JPH11104684A - オキシデーションディッチ型活性汚泥処理装置 - Google Patents

オキシデーションディッチ型活性汚泥処理装置

Info

Publication number
JPH11104684A
JPH11104684A JP9274407A JP27440797A JPH11104684A JP H11104684 A JPH11104684 A JP H11104684A JP 9274407 A JP9274407 A JP 9274407A JP 27440797 A JP27440797 A JP 27440797A JP H11104684 A JPH11104684 A JP H11104684A
Authority
JP
Japan
Prior art keywords
filter
water
activated sludge
oxidation ditch
endless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9274407A
Other languages
English (en)
Inventor
Hitoshi Daidou
均 大同
Eiji Aso
栄治 麻生
Kazuo Suzuki
和夫 鈴木
Tadao Takeuchi
忠雄 竹内
Mitsuo Kondo
三雄 近藤
Kazuhisa Fukunaga
和久 福永
Tetsuo Hasegawa
哲夫 長谷川
Mutsuro Nagai
睦郎 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Nippon Steel Corp
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Kurita Water Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Kurita Water Industries Ltd, Nippon Steel Corp filed Critical Hitachi Metals Ltd
Priority to JP9274407A priority Critical patent/JPH11104684A/ja
Publication of JPH11104684A publication Critical patent/JPH11104684A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Filtration Of Liquid (AREA)
  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

(57)【要約】 【課題】 オキシデーションディッチ法による活性汚泥
処理に当り、沈殿池を必要とすることなく、活性汚泥を
長期に亘り効率的に分離して高水質の処理水を安定に得
る。 【解決手段】 オキシデーションディッチ型活性汚泥処
理装置の無端水路31に、実質的に活性汚泥粒子を通過
させる濾布を有する濾過体30を浸漬し、該濾布の表面
に形成された活性汚泥の付着層で濾過を行い、濾過水を
処理水として取り出す。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、オキシデーション
ディッチ型活性汚泥処理装置に係り、特に、オキシデー
ションディッチの無端水路内に浸漬配置した濾過体によ
り活性汚泥を効率的に分離して高水質の処理水を安定に
得るようにしたオキシデーションディッチ型活性汚泥処
理装置に関する。
【0002】
【従来の技術】汚水の生物処理方法としてオキシデーシ
ョンディッチ法があり、主に小規模の下水処理に適用さ
れている。図11はオキシデーションディッチ法の処理
系統図であり、汚水は除塵設備51で除塵された後、主
ポンプ設備52でオキシデーションディッチの無端水路
53に流入する。この無端水路53において、汚水流
が、機械式曝気装置54A,54Bによる曝気下生物処
理された後、最終沈殿池55で固液分離される。分離水
は塩素接触タンク56で除菌された後放流される。一
方、分離汚泥の一部は無端水路53に返送され、残部は
汚泥濃縮タンク57、汚泥貯留タンク58及び脱水設備
59を経て処分される。
