JPH10338587A - 低炭素/窒素比堆肥及びその製造方法 - Google Patents

低炭素/窒素比堆肥及びその製造方法

Info

Publication number
JPH10338587A
JPH10338587A JP10588398A JP10588398A JPH10338587A JP H10338587 A JPH10338587 A JP H10338587A JP 10588398 A JP10588398 A JP 10588398A JP 10588398 A JP10588398 A JP 10588398A JP H10338587 A JPH10338587 A JP H10338587A
Authority
JP
Japan
Prior art keywords
composting
raw material
ratio
compost
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10588398A
Other languages
English (en)
Inventor
Kazuyoshi Suzuki
一好 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10588398A priority Critical patent/JPH10338587A/ja
Publication of JPH10338587A publication Critical patent/JPH10338587A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)

Abstract

(57)【要約】 【課題】 施肥能に優れた堆肥及びその製造方法を提供
する。 【解決手段】 本発明の堆肥は、コンポスト化処理完了
後の堆肥における炭素(C)と窒素(N)との重量比
(C/N)が9.5以下である。また、本発明の製造方
法は、炭素(C)と窒素(N)との重量比(C/N)が
10.5以下であるコンポスト化原料を用い、水分率を
30〜60%に維持してコンポスト化処理を実施する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、炭素/窒素比が低
い堆肥及びその堆肥の製造方法に関する。本発明は、特
に農産廃棄物、例えば、青果市場ゴミ等の野菜くず等を
多く含む有機性廃棄物を処理して、優れた施肥能を有す
る堆肥を製造することに利用することができる。
【0002】
【従来の技術】都市ゴミ(例えば厨芥)、下水汚泥、畜
産廃棄物、及び農産廃棄物等の有機性廃棄物は、適当な
条件下(例えば微生物の存在下)で堆肥化、すなわちコ
ンポスト化処理し、土壌還元することによってリサイク
ルすることが可能である。コンポスト化装置で処理され
る有機性廃棄物については、都市ゴミのように様々な種
類の有機物の集合体である場合もあるが、下水汚泥、畜
産廃棄物、青果市場ゴミ、あるいは魚市場ゴミのよう
に、組成がほぼ均一である場合も少なくない。そのよう
にほぼ均一の組成からなる有機性廃棄物をコンポスト化
処理する場合には、それぞれの有機物組成や全体の性状
に応じて適切なコンポスト化処理条件が存在するか、あ
るいはその可能性がある。例えば、農産廃棄物、特に青
果市場系生ゴミには、野菜屑などが多く含まれているの
で、バーク(樹皮)やおがくず・木材チップ程ではない
にせよ、厨芥や下水汚泥・畜産廃棄物等に比べると炭素
/窒素比(C/N比)が高く、繊維質も多いことなどが
特徴となっている。
【0003】一般的に、有機性廃棄物のコンポスト化処
理方法については数多くの報告がなされている。コンポ
スト化処理において検討しなければならない項目として
は、コンポスト化原料の水分率、空隙率、pH、及び炭
素/窒素比等が挙げられている。コンポスト化原料の炭
素/窒素比は、コンポスト化速度に大きな影響を与える
ものとして知られており、その値が10〜30では有機
物の分解が速やかであり、7〜10で有機物分解速度が
最大になるものとされている。また、各種のゴミの炭素
/窒素比は、普通の都市ゴミで30〜50、そして下水
汚泥で8〜12であり、コンポスト化処理後の製品コン
ポストでは10〜20程度であることが知られている
(藤田賢二著「コンポスト化技術」技報堂出版,第69
