JPH11144723A - 密閉型アルカリ蓄電池用非焼結式ニッケル極 - Google Patents

密閉型アルカリ蓄電池用非焼結式ニッケル極

Info

Publication number
JPH11144723A
JPH11144723A JP9320480A JP32048097A JPH11144723A JP H11144723 A JPH11144723 A JP H11144723A JP 9320480 A JP9320480 A JP 9320480A JP 32048097 A JP32048097 A JP 32048097A JP H11144723 A JPH11144723 A JP H11144723A
Authority
JP
Japan
Prior art keywords
nickel
electrode
nickel hydroxide
cobalt
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9320480A
Other languages
English (en)
Other versions
JP3433076B2 (ja
Inventor
Mitsunori Tokuda
光紀 徳田
Mutsumi Yano
睦 矢野
Shin Fujitani
伸 藤谷
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32048097A priority Critical patent/JP3433076B2/ja
Publication of JPH11144723A publication Critical patent/JPH11144723A/ja
Application granted granted Critical
Publication of JP3433076B2 publication Critical patent/JP3433076B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題解決手段】ニッケル水酸化物に対するオキシ水酸
化コバルトのコバルト原子換算での比率が1〜10重量
%であり、且つニッケル水酸化物中のニッケルの平均価
数が2.1〜2.3価である。 【効果】高率放電での放電容量が大きいアルカリ蓄電池
を与える非焼結式ニッケル極が提供される。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、活物質としてのニ
ッケル水酸化物にオキシ水酸化コバルトが添加されてい
る密閉型アルカリ蓄電池用非焼結式ニッケル極及び活物
質としてのニッケル水酸化物の粒子表面がオキシ水酸化
コバルトで被覆されている密閉型アルカリ蓄電池用非焼
結式ニッケル極に係わり、詳しくは、高率放電での放電
容量(比容量)が大きいアルカリ蓄電池を与える非焼結
式ニッケル極を提供することを目的とした、活物質の改
良に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】従来、
ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池等
の密閉型アルカリ蓄電池の正極として、ニッケル粉末を
穿孔鋼板等に焼結させて得た焼結基板に活物質(水酸化
ニッケル)を含浸させてなる焼結式ニッケル極がよく知
られている。
【0003】焼結式ニッケル極において活物質の充填量
を多くするためには、多孔度の大きい焼結基板を用いる
必要がある。しかし、焼結によるニッケル粒子間の結合
は弱いので、焼結基板の多孔度を大きくするとニッケル
粒子が焼結基板から脱落し易くなる。従って、実用上
は、焼結基板の多孔度を80%より大きくすることがで
きず、それゆえ焼結式ニッケル極には、活物質の充填量
が少ないという問題がある。また、一般に、ニッケル粉
末の焼結体の孔径は10μm以下と小さいため、活物質
の焼結基板への充填を、煩雑な含浸工程を数回繰り返し
行う必要がある溶液含浸法により行わなければならない
という問題もある。
【0004】このようなことから、最近、ペースト式ニ
ッケル極に代表される非焼結式ニッケル極が提案されて
