JPS61265867A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61265867A
JPS61265867A JP10861085A JP10861085A JPS61265867A JP S61265867 A JPS61265867 A JP S61265867A JP 10861085 A JP10861085 A JP 10861085A JP 10861085 A JP10861085 A JP 10861085A JP S61265867 A JPS61265867 A JP S61265867A
Authority
JP
Japan
Prior art keywords
groove
layer
collector
collector electrode
buried layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10861085A
Other languages
Japanese (ja)
Inventor
Susumu Oi
進 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10861085A priority Critical patent/JPS61265867A/en
Publication of JPS61265867A publication Critical patent/JPS61265867A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Abstract

PURPOSE:To enable the series resistance of a collector to be lowered by a method wherein a groove is formed on the silicon substrate located under a collector electrode, an insulating film is formed on the side face of the groove, and the collector electrode and a buried layer are electrically connected through the intermediary of the structure wherein a conductor is embedded in the groove. CONSTITUTION:A groove reaching the internal part of a buried layer 12 is formed on the semiconductor substrate located under a collector electrode 19, a silicon oxide film 20 is formed on the side face of the groove, and tungsten 16 is embedded in the remaining part of the groove. The tungsten 16 is electrically connected to the buried layer 12 directly or through the intermediary of an N-type polycrystalline silicon 17. Collector current flows in the order of through an epitaxial layer 13, the buried layer 12, the tungsten 16, an N-type polycrystalline silicon 17 and the collector electrode 19. The resistance from the buried layer to the collector electrode 19 is lowered, and the withstand voltage between the base and the collector is not deteriorated, because they are insulated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置に関し、特にコレクタ直列抵抗が
低くコレクタ占有面積の小さい/(イボーラ型トランジ
スタを有する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to a semiconductor device having an Ibora type transistor with low collector series resistance and a small collector occupied area.

〔従来の技術〕[Conventional technology]

従来、バイポーラ型トランジスタを有する半導体集積回
路装置は例えば第3図に示すように、半導体基板表面に
厚い絶縁分離酸化膜11で周囲を囲まれた領域があシ、
この領域下の半導体基板内部KJm込層12がある。埋
込層12上にエピタキシャル層13があ夛、エピタキシ
ャル層13表面は半導体基板表面をなしている。エピタ
キシャル層13内部に含まれその表面高さが半導体基板
表面と同じ高さのベース層14がある。ペース層14内
部に含まれその表面高さが半導体基板表面とそれぞれ同
じ高さのグラフト・ベース層14′とエミツタ層15が
ある。グラフト・ベース層14′はP型多結晶シリコン
18を介してベース電極22に電気的に接続され、エミ
ツタ層15はN型多結晶シリコン17を介してエミッタ
電極21に電気的に接続されている。コレクタ電極下の
エピタキシャル層13には埋込層12に達する高濃度拡
散層23が設けられている。高濃度拡散層23はN型多
結晶シリコン17を介してコレクタ電極19と電気的に
接続されている。
Conventionally, a semiconductor integrated circuit device having a bipolar transistor has, for example, a region surrounded by a thick insulating isolation oxide film 11 on the surface of a semiconductor substrate, as shown in FIG.
There is a KJm-containing layer 12 inside the semiconductor substrate under this region. An epitaxial layer 13 is formed on the buried layer 12, and the surface of the epitaxial layer 13 forms the surface of the semiconductor substrate. There is a base layer 14 included inside the epitaxial layer 13 and having a surface height that is the same as the surface of the semiconductor substrate. There is a graft base layer 14' and an emitter layer 15 which are contained within the space layer 14 and whose surface heights are the same as the surface of the semiconductor substrate. The graft base layer 14' is electrically connected to the base electrode 22 through the P-type polycrystalline silicon 18, and the emitter layer 15 is electrically connected to the emitter electrode 21 through the N-type polycrystalline silicon 17. . A high concentration diffusion layer 23 reaching the buried layer 12 is provided in the epitaxial layer 13 under the collector electrode. High concentration diffusion layer 23 is electrically connected to collector electrode 19 via N-type polycrystalline silicon 17.