【0003】このオキシデーションディッチ法による処
理には、次のような特徴がある。
【0004】 無端水路の形状は、一般に長円形(陸
上競技のトラック状)であり、機械式曝気装置により酸
素の供給を行うと共に水路内の混合を行うので、水路内
の液流は水平流となる。 水路の水深は、一般に、水路内混合(活性汚泥の沈
降防止)のための流速確保のため1〜3mと浅い(水路
内液の流速は遅い)。 機械的曝気装置は、一般に、BOD除去のみならず
硝化脱窒処理も行うために間欠運転される。 水路内の活性汚泥濃度(MLSS)は、硝化脱窒処
理のために2500〜5000mg/Lと下水の標準活
性汚泥処理における汚泥濃度1000〜2000mg/
Lに比較して高い。 小規模下水処理場の特徴として、下水の発生源(各
家庭)から処理施設までの距離が短いため、日間の流量
変動が大きい。また、この流量変動に対応してピーク水
量等を調節するために、水路の水位が変動する。 水路の水槽容積が大きい(下水の標準活性汚泥処理
に比較すると曝気槽容積で4倍以上,最終沈殿池で2〜
3倍)。
【0005】なお、上記,は、オキシデーションデ
ィッチ法で硝化脱窒処理を行う場合についての条件であ
るが、オキシデーションディッチ法では必ずしも脱窒を
目的とせず、有機物(BOD)の除去を目的とする場合
もある。この場合には、連続運転で常時所定の流速の水
流を生成させる。また、脱窒を行う場合でも、曝気装置
とは別に水流発生装置を設け、曝気装置停止時には、こ
の水流発生装置で常時水流を生成させる場合もある。
【0006】
【発明が解決しようとする課題】汚水の活性汚泥処理を
行う上で重要な課題の一つは活性汚泥の固液分離を効率
良く行うことである。従来、この固液分離手段として
は、省エネルギーの観点から、重力差による沈降分離、
即ち、沈殿池が用いられており、オキシデーションディ
ッチ法においても無端水路の流出水を固液分離する最終
沈殿池が設けられている。しかし、沈殿池による活性汚
泥の固液分離では、次のような問題がある。
【0007】(a) 比重差により汚泥を沈降分離する沈殿
処理では、汚泥の分離性能にも限界があり、流入負荷の
変動や、バルキング発生時には、活性汚泥がリークし処
理水質が悪化する。 (b) 最終沈殿池で分離した汚泥を無端水路に返送する操
作も必要とされる。 (c) 汚泥返送操作や汚泥濃度管理を行っても、最終沈殿
池でスカムの発生等のトラブルが起こり、処理水質が悪
化する場合が多い。 (d) 沈殿池は、大きな設置スペースを必要とする。
【0008】特に、オキシデーションディッチ法では、
生物処理での汚泥濃度(MLSS)が通常の下水処理よ
りも高い上に、流入量が変動するため、上記の問題が発
生しやすい。従来のオキシデーションディッチ法では、
これらの問題を軽減するために、大きな沈殿池を設置し
ており、これにより、設置スペースの増大の問題がより
一層助長されている。
【0009】本発明は上記従来の問題を解決し、オキシ
デーションディッチ法による活性汚泥処理に当り、沈殿
池を必要とすることなく、活性汚泥を長期に亘り効率的
に分離して高水質の処理水を安定に得ることができるオ
キシデーションディッチ型活性汚泥処理装置を提供する
ことを目的とする。
【0010】
【課題を解決するための手段】本発明のオキシデーショ
ンディッチ型活性汚泥処理装置は、無端水路を有するオ
キシデーションディッチ型活性汚泥処理装置において、
該無端水路に、実質的に活性汚泥粒子を通過させる濾布
を有する濾過体を浸漬し、該濾布の表面に形成された活
性汚泥の付着層で濾過を行い、濾過水を処理水として取
り出すようにしたことを特徴とする。
【0011】濾布を備える濾過体をオキシデーションデ
ィッチ型活性汚泥処理装置の無端水路に浸漬配置し、こ
の濾過体の濾布を通過した濾過水を処理水として取り出
すことで、前述の沈殿処理による問題を解決することが
できる。
【0012】この濾過体による濾過は、実際には、濾過
の進行により濾過体の濾布表面に形成された活性汚泥粒
子の付着物層(ダイナミック濾過層。以下、単に「濾過
層」と称し、このような濾過体による濾過法を「ダイナ
ミック濾過法」と称する場合がある。)によって行われ
ている。即ち、濾過体の濾布は、実質的には活性汚泥粒
子を通過させる、金属や高分子繊維の不織布よりなる厚
み1mm以下のものであるが、濾過の駆動圧が小さい条