いる。ペースト式ニッケル極は、活物質(水酸化ニッケ
ル)と結着剤(メチルセルロース水溶液など)との混練
物(ペースト)を多孔度の大きい基板に充填することに
より作製される。ペースト式ニッケル極では、多孔度の
大きい基板を用いることができるので(多孔度95%以
上の基板を用いることができる)、活物質の充填量を多
くすることができるとともに、活物質の基板への充填が
容易である。
【0005】しかしながら、ペースト式ニッケル極にお
いて活物質の充填量を多くするべく多孔度の大きい基板
を用いると、基板の集電性が悪くなり、活物質利用率が
低下する。
【0006】そこで、ペースト式ニッケル極の活物質利
用率を高めるべく、水酸化ニッケルに導電剤として水酸
化コバルト(Co(OH)2 )を添加することが提案さ
れている(特開昭61−49374号公報参照)。コバ
ルト2価の水酸化コバルトは初回の充電によりコバルト
3価のオキシ水酸化コバルト(β−CoOOH)に酸化
され、これが導電性ネットワークを形成して、活物質利
用率を向上させる。
【0007】ところで、ニッケル・水素蓄電池やニッケ
ル・カドミウム蓄電池は、負極容量を正極容量に比べて
大きくして、正極が満充電されても負極には未充電部分
(以下、この未充電部分の理論容量を「充電リザーブ」
と称する。)が存在するように設計されている。この充
電リザーブは、充電末期及び過充電時に正極から発生す
る酸素ガス(2OH- ⇒1/2O2 +H2 O+e- )を
負極で吸収することにより(カドミウム極の場合:Cd
+1/2O2 +H2 O⇒Cd(OH)2 ;水素極の場
合:4MH+O2 ⇒4M+2H2 O)、密閉型電池の内
圧の上昇を抑制するために設けられるものあるが、高率
放電時の負極の活物質利用率の低下に因る放電容量の低
下を抑制する働きも有している。
【0008】上記した従来のペースト式ニッケル極にお
ける充電時の水酸化コバルトからオキシ水酸化コバルト
への酸化は不可逆反応である。すなわち、充電により生
成したオキシ水酸化コバルトは放電時に還元されず、オ
キシ水酸化コバルトのままである。したがって、水酸化
コバルトからオキシ水酸化コバルトへの酸化に要した充
電電気量は、潜在的な放電電気量(以下、「放電リザー
ブ」と称する。)として負極に蓄えられることになる。
また、充電時の水酸化ニッケルからオキシ水酸化ニッケ
ルへの酸化も、完全な可逆反応ではない。すなわち、充
電により生成したオキシ水酸化ニッケルは、放電により
完全には還元されず、元の水酸化ニッケルには戻らな
い。すなわち、初回の充放電において正極活物質の酸化
に要した充電電気量と還元に要した放電電気量の差に等
しい電気量が放電リザーブとして負極に蓄えられる。
【0009】このように負極容量に占める放電リザーブ
の割合が大きいと、その分だけ充電リザーブの割合が小
さくなるので、高率放電時の活物質利用率の低下に因る
放電容量の低下を充分に抑制することができない。放電
リザーブの生成に因る充電リザーブの減少を見込んで充
電リザーブを予め大きく設定すれば、高率放電時の放電
容量の低下割合を抑制することはできるが、充電リザー
ブを大きくするためには正極容量(正極活物質の充填
量)をさらに小さくしなければならないので、高率放電
時の放電容量の大きいアルカリ蓄電池を与えるペースト
式ニッケル極を得ることはできない。すなわち、上記し
た従来のペースト式ニッケル極には、高率放電での放電
容量が大きいアルカリ蓄電池を得ることが困難であると
いう問題があった。
【0010】しかし、放電リザーブには放電末期及び高
率放電時の負極電位の上昇を抑制する働きが有るので、
負極容量に占める放電リザーブの割合は、少な過ぎても
高率放電での放電容量は低下する。したがって、高率放
電での放電容量が大きいアルカリ蓄電池を与える非焼結
式ニッケル極を得るためには、放電リザーブが適正にな
るように、正極の不可逆反応量を設計する必要がある。
【0011】放電リザーブを適正にするということは、
初回の充放電における充電電気量と放電電気量の差を適
正にすることに等しい。正極導電剤として、水酸化コバ
ルトに代えて、特公平8−24041号公報で提案され
ているオキシ水酸化コバルトを使用すれば、オキシ水酸