ここで、高濃度拡散層23Fi)ランジスタのコレクタ
直列抵抗を低減し、コレクタ応答時間を短縮し、半導体
装置の高速化をはかるためのものである。
Here, the high concentration diffusion layer 23Fi) is intended to reduce the collector series resistance of the transistor, shorten the collector response time, and increase the speed of the semiconductor device.

〔発明か解決しようとする問題点〕[Problem that the invention attempts to solve]

上述した従来のバイポーラ盤トランジスタを有する半導
体装置は、埋込層12まで達する深い高濃度拡散123
が必要であシ、またコレクタとペース間の耐圧を確保す
るため高濃度拡散層23とベース層14を離さなければ
ならないという欠点があった。
The semiconductor device having the conventional bipolar disk transistor described above has a deep high concentration diffusion 123 that reaches the buried layer 12.
Moreover, there was a drawback that the high concentration diffusion layer 23 and the base layer 14 had to be separated in order to ensure the withstand voltage between the collector and the paste.

tた高濃度拡散層23の抵抗を下げるために、その不純
物濃度を増すと結晶欠陥が発生しトランジスタの歩留シ
が低下するという欠点があった。
If the impurity concentration is increased in order to lower the resistance of the high concentration diffusion layer 23, crystal defects will occur and the yield of transistors will decrease.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、半導体基板表面にコレクタ電極
を有し半導体基板内部に埋込層を有するバイポーラをト
ランジスタを備え、前記コレクタ電極下の前記半導体基
板表面から前記埋込層に達する溝が形成され、溝の側面
は絶縁膜を有し、溝ノ内部は導電体で埋設され、前記導
電体と前記埋込層及び前記コレクタ電極とが一気的に接
続されていることを特徴とする。
The semiconductor device of the present invention includes a bipolar transistor having a collector electrode on the surface of the semiconductor substrate and a buried layer inside the semiconductor substrate, and a groove is formed from the surface of the semiconductor substrate below the collector electrode to the buried layer. The side surface of the groove has an insulating film, the inside of the groove is buried with a conductor, and the conductor, the buried layer, and the collector electrode are connected all at once.

〔実施例〕〔Example〕

次に1本発明について図面を参照して説明する。 Next, one aspect of the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例のバイポーラ盤トランジスタ
の縦断面図である。m1図において、半導体基板表面に
厚い絶縁分離酸化膜11で周囲を囲まれた領域があシ、
この領域下の半導体基板内部Km込層12がある。埋込
412上にエピタキシャル層13かあシ、エピタキシャ
ル層13の表面は半導体基板表面をなしている。エピタ
キシャル層13内部に含まれその表面高さが半導体基板
表面と同じ高さのベース層14がある。ペース層14内
部に含まれその表面高さがそれぞれ半導体基板表面と同
じ高さのクラフト6ベース層14′とエミツタ層15が
ある。グラフト・ベース層14’はPfjll多結晶シ
リコン18を介してペース電極22に電気的に接続され
、エミツタ層15はN型多結晶シリコン17を介してエ
ミッタ電極21に電気的に接続されている。コレクタ電
極19下の半導体基板には%埋込層12の内部に達する
溝が形成され、溝の側面にシリコン酸化膜20が形成さ
れ、溝の残シの部分はタングステン16で埋設されてい
る。タングステン16は埋込層12とは直接に、または
コレクタ電極19とはN型多結晶シリコン17を介して
電気的に接続されている。
FIG. 1 is a longitudinal sectional view of a bipolar disk transistor according to an embodiment of the present invention. In the m1 diagram, there is a region surrounded by a thick insulating isolation oxide film 11 on the surface of the semiconductor substrate.
There is a Km-containing layer 12 inside the semiconductor substrate under this region. An epitaxial layer 13 is formed on the embedding 412, and the surface of the epitaxial layer 13 forms the surface of the semiconductor substrate. There is a base layer 14 included inside the epitaxial layer 13 and having a surface height that is the same as the surface of the semiconductor substrate. There is a Kraft 6 base layer 14' and an emitter layer 15 which are included inside the space layer 14 and whose surface heights are the same as the surface of the semiconductor substrate. The graft base layer 14' is electrically connected to the space electrode 22 through the Pfjll polycrystalline silicon 18, and the emitter layer 15 is electrically connected to the emitter electrode 21 through the N-type polycrystalline silicon 17. A trench reaching the inside of the buried layer 12 is formed in the semiconductor substrate below the collector electrode 19, a silicon oxide film 20 is formed on the side surfaces of the trench, and the remaining portion of the trench is filled with tungsten 16. Tungsten 16 is electrically connected to buried layer 12 directly or to collector electrode 19 via N-type polycrystalline silicon 17.

