル層4が形
成され、その残りの厚さ分がN型エピタキシャル層4A
となる。続いて素子間分離用の絶縁膜3を選択的に形成
−する。
First, arsenic is selectively diffused onto the surface of the P-type semiconductor substrate 1,
An N" type buried collector 2 is formed. Next, an N type epitaxial layer is grown to a thickness of 1 μm. At this time, arsenic from the buried collector is diffused outward into this N type epitaxial layer.
N+ type epitaxial layer 4 is formed to a thickness of approximately 0.6 μm, and the remaining thickness is formed as N type epitaxial layer 4A.
becomes. Subsequently, an insulating film 3 for isolation between elements is selectively formed.

次にN+型埋込コレクタ引出し電極6をリンのイオン注
入でN+型埋込コレクタ2に接続される様に深く拡散し
て形成する。続いて表面保護絶縁膜5を設けた後、選択
的ボロンのイオン注入にてP+型グラフトベース7を形
成し、さらに選択的ボロンのイオン注入によりP型ベー
ス8を形成する。
Next, the N+ type buried collector extraction electrode 6 is formed by ion implantation of phosphorous to be deeply diffused so as to be connected to the N+ type buried collector 2. Subsequently, after providing a surface protection insulating film 5, a P+ type graft base 7 is formed by selective boron ion implantation, and a P type base 8 is further formed by selective boron ion implantation.

次に表面保護絶縁膜5に選択的にベース、エミッタ、コ
レクタ用のコンタクト開口を設ける。この後、エミッタ
コンタクト開口から選択的に砒素をイオン注入し、N+
型エミッタ9を形成する。
Next, contact openings for the base, emitter, and collector are selectively provided in the surface protection insulating film 5. After this, arsenic ions are selectively implanted through the emitter contact opening, and N+
A mold emitter 9 is formed.

この後電極配線10を形成する。After this, electrode wiring 10 is formed.

この様にして従来の技術によれば、N+型埋込コレクタ
2はP+型及びP型ベースの下部からN“型コレクタ6
の直下まで全域にわたって形成されていた。
In this way, according to the prior art, the N+ type buried collector 2 is connected to the N" type collector 6 from the bottom of the P+ type and P type base.
It was formed over the entire area, right under the .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置のコレクタ引出し電極の構造
では、埋込みコレクタがその引出し電極直下にまで延在
している必要がある為に、大きな面積を占めていた。こ
の為、近年のバイポーラトランジスタの他の部分の微細
化の進歩に取り残され、コレクター基板間の接合容量の
削減が殆んどなされず、バイポーラ型半導体装置の一層
の高速化に対する大きな障害になっていた。
In the structure of the collector lead-out electrode of the conventional semiconductor device described above, the buried collector needs to extend directly below the lead-out electrode, and therefore occupies a large area. For this reason, recent advances in miniaturization of other parts of bipolar transistors have left behind, and the junction capacitance between the collector substrates has hardly been reduced, which has become a major obstacle to further speeding up bipolar semiconductor devices. Ta.

さらに、バイポーラ型メモリ装置においてはα線の照射
による電荷発生領域として、コレクター基板間の空乏層
領域が最大の領域となっている為に、充分に小さなソフ
トエラーレート(SER)のメモリセルを実現する上で
も、従来のコレクタ引出し電極の構造は大きな障害とな
っていた。
Furthermore, in bipolar memory devices, the depletion layer between the collector substrates is the largest area for charge generation due to alpha ray irradiation, making it possible to achieve memory cells with a sufficiently small soft error rate (SER). The structure of the conventional collector lead-out electrode has been a major obstacle in achieving this goal.