化コバルトは充放電により酸化も還元もされないから、
正極導電剤に由来して生成する放電リザーブを零(0)
にすることができる。
【0012】しかしながら、負極の放電リザーブは、正
極導電剤に由来して生成する放電リザーブと正極活物質
に由来して生成する放電リザーブとの合計量であるか
ら、正極導電剤に由来して生成する放電リザーブを零に
するだけでは不十分であり、正極活物質に由来して生成
する放電リザーブも減少させなければ、放電リザーブを
適正にすることはできない。
【0013】したがって、本発明は、高率放電での放電
容量が大きいアルカリ蓄電池を作製することを可能にす
る、負極に適正な放電リザーブを生成せしめる非焼結式
ニッケル極を提供することを目的とする。
【0014】
【課題を解決するための手段】請求項1記載の発明に係
る密閉型アルカリ蓄電池用非焼結式ニッケル極(以下、
「第1電極」と称する。)は、活物質としてのニッケル
水酸化物にオキシ水酸化コバルトが添加されており、ニ
ッケル水酸化物に対するオキシ水酸化コバルトのコバル
ト原子換算での比率が1〜10重量%であり、且つニッ
ケル水酸化物中のニッケルの平均価数が2.1〜2.3
価であることを特徴とするものである。また、請求項2
記載の発明に係る密閉型アルカリ蓄電池用非焼結式ニッ
ケル極(以下、「第2電極」と称する。)は、活物質と
してのニッケル水酸化物の粒子表面がオキシ水酸化コバ
ルトで被覆されており、ニッケル水酸化物に対するオキ
シ水酸化コバルトのコバルト原子換算での比率が1〜1
0重量%であり、且つニッケル水酸化物中のニッケルの
平均価数が2.1〜2.3価であることを特徴とするも
のである。以下において、第1電極と第2電極とを、本
発明電極と総称することがある。
【0015】本発明電極では、正極活物質として、ニッ
ケルの平均価数が2.1〜2.3価であるニッケル水酸
化物が使用される。ニッケルの平均価数が2.1未満の
場合は、充放電反応における正極の不可逆反応量が多く
なり、負極の放電リザーブが過多になる。その結果、高
率放電時の活物質利用率の低下に因る負極の放電容量の
低下を充電リザーブで充分に抑制することができなくな
り、高率放電での電池の放電容量が低下する。一方、ニ
ッケルの平均価数が2.3価を超える場合は、充放電反
応における可逆反応量が多くなり、放電リザーブが過少
になる。その結果、放電末期及び高率放電時の負極電位
の上昇を充分に抑制することができなくなり、高率放電
での電池の放電容量が低下する。
【0016】正極活物質として、ニッケル水酸化物に、
亜鉛、マグネシウム、カルシウム、マンガン、アルミニ
ウム、カドミウム、イットリウム、コバルト、ビスマス
及びランタノイドから選ばれた少なくとも1種の元素を
固溶させたものを使用してもよい。これらの元素を固溶
させることにより、正極活物質の膨化を抑制することが
できる。
【0017】ニッケルの平均価数が2.1〜2.3価で
あるニッケル水酸化物は、例えば、水酸化ニッケルを、
過酸化水素水、次亜塩素酸塩水溶液等の強酸化剤水溶液
に水酸化ナトリウム等のアルカリを添加した水溶液に、
攪拌しながら所定時間(通常、3〜50分間)浸漬する
ことにより容易に作製することができる。アルカリを添
加するのは、液のpHを高めて酸化を促進するためであ
る。
【0018】第1電極では、ニッケル水酸化物にオキシ
水酸化コバルトが添加されており、また第2電極では、
ニッケル水酸化物の粒子表面がオキシ水酸化コバルトで
被覆されている。ニッケル水酸化物に対するオキシ水酸
化コバルトの添加量乃至被覆量は、コバルト原子換算
で、1〜10重量%である。同添加量が1重量%未満の
場合は活物質利用率が低下するため、また同添加量10
重量%を超えた場合はニッケル水酸化物の充填量が減少
するため、いずれの場合も放電容量が低下する。
【0019】オキシ水酸化コバルトは、例えば、水酸化
コバルトを、酸化剤水溶液に水酸化ナトリウムなどのア
ルカリを添加した水溶液に、攪拌しながら所定時間浸漬
して酸化することにより容易に作製することができる。
なお、水酸化コバルトの酸化には、過酸化水素、次亜塩
素酸塩等の強酸化剤の外、ペルオキソ二硫酸カリウムな
どの弱酸化剤も使用することができる。