件下において、濾布の表面に活性汚泥粒子の付着物層が
形成され、この付着物層により活性汚泥粒子の通過を阻
止することができるようになる。
【0013】この濾過体は安価な素材で構成でき、その
運転に動力を殆ど必要とせず、処理コストの低減にも有
効である。
【0014】オキシデーションディッチ法では、機械撹
拌により長い長円形の無端水路に水流を起こすので、水
路内の流速は通常の曝気による旋回流に比較しかなり低
いものとなる。この対応として、コーナー部にガイドウ
ォールを設置したり、水路の対角位置に機械式曝気装置
を設置したり、或いは、水深を浅くするなどして、液流
速0.1m/secを確保している。
【0015】一方、ダイナミック濾過法では、濾布とし
ての厚さ1mm以下の薄い不織布表面に活性汚泥の粒子
やフロックが緩やかな付着層を形成する必要があるが、
活性汚泥混合液の流速が速すぎると不織布面に剪断力が
強く働くため、上記の活性汚泥の濾過層が形成されず、
活性汚泥粒子や濁質が不織布を通過し濾過水中に混入し
良好な処理水が得られない。
【0016】そのための流速条件は、上限流速が濾過体
間の断面積に対して0.4m/sec前後であり、これ
以下の流速であれば不織布面に活性汚泥の粒子やフロッ
クが緩やかな付着層を形成し良好な処理水を得ることが
できる。
【0017】一方、下限流速は、0.05m/sec前
後で活性汚泥が沈まない程度である。このように、ダイ
ナミック濾過法は比較的低流速の0.1〜0.2m/s
ecで安定した処理性能を示す。即ち、低流速処理に好
適な濾過方法であり、近年採用されつつある浸漬吸引型
の膜濾過法が、目幅の細かな精密濾過膜又は限外濾過膜
の膜面が汚染されるのを防止するために濾過中、常時強
い曝気により流速0.4〜0.5m/sec以上とする
必要があるのに対し、オキシデーションディッチ法に向
いた濾過方式と言える。
【0018】なお、オキシデーションディッチ法による
活性汚泥処理により硝化脱窒を行う場合には、機械的曝
気装置の間欠運転が行われるため、この機械的曝気装置
の停止期間中には、濾過体の濾布面での流速が著しく小
さいか、或いは、水の流れが殆どなくなる場合がある。
【0019】ダイナミック濾過法は、0.05m/se
c程度の低流速でも濾過が可能であるが、流速がこれよ
りも小さいと濾布面に除去しにくいケーキ層が生成する
場合がある。そして、このようなケーキ層が圧密化して
濾過抵抗が上昇することにより、濾過流束が低下し、必
要な処理水量が得られなくなる。
【0020】従って、このように機械的曝気装置の間欠
運転を行う場合には、無端水路の濾過体上流側に撹拌機
を設けて、濾過に必要な、汚泥が沈降しない程度の流速
を確保するのが好ましい。
【0021】ただし、前述の如く、オキシデーションデ
ィッチ法は必ずしも硝化脱窒を目的とせず、有機物の除
去を目的とし、機械的曝気装置を連続運転する場合に
は、このような撹拌機は必要とされない。また、硝化脱
窒を行う場合であっても、前述の如く、機械的曝気装置
とは別に水流発生装置が設けられている場合には、更に
撹拌機を設ける必要はない。
【0022】
【発明の実施の形態】以下、図面を参照して本発明のオ
キシデーションディッチ型活性汚泥処理装置の実施の形
態について説明する。
【0023】まず、図1〜4を参照して本発明のオキシ
デーションディッチ型活性汚泥処理装置で用いられる濾
過体について説明する。
【0024】図1,2は、本発明のオキシデーションデ
ィッチ型活性汚泥処理装置に好適な濾過体の一例を示す
図であって、各々、(a)図は一部切欠正面図、(b)
図は(a)図のB−B線に沿う模式的な断面図である。
図3は濾過体の他の例を示す模式的な断面図である。
【0025】図1の濾過体1は、板状の支持体2の両面
にスペーサ3を介して濾布としての不織布4を取り付
け、取付枠5で固定したものである。支持体2にはその
厚さ方向に両板面に連通する連通管21が2箇所に設け
られている。この連通管21に支持体2の底部の端面側
から連通する、洗浄水流入管を兼ねる濾過水取出管22
が設けられている。
【0026】図2に示す濾過体1Aは、支持体2Aが、
その不織布4Aに対面する部分が空洞部2Bとなる枠状
部材からなる。この空洞部2Bを塞ぐようにスペーサ3
Aを介して濾布としての不織布4Aが取り付けられ、取
付枠5Aで固定されている。また、支持体2Aの上部の