上記の構造では、コレクタ電流はエピタキシャル層13
.埋込層12.タングステン16.N型多結晶シリコン
17.コレクタ電極19の順に流れる。従って、従来構
造に比べて、埋込層12からコレクタ電極19までの抵
抗が下シ、また、ベース層14が溝の側面に接しても、
溝の側面のシリコン酸化膜20によルタングステン16
とは絶縁されている為にペースとコレクタ間の耐圧が劣
化しない。
In the above structure, the collector current flows through the epitaxial layer 13
.. Buried layer 12. Tungsten 16. N-type polycrystalline silicon 17. It flows in the order of collector electrode 19. Therefore, compared to the conventional structure, the resistance from the buried layer 12 to the collector electrode 19 is lower, and even if the base layer 14 contacts the side surface of the groove,
Rutungsten 16 is formed by the silicon oxide film 20 on the side surface of the trench.
Since it is insulated from the conductor, the withstand voltage between the pace and the collector does not deteriorate.

次に本実施例の構造の製造方法について第2図(a)〜
げ)に示した工程順縦断面図を用いて説明する。
Next, the manufacturing method of the structure of this example is shown in FIGS.
This will be explained using the step-by-step longitudinal cross-sectional views shown in Fig.

まず、累子分離酸化膜11を形成後、′X子Jし成領域
にシリコン酸化膜とシリコン窒化膜31を成長させ、フ
ォトレジスト32をマスクにシリコン窒化膜31.シリ
コン酸化膜及び基板シリコンをエツチングして溝を形成
する。この際、溝の底部は、エピタキシャル層13を貫
いて埋込層12まで達するようにする(第2図(a))
First, after forming the isolation oxide film 11, a silicon oxide film and a silicon nitride film 31 are grown in the isolation region, and the silicon nitride film 31 is grown using the photoresist 32 as a mask. A trench is formed by etching the silicon oxide film and the silicon substrate. At this time, the bottom of the groove should penetrate through the epitaxial layer 13 and reach the buried layer 12 (FIG. 2(a)).
.

次に熱酸化を行なうと溝の内部にのみ酸化膜が形成され
る。更に異方性エツチングを行ない、溝の側面のシリコ
ン酸化膜20のみを残す(第2図(b) ) 。
When thermal oxidation is then performed, an oxide film is formed only inside the trench. Furthermore, anisotropic etching is performed to leave only the silicon oxide film 20 on the side surfaces of the trench (FIG. 2(b)).

その後、シリコン窒化膜31を除去しタングステン16
を溝内部に充填させる。その方法としては、気相成長法
によるタングステンの選択成長或いは、タングステン族
を充分厚く付着後、エッチバックを行ない溝にのみタン
グステンを残す方法で行々う(第2図(C))。
After that, the silicon nitride film 31 is removed and the tungsten film 16 is removed.
Fill the inside of the groove. This can be accomplished by selectively growing tungsten using a vapor phase growth method, or by depositing a sufficiently thick layer of tungsten and then etching it back to leave tungsten only in the grooves (FIG. 2(C)).

次にフォトレジスト33をマスクにイオン注入法によシ
ペース層14を形成する(第2図(d))。
Next, a paste layer 14 is formed by ion implantation using the photoresist 33 as a mask (FIG. 2(d)).