【0020】水酸化ニッケルからニッケルの平均価数が
2.1〜2.3価であるニッケル水酸化物への酸化及び
水酸化コバルトからオキシ水酸化コバルトへの酸化は、
それぞれ別々に行ってもよく、また強酸化剤を使用して
一度に行ってもよい。
【0021】本発明を適用して好適な密閉型アルカリ蓄
電池用非焼結式ニッケル極としては、導電性芯体に、活
物質を含有するペーストを塗布し、乾燥してなるペース
ト式ニッケル極が挙げられる。このときの導電性芯体の
具体例としては、ニッケル発泡体、フェルト状金属繊維
多孔体及びパンチングメタルが挙げられる。この外、本
発明は、チューブ状の金属導電体の中に活物質を充填す
るチューブ式ニッケル極、ポケット状の金属導電体の中
に活物質を充填するポケット式ニッケル極、活物質を網
目状の金属導電体とともに加圧成形するボタン型電池用
ニッケル極などにも、適用して好適である。
【0022】本発明電極を正極として用いて好適な密閉
型アルカリ蓄電池の具体例としては、ニッケル−水素蓄
電池(負極:水素吸蔵合金電極)、ニッケル−カドミウ
ム蓄電池(負極:カドミウム電極)及びニッケル−亜鉛
蓄電池(負極:亜鉛電極)が挙げられる。
【0023】本発明電極は、正極活物質としてニッケル
の平均価数が2.1〜2.3価であるニッケル水酸化物
を、また導電剤としてオキシ水酸化ニッケルを、それぞ
れ使用しているので、これを密閉型アルカリ蓄電池の正
極として使用した場合に、負極に適正な放電リザーブが
生成する。このため、本発明電極を使用した密閉型アル
カリ蓄電池は、高率放電での放電容量が大きい。
【0024】
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
【0025】(実施例1)水酸化ニッケル100gと水
酸化コバルト7.8g(コバルト原子換算で5g)と
を、30重量%水酸化ナトリウム水溶液1000mlと
12重量%次亜塩素酸ナトリウム水溶液250mlとの
混合水溶液に、攪拌しながら10分間浸漬した後、ろ別
し、水洗し、乾燥して、ニッケル2.2価のニッケル水
酸化物とオキシ水酸化コバルトとを作製した。このよう
にして得たニッケル水酸化物及びオキシ水酸化コバルト
100重量部と、結着剤としての1重量%メチルセルロ
ース水溶液20重量部とを混練してペーストを調製し、
このペーストをニッケル発泡体(多孔度95%、平均孔
径200μm)の細孔内に充填し、乾燥し、加圧成形し
て、非焼結式ニッケル極(第1電極)を作製した。この
非焼結式ニッケル極(正極)、従来公知のペースト式カ
ドミウム極(負極)、ポリアミド不織布(セパレー
タ)、30重量%水酸化カリウム水溶液(電解液)、金
属製の電池缶、金属製の電池蓋などを用いて、AAサイ
ズのアルカリ蓄電池(理論容量:約1000mAh)A
1を作製した。正極容量と負極容量の比を1:2とし
た。以下の実施例及び比較例においても、正極容量と負
極容量の比は全て1:2とした。
【0026】(実施例2)硫酸コバルト13.0gの水
溶液1000mlに水酸化ニッケル100gを投入し、
1モル/リットルの水酸化ナトリウム水溶液を攪拌しな
がら滴下して液のpHを11に調整した後、1時間攪拌
混合し、ろ別し、水洗し、真空乾燥して、水酸化ニッケ
ルの粒子表面を水酸化コバルトで被覆してなる複合体粒
子粉末を作製した。なお、上記浸漬の間、液のpHをp
Hメータ(自動焦点付きガラス電極)にて監視して、液
のpHが低下した時点で適宜1モル/リットルの水酸化
ナトリウム水溶液を滴下してpHを11に保持した。こ
のようにして得た複合体粒子粉末100gを、30重量
%水酸化ナトリウム水溶液1000mlと12重量%次
亜塩素酸ナトリウム水溶液250mlとの混合水溶液
に、攪拌しながら10分間浸漬した後、ろ別し、水洗
し、乾燥して、ニッケル2.2価のニッケル水酸化物の
粒子表面をオキシ水酸化コバルトで被覆してなる複合体
粒子粉末を作製した。この複合体粒子粉末100重量部
と、結着剤としての1重量%メチルセルロース水溶液2
0重量部とを混練してペーストを調製し、このペースト
をニッケル発泡体(多孔度95%、平均孔径200μ
m)の細孔内に充填し、乾燥し、加圧成形して、非焼結
式ニッケル極(第2電極)を作製した。この非焼結式ニ