端面側から支持体2Aの空洞部2Bに連通する洗浄水流
入管22Aが2本設けられ、支持体2Aの底部の端面側
から支持体2Aの空洞部2Bに連通する濾過水取出管2
2Bが2本設けられている。
【0027】支持体としては、濾過部材としての不織布
を支持し、無端水路内に浸漬配置された際の水圧に耐え
得る十分な剛性を有するものであれば良く、特に制限は
ないが、例えば銅等の金属、ABS樹脂、ポリエステル
等の合成樹脂、或いは、酸化アルミニウム等のセラミッ
クスなどで構成された板状体又は枠状体が好適である。
【0028】不織布としては、銅等の金属又はポリエス
テル、ポリプロピレン等の高分子材料よりなるものであ
って、分離粒径30μm以上、好ましくは30〜100
0μmの目開きを有し、厚さが1mm以下、特に0.1
〜1mmのものが不織布の目詰りを防止して安定な濾過
を行う上で好ましい。
【0029】スペーサとしてはネットスペーサ等、種々
のものを用いることができる。なお、図1に示す如く板
状の支持体2を採用する場合には、不織布4と支持体2
との間の濾過体の流路を確保するために、ハニカムネッ
トスペーサのようなものが好適である。図2に示す如く
空洞部2Bを有する支持体2Aの場合には、金網状のス
ペーサで良い。
【0030】なお、このように支持体2Aに空洞部2B
を設ける場合、支持体が大型になると、金網状のスペー
サ3Aのみでは不織布4Aの平面性を保持できない場合
がある。この場合には、図3に示す如く、金網状のスペ
ーサ3Aの下に格子状部材のような通水性支持部材6を
設け、スペーサ3A及び不織布4Aを支持するようにす
るのが好ましい。なお、図3に示す濾過体1Bでは、支
持体2Aの不織布取付面側に段部2Cを凹設し、この段
部2Cに支持部材6を嵌め込んで取り付けている。その
他の符号は図2と同一部分を示している。
【0031】このような濾過体1,1A,1Bでは、不
織布4,4Aを通過した濾過水は、連通管21及び取出
管22を経て、或いは、支持体2Aの空洞部2B及び取
出管22Bを経て取り出される。
【0032】このとき、濾過体に使用される不織布4,
4Aは活性汚泥粒子より目開きが大きいものであるの
で、微量の濁質や活性汚泥粒子は濾過水中に混入する。
これらの濁質、活性汚泥粒子は下方に沈降する傾向が強
い。従って、これが濾過体内で沈積するのを防止して濾
過水と共に排出するために、濾過水取出管は濾過体の下
部に設けるのが好ましい。
【0033】このように濾過水取出管を濾過体の下部に
設け、濾過体内での濁質や微生物粒子の沈積を防止して
濾過を行っていても、濾過を継続することにより、濾過
体内のうち濾過水の流れの悪い部分に少しずつ濁質や活
性汚泥粒子が蓄積され、濾過性能が悪くなる。このた
め、これらを濾過体内から排除するために、洗浄水を供
給して濾過体内を洗浄する。
【0034】図1の濾過体1では、洗浄水を取出管22
から供給し、連通管21を経て不織布4を通過させるこ
とにより、取出管22、連通管21やスペーサ3或いは
スペーサ3と支持体2又は不織布4との間の濁質等を不
織布4を通して無端水路の液側へ排出する。
【0035】また、図2,3に示す濾過体1A,1Bで
は、洗浄水を流入管22Aより供給し、取出管22Bよ
り排出することで濾過体1A,1B内の濁質等を洗い出
す。この濾過体1A,1Bでは、状況に応じて、上記と
は逆に、取出管22Bから洗浄水を供給して流入管22
Aから排出する洗浄を取り入れても良い。この洗浄の間
に、洗浄水の大部分は、不織布4Aを通過し、濾過体1
A,1B内に蓄積された濁質等を不織布4Aを通して無
端水路の液側へ排出する。
【0036】この洗浄水としては、処理水である濾過水
を用いても良く、別途清浄な水を導入して用いても良
い。
【0037】このような濾過体は、通常、無端水路内に
複数個並列させて浸漬配置するが、その場合、濾過体の
設置方法としては、次のような方法を採用することがで
きる。
【0038】 複数の濾過体を相互に固定する。 複数の濾過体の上下部分を支持部材で固定する。 図4(a)(平面図),(b)(側面図)に示す如
く、濾過体11A,11B,11C,11Dを適当な間
隔で並設し、各濾過体11A〜11Dの上部に設けられ
た洗浄水流入管12A,12B,12C,12Dを連通
する洗浄水流入集合管13と、各濾過体11A〜11D