その後、ペース電極用とエミッタ電極用の開孔を設け、
多結晶シリコンを成長させ、ベースコンタクト部にはP
型不純物を、エミッタコンタクト部にはN型不純物を、
それぞれ多結晶シリコンを介して選択的にドーピングさ
せ、クラフト・ベース層14′及びエミツタ層15を形
成する。この時、ベースコンタクト部付近KtiPW多
結晶シリコン35が形成され、それ以外の領域にはN型
多結晶シリコン34が形成される(第2図(e))。
After that, holes were made for the pace electrode and emitter electrode,
Polycrystalline silicon is grown, and P is added to the base contact area.
type impurity, and N-type impurity in the emitter contact area.
A craft base layer 14' and an emitter layer 15 are formed by selectively doping them through polycrystalline silicon. At this time, KtiPW polycrystalline silicon 35 is formed near the base contact portion, and N-type polycrystalline silicon 34 is formed in the other region (FIG. 2(e)).

最後に%配線用のアルミニウムを付着させフォトエツチ
ング法によシN型多結晶シリコン17を介してコレクタ
電極19とエミッタ電極21が形成され、PJ多結晶シ
リコン18を介してベース電極22が形成され第2図(
f)rc示す構造が完成するO なお、上記実施例においては導電層としてタングステン
を用いたが、これに@らず他の金属、金属ケイ化物、又
は埋込lと同一導電型の不純物のドーピングされた多結
晶シリコンを使用することができる〇 〔発明の効果〕 以上説明したように本発明は、バイポーラ型トランジス
タを備えた半導体装置において、コレクタ電極下のシリ
コン基板に溝を形成し、溝の側面に絶縁膜が形成され、
溝の内部は導電体で埋設された構造を介してコレクタ電
極と埋込層を電気的に接続している。こζで溝の内部祉
低抵抗の導電体で埋設されているので微細な溝を用いて
もコレクタ直列抵抗を十分下げる事ができる〇また、ベ
ース層を溝の側面に接して形成してもベースとコレクタ
間の耐圧が低下しない。
Finally, aluminum for wiring is deposited, and a collector electrode 19 and an emitter electrode 21 are formed via the N-type polycrystalline silicon 17 using a photoetching method, and a base electrode 22 is formed via the PJ polycrystalline silicon 18. Figure 2 (
f) The structure shown in rc is completed. In the above embodiment, tungsten was used as the conductive layer, but other metals, metal silicides, or impurities of the same conductivity type as the buried l can be doped. [Effects of the Invention] As explained above, the present invention provides a method for forming a groove in a silicon substrate under a collector electrode in a semiconductor device equipped with a bipolar transistor. An insulating film is formed on the sides,
Inside the groove, the collector electrode and the buried layer are electrically connected through a structure buried with a conductor. Since the internal structure of the groove is filled with a low-resistance conductor, the collector series resistance can be sufficiently lowered even if a fine groove is used.Also, even if the base layer is formed in contact with the side surface of the groove, the collector series resistance can be sufficiently lowered. The withstand voltage between the base and collector does not drop.

従って、低コレクタ直列抵抗でかつ小面積のバイポーラ
トランジスタが実現でき、高速化、高集積化が可能な半
導体装置が得られる。
Therefore, a bipolar transistor with low collector series resistance and a small area can be realized, and a semiconductor device capable of high speed and high integration can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のバイポーラ型トランジスタの一実施例
の縦断面図、第2図(al〜(f)ti第1図に示す実
施例の製造方法を説明するための工程順の縦断面図、第
3図は従来のバイポーラ型トランジスタを示す縦断面図
である。 11・・・・・・絶縁分離酸化膜、12・・・・・・埋
込層、13・・・・・・エピタキシャル層、14・・団
・ベース層、14′・・・・・・グラフト・ベース層、
15・・・・・・エミツタ層、16・・・・・・タング
ステン、17.34・・・・・・N型多結晶シリコン、
18.35・・・・・・P型多結晶シリコン、19・・
・・・・コレクタ電極、20・・・・・・シリコン酸化
膜、21・・・・・・エミッタ電極、22・・・・・・
ペース電極、23・・・・・・高濃度拡散層、31・・
・・・・シリコン窒化膜、32.33・・・・・・フォ
トレジスト。 z0ジグ1ン扉しぞ局岨 錆l 図 鴻2図
FIG. 1 is a longitudinal sectional view of an embodiment of a bipolar transistor of the present invention, and FIGS. , FIG. 3 is a vertical cross-sectional view showing a conventional bipolar transistor. 11... Insulating isolation oxide film, 12... Buried layer, 13... Epitaxial layer. , 14... group base layer, 14'... graft base layer,
15... Emitter layer, 16... Tungsten, 17.34... N-type polycrystalline silicon,
18.35...P-type polycrystalline silicon, 19...
...Collector electrode, 20...Silicon oxide film, 21...Emitter electrode, 22...
Pace electrode, 23...High concentration diffusion layer, 31...
...Silicon nitride film, 32.33...Photoresist. z0 jig 1 door slot