ッケル極を正極として使用したこと以外は実施例1と同
様にして、アルカリ蓄電池A2を作製した。
【0027】(実施例3)水酸化ニッケル100gに代
えて、亜鉛が0.5重量%固溶した水酸化ニッケル10
0gを使用したこと以外は実施例1と同様にして、非焼
結式ニッケル極(第1電極)及びアルカリ蓄電池A3を
作製した。
【0028】(実施例4)12重量%次亜塩素酸ナトリ
ウム水溶液250mlに代えて、31重量%過酸化水素
水250mlを使用したこと以外は実施例1と同様にし
て、非焼結式ニッケル極(第1電極)及びアルカリ蓄電
池A4を作製した。
【0029】(比較例1)水酸化ニッケル100重量部
と、水酸化コバルト7.9重量部(コバルト原子換算で
5重量部)と、結着剤としての1重量%メチルセルロー
ス水溶液20重量部とを混練してペーストを調製し、こ
のペーストをニッケル発泡体(多孔度95%、平均孔径
200μm)の細孔内に充填し、乾燥し、加圧成形し
て、非焼結式ニッケル極を作製した。この非焼結式ニッ
ケル極は、特開昭61−49374号公報に開示の従来
電極である。この非焼結式ニッケル極を正極として使用
したこと以外は実施例1と同様にして、アルカリ蓄電池
Xを作製した。
【0030】(比較例2)水酸化ニッケル100gと、
一酸化コバルト6.3gとを、比重1.25の水酸化カ
リウム水溶液1000mlに投入した後、ペルオキソ二
硫酸カリウムを135g投入して1時間攪拌混合し、ろ
別し、水洗し、乾燥して、水酸化ニッケルの粒子表面を
オキシ水酸化コバルトで被覆してなる複合体粒子粉末を
作製した。この複合体粒子粉末100重量部と、結着剤
としての1重量%メチルセルロース水溶液20重量部と
を混練してペーストを調製し、このペーストをニッケル
発泡体(多孔度95%、平均孔径200μm)の細孔内
に充填し、乾燥し、加圧成形して、非焼結式ニッケル極
を作製した。この非焼結式ニッケル極は、特公平8−2
4041号公報に開示の従来電極である。この非焼結式
ニッケル極を正極として使用したこと以外は実施例1と
同様にして、アルカリ蓄電池Yを作製した。
【0031】〈各電池の高率放電特性〉各電池につい
て、25°Cにて0.1Cで16時間充電した後、25
°Cにて1Cで1.0Vまで放電する工程を1サイクル
とする充放電を10サイクル行い、各電池の10サイク
ル目の放電容量C1(mAh)を求めた。次いで、各電
池を25°Cにて0.1Cで16時間充電した後、25
°Cにて3Cで1.0Vまで放電して、各電池の11サ
イクル目の放電容量C2(mAh)を求めた。各電池に
ついて、放電容量C1に対する放電容量C2の比率P
(%)を算出した。比率Pは、各電池の高率放電特性の
良否を示す指標であり、この値が大きいほど、高率放電
特性が良い。結果を表1に示す。表1中の各電池の10
サイクル目の放電容量は、電池A1の10サイクル目の
放電容量を100とした相対指数である。
【0032】
【表1】
【0033】表1に示すように、電池A1〜A4は、電
池X,Yに比べて、10サイクル目の放電容量が大き
く、しかも比率Pが大きい。この結果から、本発明電極
を使用することにより、従来電極を使用した場合に比べ
て、高率放電での放電容量が大きいアルカリ蓄電池が得
られることが分かる。
【0034】〔ニッケル水酸化物中のニッケルの平均価
数と高率放電特性の関係〕ニッケル水酸化物及びオキシ
水酸化コバルトを作製する際の浸漬時間を、10分に代
えて、1分、3分、5分、20分、30分、50分、6
0分、120分、180分及び200分としたこと以外
は実施例1と同様にして、ニッケルの平均価数が、順
に、2.0、2.1、2.2、2.2、2.2、2.
2、2.3、2.3、2.4及び2.4であるニッケル
水酸化物を作製した。ニッケルの平均価数は、酸化還元
滴定法により求めた。正極活物質としてこれらのニッケ
ル水酸化物を使用したこと以外は実施例1と同様にし
て、アルカリ蓄電池B1〜B10を作製した。各電池に
ついて、先と同じ条件の充放電サイクル試験を行い、各
電池の10サイクル目の放電容量C1に対する11サイ
クル目の放電容量の比率Pを求めた。結果を表2に示
す。表2には、電池A1の結果も示してあり、表2中の