の下部に設けられた濾過水取出管14A,14B,14
C,14Dを連通する濾過水取出集合管15で濾過体1
1A〜11Dを連結する。 図5(平面図)に示す如く、角筒形状の枠材7で図
1〜3に示すような濾過体7A,7B,7C,7Dを支
持して固定する。
【0039】なお、濾過体としては、上述のような板状
のものに限らず、図6に示す如く、濾布を円筒状に成形
した円筒状濾過体8A,8B,8C,8Dであっても良
い。
【0040】このように複数の濾過体を並設する場合、
良好なダイナミック濾過層を形成するために、濾過体同
士の間隔(図4,5の板状濾過体においては隣接する濾
過体の濾布表面同士の間隔d、図6の円筒状濾過体にお
いては円筒表面の最短距離d)は8mm以上とするのが
好ましい。
【0041】即ち、ダイナミック濾過層による濾過のた
めには、濾過体の不織布(濾布)表面に活性汚泥の粒子
やフロックが緩やかに層を形成する必要があるが、活性
汚泥混合液の流速が速すぎると不織布面に剪断力が強く
働くため、良好なダイナミック濾過層が形成されず、従
って、活性汚泥粒子や濁質が不織布を通過して濾過水中
に混入し良好な水質の処理水が得られない。
【0042】この流速の上限は、前述の如く、濾過体間
の断面積に対して0.4m/sec前後であり、これ以
下の流速であれば、不織布面に活性汚泥の粒子やフロッ
クが緩やかに層を形成し、良好な処理水を得ることがで
きる。
【0043】複数の濾過体を浸漬設置する場合、隣り合
う濾過体同士の間隔が狭い場合には、流速を小さくしな
いとダイナミック濾過層が形成されない。これは流速に
応じてダイナミック濾過層に応力(ずり速度)がかかる
が、その応力は濾過体間の距離に反比例するからであ
り、濾過体同士の間隔を8mm以上とするとダイナミッ
ク濾過層への応力の影響が少なく実用的な流速で使用す
ることができる。
【0044】なお、濾過体同士の間隔を8mmより狭く
しても、クロスフロー流速を遅くすればダイナミック濾
過層を形成できるが、例えば、0.05m/sec未満
の流速にすると濾過体を浸漬した無端水路内で活性汚泥
が沈積する恐れがあり、運転に支障をきたす。
【0045】濾過体同士の間隔は8mm以上の範囲で原
水水質、処理水の許容水質(濁度)、その他の通水条件
等により決定されるが、好ましくは10mm以上、より
好ましくは12mm以上である。濾過体同士の間隔が8
mm以上であれば、濾過流速0.05〜0.3m/se
cの範囲で良好なダイナミック濾過層が形成され高水質
の濾過水を効率的に得ることができる。
【0046】なお、濾過体同士の間隔は大きい程ダイナ
ミック濾過層の形成には有利であるが、無端水路内に多
数の濾過体を浸漬配置して省スペース化を図る点から
は、濾過体同士の間隔は100mm以下とするのが好ま
しい。
【0047】次に、このような濾過体を無端水路に浸漬
配置する本発明のオキシデーションディッチ型活性汚泥
処理装置の実施の形態を図7〜10を参照して詳細に説
明する。
【0048】オキシデーションディッチ法の曝気装置に
は、各種の形式のものが適用されているが、大別する
と、以下の2種である。
【0049】(1) 曝気装置自身で酸素供給と撹拌を行え
るもの(横軸式、縦軸式、スクリュー式) (2) 送風機と撹拌機の併用(プロペラ式、水中曝気式、
循環水散気式等)以下においては、上記(1) の曝気装置
の代表として横軸式の曝気装置を、(2)の代表としてプ
ロペラ式の曝気装置についての実施例を例示して説明す
る。
【0050】図7は横軸式曝気装置を備えるオキシデー
ションディッチ型活性汚泥処理装置に本発明を適用した
例を示す模式的な平面図であり、図8は図7の−線
に沿う断面図、図9は図7の−線に沿う断面の拡大
図である。なお、図7において処理水槽は図示を省略し
てある。
【0051】31はオキシデーションディッチの無端水
路であり、横軸式曝気装置32が2箇所に設けられてい
る。また、例えば、図2に示す構成の濾過体を図4に示
す如く濾過水取出集合管30Aと洗浄水流入集合管30
Bで複数個連結した濾過体ユニット30が浸漬配置され
ている。濾過体ユニット30の下方には通気管33が設
けられると共に、濾過体ユニット30の上流側には補助
撹拌機としてプロペラ式撹拌機34が設けられている。
35は無端水路31の中央壁である。なお、濾過体ユニ
ット30は、ユニット化された濾過体の濾布面が無端水