上述の従来のコレクタ引出し電jf1構造に対し、本発
明は、コレクタ引出し電極が絶縁膜中に完全に埋設され
、引出し開口部が、N+型埋込コレクタよりの外方拡散
でN+化されたエピタキシャル層部分に水平方向から接
続する様に設けられているという相違点を有する。従っ
て、従来コレクタ引出し電極直下に延在していなN+型
埋込コレクタは、本発明の構造では、その部分がなく、
ベース領域直下のみに存在することになる。
In contrast to the conventional collector extraction electrode jf1 structure described above, the present invention is an epitaxial structure in which the collector extraction electrode is completely buried in the insulating film and the extraction opening is made N+ by outward diffusion from the N+ type buried collector. The difference is that it is provided so as to be connected to the layer portion from the horizontal direction. Therefore, in the structure of the present invention, the N+ type buried collector, which conventionally does not extend directly under the collector extraction electrode, does not have that part.
It will exist only directly under the base area.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、P型半導体基板上に形成された
N2型埋込コレクタと、絶縁膜に囲まれかつ前記N+型
埋込コレクタ上に形成されたN型エピタキシャル層と、
前記N型エピタキシャル層上に形成されたP型ベースと
、前記P型ベース上に形成されたN+型エミッタと、前
記絶縁膜上に形成された電極配線に接続するコレクタ引
出し電極とを含む縦型NPNトランジスタを有する半導
体装置であって、前記コレクタ引出し電極は、前記絶縁
膜中に水平方向に埋設され端部が前記N型エピタキシャ
ル層に接続する水平引出し電極と該水平引出し電極と前
記電極配線とを接続する垂直引出し電極とから構成され
ているものである。
The semiconductor device of the present invention includes: an N2 type buried collector formed on a P type semiconductor substrate; an N type epitaxial layer surrounded by an insulating film and formed on the N+ type buried collector;
A vertical type including a P-type base formed on the N-type epitaxial layer, an N+-type emitter formed on the P-type base, and a collector lead-out electrode connected to an electrode wiring formed on the insulating film. A semiconductor device having an NPN transistor, wherein the collector lead electrode includes a horizontal lead electrode buried horizontally in the insulating film and whose end portion is connected to the N-type epitaxial layer, and the horizontal lead electrode and the electrode wiring. It consists of a vertical lead-out electrode that connects the

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の断面図である。FIG. 1 is a sectional view of one embodiment of the present invention.

P型半導体基板1上にはN+型埋込コレクタ2が形成さ
れている。そしてその上にはN型エピタキシャル層4A
が形成されているが、その下層はN+型埋込コレクタか
らの不純物の外方拡散によりN+型エピタキシャルN4
を構成している。これらエピタキシャル層は厚い絶縁膜
3により囲まれており、N型エピタキシャル層4Aの上
にはP“型グラフトベース7とP型ベース8が形成され
、更にP型ベース8の上部にはN+型エミッタ9が形成
されて縦型NPNトランジスタが構成されている。そし
て特に、絶縁膜3中に水平方向に埋設され端部がN+型
エピタキシャル層4に接続する水平引出し電極61と、
この水平引出し電極61と電極配線10とを接続する垂
直コレクタ9出し電極62とからコレクタ引出し電極が
構成されている。以下第2図を用いてその製造方法を説
明する。
An N+ type buried collector 2 is formed on a P type semiconductor substrate 1. And on top of that is an N-type epitaxial layer 4A.
However, the underlying layer is N+ type epitaxial N4 due to the outward diffusion of impurities from the N+ type buried collector.
It consists of These epitaxial layers are surrounded by a thick insulating film 3, and a P" type graft base 7 and a P type base 8 are formed on the N type epitaxial layer 4A, and an N+ type emitter is formed above the P type base 8. 9 is formed to constitute a vertical NPN transistor.In particular, a horizontal lead electrode 61 is buried horizontally in the insulating film 3 and has an end connected to the N+ type epitaxial layer 4;
A collector lead-out electrode is constituted by the horizontal lead-out electrode 61 and the vertical collector 9 lead-out electrode 62 that connects the electrode wiring 10. The manufacturing method will be explained below with reference to FIG.