Qは、電池A1の10サイクル目の放電容量C1に対す
る11サイクル目の放電容量の比率P(88%)を10
0とした相対指数である。Qの値が大きい電池ほど、高
率放電特性が良い。
【0035】
【表2】
【0036】表2に示すように、電池A1,B2〜B8
は、電池B1,B9,B10に比べて、Qの値が大き
い。この結果から、高率放電特性が良いアルカリ蓄電池
を与える非焼結式ニッケル極を得るためには、ニッケル
の平均価数が2.1〜2.3価であるニッケル水酸化物
を使用する必要があることが分かる。
【0037】〔ニッケル水酸化物に対するオキシ水酸化
コバルトのコバルト原子換算での比率と放電容量の関
係〕ニッケル水酸化物及びオキシ水酸化コバルトを作製
する際の水酸化コバルトの使用量を、7.8g(コバル
ト原子換算で5g)に代えて、0.47g、0.79
g、1.6g、4.7g、11.0g、15.8g、1
8.9g及び23.6g(コバルト原子換算で、順に、
0.3g、0.5g、1g、3g、7g、10g、12
g及び15g)としたこと以外は実施例1と同様にし
て、順にアルカリ蓄電池D1〜D8を作製した。各電池
について、先と同じ条件の充放電サイクル試験を行い、
各電池の10サイクル目の放電容量C1を求めた。結果
を図1に示す。図1は、ニッケル水酸化物に対するオキ
シ水酸化コバルトのコバルト原子換算での比率と10サ
イクル目の放電容量の関係を、縦軸に10サイクル目の
放電容量を、横軸にニッケル水酸化物に対するオキシ水
酸化コバルトのコバルト原子換算での比率(重量%)を
それぞれとって示したグラフである。図1には、電池A
1の結果も示してあり、図1の縦軸の10サイクル目の
放電容量は、電池A1の10サイクル目の放電容量を1
00とした相対指数である。
【0038】図1より、放電容量の大きい非焼結式ニッ
ケル極を得るためには、ニッケル水酸化物に対するオキ
シ水酸化コバルトのコバルト原子換算での比率を、1〜
10重量%とする必要があることが分かる。
【0039】
【発明の効果】本発明により、高率放電での放電容量が
大きいアルカリ蓄電池を与える非焼結式ニッケル極が提
供される。
【図面の簡単な説明】
【図1】ニッケル水酸化物に対するオキシ水酸化コバル
トのコバルト原子換算での比率と放電容量の関係を示す
グラフである。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】活物質としてのニッケル水酸化物にオキシ
    水酸化コバルトが添加されているアルカリ蓄電池用非焼
    結式ニッケル極において、ニッケル水酸化物に対するオ
    キシ水酸化コバルトのコバルト原子換算での比率が1〜
    10重量%であり、且つニッケル水酸化物中のニッケル
    の平均価数が2.1〜2.3価であることを特徴とする
    密閉型アルカリ蓄電池用非焼結式ニッケル極。
  2. 【請求項2】活物質としてのニッケル水酸化物の粒子表
    面がオキシ水酸化コバルトで被覆されているアルカリ蓄
    電池用非焼結式ニッケル極において、ニッケル水酸化物
    に対するオキシ水酸化コバルトのコバルト原子換算での
    比率が1〜10重量%であり、且つニッケル水酸化物中
    のニッケルの平均価数が2.1〜2.3価であることを
    特徴とする密閉型アルカリ蓄電池用非焼結式ニッケル
    極。
  3. 【請求項3】ニッケル水酸化物に、亜鉛、マグネシウ
    ム、カルシウム、マンガン、アルミニウム、カドミウ
    ム、イットリウム、コバルト、ビスマス及びランタノイ
    ドから選ばれた少なくとも1種の元素が固溶している請
    求項1又は2記載の密閉型アルカリ蓄電池用非焼結式ニ
    ッケル極。
JP32048097A 1997-11-05 1997-11-05 密閉型アルカリ蓄電池用非焼結式ニッケル極 Expired - Fee Related JP3433076B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32048097A JP3433076B2 (ja) 1997-11-05 1997-11-05 密閉型アルカリ蓄電池用非焼結式ニッケル極