路31内の液流の方向と平行となるように配置される。
【0052】36は処理水(濾過水)槽であり、この処
理水槽36内の処理水を給水ポンプ37で汲み上げて給
水槽38に貯留し、この水を洗浄水流入集合管30Bを
経て濾過体ユニット30の各濾過体に供給するように構
成されている。
【0053】V1 ,V2 ,V3 ,V4 はバルブである。
【0054】原水(汚水)は配管39より無端水路31
内に導入され、無端水路31内で活性汚泥処理された
後、濾過体ユニット30でダイナミック濾過により固液
分離され、濾過水は処理水槽36を経て塩素接触タンク
で滅菌された後放流される。
【0055】補助撹拌機のプロペラ式撹拌機34は可変
式で、硝化工程中で横軸式曝気装置32が稼働中にはプ
ロペラ式撹拌機34は停止する。脱窒工程中、或いは、
負荷が低く横軸式曝気装置32による槽内液の流速が非
常に遅い場合には、この撹拌機34を稼働させ、槽内液
の流速を0.05〜0.1m/sec程度の汚泥が沈ま
ない程度に維持する。
【0056】濾過水の取り出しは、機械式曝気装置32
の酸素供給下で濾過体の不織布面にダイナミック濾過層
を形成させ、無端水路31と処理水槽36との液位差Δ
Hを駆動力として行われる。
【0057】即ち、濾過運転時には、無端水路31に原
水を供給すると共に、横軸式曝気装置32で酸素の供給
と水流の形成を行うと共に、濾過体ユニット30で水頭
差ΔHによる駆動力で濾過を行い、処理水(濾過水)を
濾過水取出集合管30Aを経て処理水槽36に導入す
る。このように無端水路31の水位よりも処理水槽36
の水位を低水位とし、この水頭差ΔHを駆動力として濾
過を進行させる。
【0058】なお、濾過を長時間継続するとダイナミッ
ク濾過層が徐々に圧密化しケーキ層となり、これにより
濾過抵抗が上昇し、濾過水量が低下してくるので、ケー
キ層を除去するために濾過体ユニット30の下部に設置
された通気管33より定期的に洗浄ガスを供給し不織布
面に生成したケーキ層を除く。洗浄ガスは、通常、空気
が用いられるが、この洗浄時の散気量は前記の緩やかな
散気と異なり不織布面に流速0.4m/s以上の水流が
生じる強曝気とする。この洗浄は、1日〜数時間に1
回、1回当たり数分程度で行えば良い。この洗浄時に
は、プロペラ式撹拌機34による撹拌機を併用しても良
い。
【0059】また、濾過体の濾過水流路の洗浄は、上記
ケーキ層除去時に、又は単独で、給水槽37より自然流
下で洗浄水流入集合管30Bを通して濾過体に給水し、
処理水取出集合管30Aより排出することにより行われ
る。
【0060】即ち、原水の供給を停止すると共に、バル
ブV2 を開として、給水槽38内の水を洗浄水として自
然流下で洗浄水流入集合管30Bを経て濾過体ユニット
30内に供給する(なお、この洗浄水の供給は処理水槽
36から給水ポンプ37より直接行っても良い。)。こ
の洗浄水の一部は不織布を通過して無端水路31の液側
に流出し、その過程で濾過体内の濁質等を排出する。ま
た、洗浄水の残部は濾過水取出集合管30Aより排出さ
れ、その過程で濾過体内の濁質等を処理水槽36側へ排
出する。この排出液は、再度処理を要する場合には、バ
ルブV4 を開として給水ポンプ36で原水槽又は無端水
路31に返送される。
【0061】なお、濾過体ユニット30の下部の通気管
33は必ずしも必要とされず、通気管33からの上記ガ
ス洗浄の代りに、プロペラ式撹拌機34による液流で濾
過体ユニット30のケーキ層の剥離洗浄を行うようにし
ても良い。
【0062】図10は、プロペラ式撹拌機と送風機によ
る曝気を併用したオキシデーションディッチ型活性汚泥
処理装置に本発明を適用した例を示す模式的な平面図で
あり、図10において、図8に示す部材と同一機能を奏
する部材には同一符号を付してある。V5 ,V6 はバル
ブである。
【0063】このオキシデーションディッチ型活性汚泥
処理装置においては、濾過に必要な流速は、プロペラ式
撹拌機34により得る。硝化工程においては、送風機4
0より曝気用配管41を通じて空気を無端水路31内に
供給し、槽内への拡散と液混合をプロペラ式撹拌機34
にて行う。脱窒工程中は、プロペラ式撹拌機34の運転
を継続しながら、曝気用配管41からの空気の供給を停
止する。プロペラ式撹拌機34の運転は、処理効果の面
より、槽内の活性汚泥が沈降しない流速0.05〜0.