まず第2図(a)に示すように、P型半導体基板1の主
面上に膜厚4000Aの熱酸化による第1の酸化膜30
を形成し、その上に膜厚3000Aの第1のポリシリコ
ン膜61Aを設ける。この後このポリシリコン膜に砒素
をイオン注入し、砒素濃度を約IQ20cm−3とする
First, as shown in FIG. 2(a), a first oxide film 30 with a thickness of 4000 A is formed by thermal oxidation on the main surface of the P-type semiconductor substrate 1.
A first polysilicon film 61A having a thickness of 3000 Å is provided thereon. Thereafter, arsenic ions are implanted into this polysilicon film to give an arsenic concentration of approximately IQ 20 cm-3.

次に第2図(b)に示すように、第1のポリシリコン膜
61Aを選択的にエツチングし、その後第2の酸化[3
1を500OAの膜厚で全面に設ける。
Next, as shown in FIG. 2(b), the first polysilicon film 61A is selectively etched, and then the second oxidation [3
1 is provided on the entire surface with a film thickness of 500OA.

次に第2図(c)に示すように、第1の酸化膜30と第
1のポリシリコン膜61Aと第2の酸化膜31の3層膜
に異方性ドライエツチング法により垂直な開口を設は水
平コレクタ引出し電極61を形成する。この後砒素をイ
オン注入しN+型埋込コレクタ2を形成する。
Next, as shown in FIG. 2(c), vertical openings are formed in the three-layer film of the first oxide film 30, the first polysilicon film 61A, and the second oxide film 31 by anisotropic dry etching. A horizontal collector extraction electrode 61 is formed. Thereafter, arsenic ions are implanted to form an N+ type buried collector 2.

次に第2図(d)に示すように、開口部に選択的にN型
エピタキシャル層を形成する。この時N+型埋込コレク
タ2からの砒素の外方拡散によりN型エピタキシャル層
の底部からN+型化されてN+型エピタキシャル層4と
なり、その残りの上部にN型エピタキシャル層4Aが形
成される。
Next, as shown in FIG. 2(d), an N-type epitaxial layer is selectively formed in the opening. At this time, due to the outward diffusion of arsenic from the N+ type buried collector 2, the N+ type epitaxial layer is changed from the bottom to the N+ type to become an N+ type epitaxial layer 4, and an N type epitaxial layer 4A is formed on the remaining upper part.

この後第1のポリシリコン膜からなる水平コレクタ引出
し電極61上の第2の酸化膜31に選択的に開口を設け
た後、第2のポリシリコン膜を成長して埋込み、垂直コ
レクタ引出し電極62を形成する。続いてこの引出し電
極に選択的にリンをイオン注入し、不純物濃度が約10
2102O’のN+型とする。
Thereafter, an opening is selectively formed in the second oxide film 31 on the horizontal collector extraction electrode 61 made of the first polysilicon film, and then a second polysilicon film is grown and buried to form the vertical collector extraction electrode 61. form. Next, phosphorus ions are selectively implanted into this extraction electrode, and the impurity concentration is approximately 10.
2102O' N+ type.

次に第2図(e)に示すように、表面に3000Aの表
面保護絶縁膜5を形成し、絶縁膜5を貫ぬいて選択的に
ボロンをイオン注入しP1型グラフトベース7とP型ベ
ース8を形成する。その後、エミッタとコレクタのコン
タクトを選択的に開口し、砒素をイオン注入しN+型エ
ミッタ9を形成する。
Next, as shown in FIG. 2(e), a 3000A surface protection insulating film 5 is formed on the surface, and boron ions are selectively implanted through the insulating film 5 to form a P1 type graft base 7 and a P type base. form 8. Thereafter, contacts between the emitter and the collector are selectively opened, and arsenic ions are implanted to form an N+ type emitter 9.

次に第2図(f)に示すように、ベースのコンタクトを
選択的に開口する。
Next, as shown in FIG. 2(f), contacts in the base are selectively opened.