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32048097A JP3433076B2 (ja) 1997-11-05 1997-11-05 密閉型アルカリ蓄電池用非焼結式ニッケル極

Publications (2)

Publication Number Publication Date
JPH11144723A true JPH11144723A (ja) 1999-05-28
JP3433076B2 JP3433076B2 (ja) 2003-08-04

Family

ID=18121924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32048097A Expired - Fee Related JP3433076B2 (ja) 1997-11-05 1997-11-05 密閉型アルカリ蓄電池用非焼結式ニッケル極

Country Status (1)

Country Link
JP (1) JP3433076B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778023A1 (fr) * 1998-04-28 1999-10-29 Japan Storage Battery Co Ltd Substance active positive pour batterie alcaline et electrode utilisant cette substance
JP2002110154A (ja) * 2000-07-14 2002-04-12 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極活物質の製造方法
JP2002117842A (ja) * 2000-10-06 2002-04-19 Yuasa Corp アルカリ蓄電池用正極活物質およびその製造方法、アルカリ蓄電池用正極並びにアルカリ蓄電池
JP2002121029A (ja) * 2000-10-10 2002-04-23 Tanaka Chemical Corp 導電性コバルトコート水酸化ニッケル及びその製造方法
JP2002338252A (ja) * 2001-05-10 2002-11-27 Sony Corp ベータ型オキシ水酸化ニッケルおよびその製造方法、電池用正極、並びに電池
JP2003068293A (ja) * 2001-08-23 2003-03-07 Hitachi Maxell Ltd 非焼結式正極、その製造方法および前記正極を用いたアルカリ蓄電池
WO2003021698A1 (fr) * 2001-09-03 2003-03-13 Yuasa Corporation Materiau pour electrode de nickel et procede de production de ce materiau, electrode de nickel et accumulateur alcalin
US7029791B2 (en) * 2000-08-08 2006-04-18 Sanyo Electric Co., Ltd. Manufacturing method of positive active material for alkaline storage battery, nickel electrode using the same material and alkaline storage battery using the same nickel electrode
JP2010135339A (ja) * 2010-02-05 2010-06-17 Gs Yuasa Corporation ニッケル水素蓄電池およびその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778023A1 (fr) * 1998-04-28 1999-10-29 Japan Storage Battery Co Ltd Substance active positive pour batterie alcaline et electrode utilisant cette substance
JP2002110154A (ja) * 2000-07-14 2002-04-12 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極活物質の製造方法
CN100407478C (zh) * 2000-07-14 2008-07-30 松下电器产业株式会社 碱性蓄电池用正极活性物质的制备方法
EP1172869A3 (en) * 2000-07-14 2004-03-31 Matsushita Electric Industrial Co., Ltd. Method for producing a positive electrode active material for an alkaline storage battery
US7029791B2 (en) * 2000-08-08 2006-04-18 Sanyo Electric Co., Ltd. Manufacturing method of positive active material for alkaline storage battery, nickel electrode using the same material and alkaline storage battery using the same nickel electrode
EP1182719A3 (en) * 2000-08-08 2006-08-02 Sanyo Electric Co., Ltd. Manufacturing method of positive active material for alkaline storage battery, nickel electrode using the same material and alkaline storage battery using the same nickel electrode
JP2002117842A (ja) * 2000-10-06 2002-04-19 Yuasa Corp アルカリ蓄電池用正極活物質およびその製造方法、アルカリ蓄電池用正極並びにアルカリ蓄電池
JP4556315B2 (ja) * 2000-10-06 2010-10-06 株式会社Gsユアサ アルカリ蓄電池
JP2002121029A (ja) * 2000-10-10 2002-04-23 Tanaka Chemical Corp 導電性コバルトコート水酸化ニッケル及びその製造方法
JP2002338252A (ja) * 2001-05-10 2002-11-27 Sony Corp ベータ型オキシ水酸化ニッケルおよびその製造方法、電池用正極、並びに電池
JP2003068293A (ja) * 2001-08-23 2003-03-07 Hitachi Maxell Ltd 非焼結式正極、その製造方法および前記正極を用いたアルカリ蓄電池
WO2003021698A1 (fr) * 2001-09-03 2003-03-13 Yuasa Corporation Materiau pour electrode de nickel et procede de production de ce materiau, electrode de nickel et accumulateur alcalin
US7635512B2 (en) 2001-09-03 2009-12-22 Yuasa Corporation Nickel electrode material, and production method therefor, and nickel electrode and alkaline battery
JP2010135339A (ja) * 2010-02-05 2010-06-17 Gs Yuasa Corporation ニッケル水素蓄電池およびその製造方法