1m/s以上とするので、濾過に影響はない。
【0064】濾過体ユニット30の濾過体の不織布面の
洗浄時には、濾過体ユニット30下部に設置された濾過
体洗浄用配管42から曝気を行う。
【0065】なお、図示のものは本発明の一実施例であ
って、本発明はその要旨を超えない限り、何ら図示のも
のに限定されるものではない。無端水路内に浸漬する濾
過体の個数や濾過水の採水方法、撹拌機や曝気装置、散
気管や通気管の配置等も任意である。
【0066】本発明のオキシデーションディッチ型活性
汚泥処理装置では、無端水路内の汚泥を余剰汚泥として
引き抜く必要があるが、この汚泥引き抜きは間欠的に行
っても連続的に行っても良く、また、余剰汚泥は無端水
路のいずれの箇所から引き抜いても良い。
【0067】
【発明の効果】以上詳述した通り、本発明のオキシデー
ションディッチ型活性汚泥処理装置によれば、無端水路
内に浸漬配置した濾過体により活性汚泥を長期に亘り安
定かつ効率的に分離することができるため、処理水の固
液分離を、沈殿池を必要とすることなく、低動力で安定
かつ確実に行うことができ、処理効率の向上と省エネル
ギー及び省スペース化を図ることができる。
【図面の簡単な説明】
【図1】本発明のオキシデーションディッチ型活性汚泥
処理装置に好適な濾過体の実施の形態の一例を示す図で
あって、(a)図は一部切欠正面図、(b)図は(a)
図のB−B線に沿う断面図である。
【図2】本発明のオキシデーションディッチ型活性汚泥
処理装置に好適な濾過体の実施の形態の他の例を示す図
であって、(a)図は一部切欠正面図、(b)図は
(a)図のB−B線に沿う断面図である。
【図3】本発明のオキシデーションディッチ型活性汚泥
処理装置に好適な濾過体の実施の形態の別の例を示す断
面図である。
【図4】本発明における濾過体の設置形態の一例を示す
図であって、(a)図は平面図、(b)図は側面図であ
る。
【図5】本発明における濾過体の設置形態の別の例を示
す平面図である。
【図6】本発明における濾過体の設置形態の更に別の例
を示す平面図である。
【図7】横軸式曝気装置を備えるオキシデーションディ
ッチ型活性汚泥処理装置に本発明を適用した例を示す模
式的な平面図である。
【図8】図7の−線に沿う断面図である。
【図9】図7の−線に沿う断面の拡大図である。
【図10】プロペラ式撹拌機と送風機による曝気を併用
したオキシデーションディッチ型活性汚泥処理装置に本
発明を適用した例を示す模式的な平面図である。
【図11】オキシデーションディッチ法による汚水の処
理系統図である。
【符号の説明】
1,1A,1B 濾過体 2,2A 支持体 3,3A スペーサ 4,4A 不織布 5,5A 取付枠 6 支持部材 7 枠材 30 濾過体ユニット 30A 濾過水取出集合管 30B 洗浄水流入集合管 31 無端水路(オキシデーションディッチ) 32 横軸式曝気装置 33 通気管 34 プロペラ式撹拌機 35 中央壁 36 処理水槽 37 給水ポンプ 38 給水槽 51 除塵設備 52 主ポンプ設備 53 無端水路 54A,54B 機械式曝気装置 55 最終沈殿池 56 塩素接触タンク 57 汚泥濃縮タンク 58 汚泥貯留タンク 59 脱水設備
フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 29/04 520A 530A (71)出願人 000006655 新日本製鐵株式会社 東京都千代田区大手町2丁目6番3号 (71)出願人 000005083 日立金属株式会社 東京都千代田区丸の内2丁目1番2号 (72)発明者 大同 均 東京都新宿区西新宿二丁目8番1号 東京 都下水道局内 (72)発明者 麻生 栄治 東京都新宿区西新宿二丁目8番1号 東京 都下水道局内 (72)発明者 鈴木 和夫 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 竹内 忠雄 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 近藤 三雄 東京都千代田区大手町二丁目6番3号 新 日本製鐵株式會社内 (72)発明者 福永 和久 千葉県富津市新富20−1 新日本製鐵株式 會社内 (72)発明者 長谷川 哲夫 埼玉県熊谷市三ケ尻5200番地 日立金属株 式会社内 (72)発明者 永井 睦郎 埼玉県熊谷市三ケ尻5200番地 日立金属株 式会社内

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 無端水路を有するオキシデーションディ
    ッチ型活性汚泥処理装置において、該無端水路に、実質
    的に活性汚泥粒子を通過させる濾布を有する濾過体を浸
    漬し、該濾布の表面に形成された活性汚泥の付着層で濾
    過を行い、濾過水を処理水として取り出すようにしたこ
    とを特徴とするオキシデーションディッチ型活性汚泥処
    理装置。
  2. 【請求項2】 請求項1において、該無端水路の該濾過
    体の上流側に撹拌機を設けたことを特徴とするオキシデ
    ーションディッチ型活性汚泥処理装置。
JP9274407A 1997-10-07 1997-10-07 オキシデーションディッチ型活性汚泥処理装置 Pending JPH11104684A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9274407A JPH11104684A (ja) 1997-10-07 1997-10-07 オキシデーションディッチ型活性汚泥処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9274407A JPH11104684A (ja) 1997-10-07 1997-10-07 オキシデーションディッチ型活性汚泥処理装置