以下第1図に示すように、アルミ系電極材料膜をスパッ
タした後、選択的にエツチングし、電極配線10を形成
する。
As shown in FIG. 1, an aluminum-based electrode material film is sputtered and then selectively etched to form an electrode wiring 10.

このように構成された本実施例によればN+型埋込コレ
クタ2がベースの下部のみと短くなり、しかもN+型の
コレクタ引出し電極が絶縁膜の中に埋設されているなめ
、N+型埋込コレクタとP型半導体基板間の接合容量は
減少する。
According to this embodiment configured in this way, the N+ type buried collector 2 is short, extending only to the lower part of the base, and the N+ type collector extraction electrode is buried in the insulating film. The junction capacitance between the collector and the P-type semiconductor substrate is reduced.

尚、上記実施例においては垂直コレクタ引出し電極62
をポリシリコン膜で形成した場合について説明したが、
CVD法によりタングステン等の金属膜を埋込んでもよ
い。この場合、コレクタ引出し抵抗を大幅に低減できる
利点がある。
Incidentally, in the above embodiment, the vertical collector extraction electrode 62
We have explained the case where it is formed with a polysilicon film, but
A metal film such as tungsten may be embedded using the CVD method. In this case, there is an advantage that collector pull-out resistance can be significantly reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明は、埋込コレクタをベース領域
直下の領域のみとし、コレクタ引出し電極を絶縁膜中に
埋設された水平引出し電極と垂直引出し電極とで構成す
る事により、埋込コレクタ基板間の接合容量を大福に削
減する事が出来るため、超高速動作が可能な半導体装置
を実現する事が出来る。またさらに、バイポーラ型メモ
リ装置においては、α線粒子の衝突によりソフトエラー
を引き起す最も感度の高い埋込コレクター基板間の空乏
層領域を大幅に削減できるため、ソフトエラー耐性を著
るしく向上させることができるという効果がある。
As explained above, in the present invention, the buried collector is formed only in the region immediately below the base region, and the collector lead electrode is composed of a horizontal lead electrode and a vertical lead electrode buried in an insulating film, so that the buried collector substrate Since the junction capacitance between the two can be significantly reduced, it is possible to realize a semiconductor device capable of ultra-high-speed operation. Furthermore, in bipolar memory devices, the depletion layer region between the buried collector substrates, which is the most sensitive area that causes soft errors due to alpha particle collisions, can be significantly reduced, significantly improving soft error resistance. It has the effect of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は本発
明の実施例の製造方法を説明する為の半導体チップの断
面図、第3図は従来例の断面図である。 1・・・P型半導体基板、2・・・N+型埋込コレクタ
、3・・・絶縁膜、4・・・N+型エピタキシャル層、
4A・・・N型エピタキシャル層、5・・・表面保護絶
縁膜、6・・・N+型コレクタ引出し電極、7・・・P
+型グラフトベース、8・・・P型ベース、9・・・N
+型エミッタ、10・・・電極配線、30・・・第1の
酸化膜、31・・・第2の酸化膜、61・・・水平コレ
クタ引出し電極、62・・・垂直コレクタ引出し電極。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view of a semiconductor chip for explaining the manufacturing method of the embodiment of the invention, and FIG. 3 is a sectional view of a conventional example. DESCRIPTION OF SYMBOLS 1... P-type semiconductor substrate, 2... N+ type buried collector, 3... Insulating film, 4... N+ type epitaxial layer,
4A...N-type epitaxial layer, 5...Surface protection insulating film, 6...N+ type collector extraction electrode, 7...P
+ type graft base, 8...P type base, 9...N
+ type emitter, 10... electrode wiring, 30... first oxide film, 31... second oxide film, 61... horizontal collector extraction electrode, 62... vertical collector extraction electrode.