Claims (1)

【特許請求の範囲】[Claims]  半導体基板表面にコレクタ電極を有し半導体基板内部
に埋込層を有するバイポーラ型トランジスタを備え、前
記コレクタ電極下の前記半導体基板表面から前記埋込層
に達する溝が形成され、溝の側面は絶縁膜を有し、溝の
内部は導電体で埋設され、前記導電体と前記埋込層及び
前記コレクタ電極とが電気的に接続されていることを特
徴とする半導体装置。
A bipolar transistor having a collector electrode on the surface of the semiconductor substrate and a buried layer inside the semiconductor substrate is provided, and a groove is formed from the surface of the semiconductor substrate under the collector electrode to the buried layer, and the side surfaces of the groove are insulated. 1. A semiconductor device comprising a film, the inside of a trench is buried with a conductor, and the conductor, the buried layer, and the collector electrode are electrically connected.
JP10861085A 1985-05-20 1985-05-20 Semiconductor device Pending JPS61265867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10861085A JPS61265867A (en) 1985-05-20 1985-05-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10861085A JPS61265867A (en) 1985-05-20 1985-05-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61265867A true JPS61265867A (en) 1986-11-25

Family

ID=14489161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10861085A Pending JPS61265867A (en) 1985-05-20 1985-05-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61265867A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442859A (en) * 1987-08-11 1989-02-15 Sony Corp Bipolar transistor and manufacture thereof
JPH02152241A (en) * 1988-12-02 1990-06-12 Nec Corp Integrated circuit device
JPH02220462A (en) * 1989-02-21 1990-09-03 Takehide Shirato Semiconductor device
JPH04258132A (en) * 1991-02-13 1992-09-14 Nec Corp Semiconductor device and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442859A (en) * 1987-08-11 1989-02-15 Sony Corp Bipolar transistor and manufacture thereof
JPH02152241A (en) * 1988-12-02 1990-06-12 Nec Corp Integrated circuit device
JPH02220462A (en) * 1989-02-21 1990-09-03 Takehide Shirato Semiconductor device
JPH04258132A (en) * 1991-02-13 1992-09-14 Nec Corp Semiconductor device and its manufacture

Similar Documents

Publication Publication Date Title
US4963957A (en) Semiconductor device having bipolar transistor with trench
JPH0719838B2 (en) Semiconductor device and manufacturing method thereof
US4539742A (en) Semiconductor device and method for manufacturing the same
JPS6229904B2 (en)
JPS6252963A (en) Manufacture of bipolar transistor
JP2808965B2 (en) Semiconductor device
US5345102A (en) Bipolar transistor having collector electrode penetrating emitter and base regions
JPS61265867A (en) Semiconductor device
US3959039A (en) Method of manufacturing vertical complementary bipolar transistors each with epitaxial base zones
JP2809025B2 (en) Bipolar transistor
JP2001044399A (en) Method for manufacturing semiconductor device
JPS6095969A (en) Manufacture of semiconductor integrated circuit
JPS5834943A (en) Semiconductor device and manufacture thereof
JPH10335630A (en) Semiconductor device and its manufacture
JP2760401B2 (en) Dielectric separation substrate and semiconductor device
JP2000294563A (en) Lateral bipolar transistor
JPS58107645A (en) Manufacture of semiconductor device
JPH09326399A (en) Semiconductor device and its manufacture
JPS5984469A (en) Manufacture of semiconductor device
JPS63293938A (en) Semiconductor integrated circuit device
JP2692292B2 (en) Vertical bipolar transistor for integrated circuit devices
JPH05109745A (en) Semiconductor device
EP1024525A1 (en) Integrated power structure for radio-frequency applications
JPH01286356A (en) Semiconductor integrated circuit
JPH0697275A (en) Semiconductor device