Publications (1)

Publication Number Publication Date
JPH11104684A true JPH11104684A (ja) 1999-04-20

Family

ID=17541250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9274407A Pending JPH11104684A (ja) 1997-10-07 1997-10-07 オキシデーションディッチ型活性汚泥処理装置

Country Status (1)

Country Link
JP (1) JPH11104684A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263677A (ja) * 2001-03-13 2002-09-17 Ebara Corp 活性汚泥の固液分離方法および装置
JP2009527349A (ja) * 2006-02-23 2009-07-30 ナムローゼ・フエンノートシャップ・ベカート・ソシエテ・アノニム フィルタスタックにおいて使用されるフィルタプレート
JP2012125712A (ja) * 2010-12-16 2012-07-05 Mutsumi Shoji:Kk 濾過ユニット、濾過装置及び濾過方法
JP2015000393A (ja) * 2013-06-18 2015-01-05 健一 濱中 汚泥脱水設備
JP2016087566A (ja) * 2014-11-07 2016-05-23 Jfeエンジニアリング株式会社 膜分離活性汚泥処理装置
CN106458667A (zh) * 2014-06-17 2017-02-22 赛莱默知识产权管理有限公司 用于处理液体的设备以及用于控制这种设备的方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263677A (ja) * 2001-03-13 2002-09-17 Ebara Corp 活性汚泥の固液分離方法および装置
JP2009527349A (ja) * 2006-02-23 2009-07-30 ナムローゼ・フエンノートシャップ・ベカート・ソシエテ・アノニム フィルタスタックにおいて使用されるフィルタプレート
JP2012125712A (ja) * 2010-12-16 2012-07-05 Mutsumi Shoji:Kk 濾過ユニット、濾過装置及び濾過方法
JP2015000393A (ja) * 2013-06-18 2015-01-05 健一 濱中 汚泥脱水設備
CN106458667A (zh) * 2014-06-17 2017-02-22 赛莱默知识产权管理有限公司 用于处理液体的设备以及用于控制这种设备的方法
JP2017518178A (ja) * 2014-06-17 2017-07-06 ザイレム・アイピー・マネジメント・ソシエテ・ア・レスポンサビリテ・リミテ 液体の処理のための施設およびそのような施設を制御するための方法
US10273173B2 (en) 2014-06-17 2019-04-30 Xylem Ip Management S.À R.L. Method of controlling a circulation-type wastewater treatment plant via a stored parameter relationship in a control unit
CN106458667B (zh) * 2014-06-17 2020-11-27 赛莱默知识产权管理有限公司 用于处理液体的设备以及用于控制这种设备的方法
JP2016087566A (ja) * 2014-11-07 2016-05-23 Jfeエンジニアリング株式会社 膜分離活性汚泥処理装置

Similar Documents

Publication Publication Date Title
JP3853657B2 (ja) 排水の処理方法及び装置
WO2003033103A1 (fr) Module de filtration dynamique
JPH11104684A (ja) オキシデーションディッチ型活性汚泥処理装置
JP3489397B2 (ja) 活性汚泥濾過装置
JP3325475B2 (ja) 汚水処理装置および方法
JP3281161B2 (ja) 浄水処理装置
JP3204125B2 (ja) 生物処理方法
JP4104806B2 (ja) 有機性排水処理の固液分離方法及び装置
JP3637765B2 (ja) 濾過体
JP3883358B2 (ja) 汚水処理のろ過分離方法及びその装置
JP3391222B2 (ja) 活性汚泥用濾過体
JP3721092B2 (ja) 活性汚泥の固液分離方法及び装置
JP4124957B2 (ja) ろ過体の洗浄方法及び装置
JP2000084376A (ja) 汚水処理方法
JP3244012B2 (ja) 活性汚泥濾過装置
JPH1119671A (ja) 活性汚泥濾過方法
JP3325473B2 (ja) 循環式硝化脱窒装置および方法
JP3478176B2 (ja) ダイナミック濾過装置
JP2000084579A (ja) 汚水処理装置
JPH10156375A (ja) 生物濾過装置及び該生物濾過装置内蔵型汚水浄化槽
JPH1119492A (ja) 活性汚泥用濾過体
JPH11128929A (ja) 汚泥混合液の固液分離装置
JP2000296302A (ja) 汚水処理方法
JP2002219484A (ja) ダイナミック濾過装置
JP2002282886A (ja) 汚水処理方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208