Claims (1)

【特許請求の範囲】[Claims] P型半導体基板上に形成されたN^+型埋込コレクタと
、絶縁膜に囲まれかつ前記N^+型埋込コレクタ上に形
成されたN型エピタキシャル層と、前記N型エピタキシ
ャル層上に形成されたP型ベースと、前記P型ベース上
に形成されたN^+型エミッタと、前記絶縁膜上に形成
された電極配線に接続するコレクタ引出し電極とを含む
縦型NPNトランジスタを有する半導体装置であって、
前記コレクタ引出し電極は、前記絶縁膜中に水平方向に
埋設され端部が前記N型エピタキシャル層に接続する水
平引出し電極と該水平引出し電極と前記電極配線とを接
続する垂直引出し電極とから構成されていることを特徴
とする半導体装置。
An N^+ type buried collector formed on a P type semiconductor substrate, an N type epitaxial layer surrounded by an insulating film and formed on the N^+ type buried collector, and an N type epitaxial layer formed on the N type epitaxial layer. A semiconductor having a vertical NPN transistor including a formed P-type base, an N^+-type emitter formed on the P-type base, and a collector extraction electrode connected to an electrode wiring formed on the insulating film. A device,
The collector extraction electrode includes a horizontal extraction electrode that is buried horizontally in the insulating film and has an end connected to the N-type epitaxial layer, and a vertical extraction electrode that connects the horizontal extraction electrode and the electrode wiring. A semiconductor device characterized by:
JP10040689A 1989-04-19 1989-04-19 Semiconductor device Pending JPH02278736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10040689A JPH02278736A (en) 1989-04-19 1989-04-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10040689A JPH02278736A (en) 1989-04-19 1989-04-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02278736A true JPH02278736A (en) 1990-11-15

Family

ID=14273098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10040689A Pending JPH02278736A (en) 1989-04-19 1989-04-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02278736A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188672A (en) * 1990-11-19 1992-07-07 Nec Corp Semiconductor device
JPH07176536A (en) * 1991-08-30 1995-07-14 Internatl Business Mach Corp <Ibm> Bipolar transistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649657A (en) * 1987-07-01 1989-01-12 Nec Corp Junction transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649657A (en) * 1987-07-01 1989-01-12 Nec Corp Junction transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188672A (en) * 1990-11-19 1992-07-07 Nec Corp Semiconductor device
JPH07176536A (en) * 1991-08-30 1995-07-14 Internatl Business Mach Corp <Ibm> Bipolar transistor

Similar Documents

Publication Publication Date Title
US4825281A (en) Bipolar transistor with sidewall bare contact structure
JPS61210662A (en) Semiconductor structural body
JPS60202965A (en) Method of producing improved oxide defined transistor and structure obtained as its result
JPH02278736A (en) Semiconductor device
US7101750B2 (en) Semiconductor device for integrated injection logic cell and process for fabricating the same
KR100263254B1 (en) Semiconductor device and method of manufacturing the same
KR100206579B1 (en) Semiconductor device and manufacture thereof
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
JP3175707B2 (en) Method for manufacturing semiconductor device
JP2530922B2 (en) Semiconductor integrated circuit device
JP2637463B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS6158981B2 (en)
JP3241000B2 (en) Semiconductor device
JPH07326625A (en) Manufacture of semiconductor integrated circuit device, and semiconductor integrated circuit device
JPH0231425A (en) Manufacture of semiconductor device
JPS5882562A (en) Semiconductor device
JP2764988B2 (en) Semiconductor device
JPH01217972A (en) Semiconductor integrated circuit
JPH01286356A (en) Semiconductor integrated circuit
JPH0786418A (en) Manufacture of semiconductor device and semiconductor device
JPH0722528A (en) Semiconductor device and fabrication thereof
JPH05335329A (en) Semiconductor device and its manufacture
JPS60109245A (en) Semiconductor ic device and manufacture thereof
JPH08213473A (en) Semiconductor integrated circuit device and its manufacture
JPH0371668A (en) Semiconductor integrated circuit device