Also Published As

Publication number Publication date
JP3433076B2 (ja) 2003-08-04

Similar Documents

Publication Publication Date Title
US6007946A (en) Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkaline storage battery
JP3429741B2 (ja) アルカリ蓄電池用ペースト型正極およびニッケル水素蓄電池
US6521377B2 (en) Positive electrode active material for alkaline storage batteries, positive electrode for alkaline storage batteries, and alkaline storage battery
JP3433076B2 (ja) 密閉型アルカリ蓄電池用非焼結式ニッケル極
JP4046449B2 (ja) 密閉型アルカリ蓄電池用正極活物質
JP3469766B2 (ja) 密閉型アルカリ蓄電池用非焼結式ニッケル極及び電池
JP3433050B2 (ja) アルカリ蓄電池用非焼結式ニッケル極
JP3433049B2 (ja) アルカリ蓄電池用非焼結式ニッケル極
JP3249414B2 (ja) アルカリ蓄電池用非焼結式ニッケル極の製造方法
JP3490825B2 (ja) アルカリ蓄電池用ニッケル極
JP2001313069A (ja) ニツケル水素蓄電池
JP2765028B2 (ja) 密閉形アルカリ電池
JP3481068B2 (ja) アルカリ蓄電池用非焼結式ニッケル極の製造方法
JP3229800B2 (ja) アルカリ蓄電池用非焼結式ニッケル極
JP3851022B2 (ja) アルカリ蓄電池用ニッケル極及びアルカリ蓄電池
JPH11176432A (ja) アルカリ蓄電池用非焼結式ニッケル極
JP4049484B2 (ja) 密閉型アルカリ蓄電池
JP3433043B2 (ja) アルカリ蓄電池用非焼結式ニッケル極
JP3263601B2 (ja) アルカリ蓄電池用非焼結式ニッケル極
JP3573885B2 (ja) アルカリ蓄電池用水酸化ニッケル活物質の製造方法及びアルカリ蓄電池
JP3397216B2 (ja) ニッケル極板とその製造方法およびこれを用いたアルカリ蓄電池
JPH10294109A (ja) アルカリ蓄電池用非焼結式ニッケル極
JPH1021909A (ja) アルカリ蓄電池用非焼結式ニッケル極
JP3250840B2 (ja) アルカリ二次電池用のペースト式電極
JPH0945323A (ja) アルカリ二次電池用活物質及びその製造方法、アルカリ二次電池用電極並びにアルカリ二次電池

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350