頁,1993年)。
【0004】更に、特開昭57−11895号公報の記
載によれば、炭素/窒素比が12〜25で、含水率が6
0〜85%等の条件を満たすコンポスト化原料を特定の
空気供給条件下で処理することにより、充分に熟成され
た堆肥を短期間で製造することができるものとされてい
る。また、特開昭61−97181号公報には、温風空
気を通気する密封型発酵槽からの排気を制御することに
よって短期間に発酵及び乾燥させた有機堆肥を得る方法
が記載されており、その際に、炭素/窒素比が10〜2
0で、含水率が50〜70%程度のコンポスト化原料を
用いるのが好ましいとされている。以上のように、コン
ポスト化原料、及び特にコンポスト化処理された堆肥に
関して、炭素/窒素比が10以下のものについては、そ
の品質等が、従来、ほとんど論じられていなかった。
【0005】
【発明が解決しようとする課題】一方、本発明者の見出
したところによれば、青果市場からの生ゴミをコンポス
ト化処理する場合に、原料段階での炭素/窒素比を12
〜25の範囲に調整してコンポスト化処理を実施し、こ
うして得られる堆肥の炭素/窒素比が10〜20の範囲
に入っていても、農地還元試験の結果は思わしくない。
即ち、施肥能の優れた堆肥を得ることができないことが
分かった。従って、本発明の課題は、優れた施肥能を有
する堆肥及びその堆肥の製造方法を提供することにあ
り、特に青果市場生ゴミなど野菜くず等を多く含む有機
性廃棄物の堆肥化処理方法を提供することを目的とす
る。
【0006】
【課題を解決するための手段】前記の課題は、本発明に
よる、コンポスト化処理完了後の堆肥における炭素
(C)と窒素(N)との重量比(C/N)が9.5以下
であることを特徴とする堆肥により解決することができ
る。また、本発明は、炭素(C)と窒素(N)との重量
比(C/N)が10.5以下であるコンポスト化原料を
用い、水分率を30〜60%に維持してコンポスト化処
理を実施することを特徴とする、請求項1に記載の堆肥
の製造方法にも関する。
【0007】本明細書において、炭素(C)と窒素
(N)との重量比(C/N)〔以下、単に炭素/窒素比
と称することがある〕は、当該材料の炭素重量及び窒素
重量をそれぞれ測定し、両者の比を算出して求めた値を
意味する。具体的には、当該材料から有意な結果を得る
ことのできる量の試料を採取し、一般的な炭素量測定法
(JIS−M−8813記載の方法)及び一般的な窒素
量測定法(JIS−M−8813記載の方法)によって
炭素量及び窒素量を測定し、それらの測定値から算出す
ることができる。
【0008】
【発明の実施の形態】本発明の堆肥は、コンポスト化処
理完了後の堆肥における炭素/窒素比が9.5以下、好
ましくは8.5以下である。本発明者の見出したところ
によれば、炭素/窒素比が9.5を越えると、窒素飢餓
を引き起こし作物に悪影響を与えるので、施肥能が低下
する。特に、後述する実施例に示すとおり、青果市場生
ゴミから調製した堆肥の場合には、炭素/窒素比が9.
5を越えると、施肥能が著しく低下する。炭素/窒素比
が9.5以下になると優れた施肥能を示し、炭素/窒素
比が8.5以下になると極めて優れた施肥能を示す。
【0009】本明細書において「コンポスト化処理」と
は、有機物(特に有機廃棄物)を微生物の作用により処
理する工程である。例えば、好ましくは、適当な通風及
び撹拌条件下に有機物(特に有機廃棄物)を或る期間貯
留して、好気性発酵させることにより実施することがで
きる。ここで、「有機物」とは、微生物の作用により化
学処理を受けることのできる有機化合物を意味し、好ま
しくは生分解性有機化合物、すなわち非生分解性プラス
チックなどを除いたものを意味する。
【0010】コンポスト化処理は、これに限定されるわ
けではないが、通常、大量の有機物を或る期間貯留する
ことができる発酵槽で行うことができる。この発酵槽
は、有機物を迅速に発酵させ、発酵槽の専有面積を小さ
くし、悪臭の発散等の二次公害を防止することができる
ことが好ましく、種々の方式の発酵槽が提案されてい
る。例えば、特公昭61−36622号公報等に記載の
多段垂直円筒型堆肥化装置によれば、中央支柱を回転軸
として低速で旋回すると同時に床面に対してほぼ直角に
回転する回転パドルと、床面から曝気用空気を供給する
水平床とが設けられた円筒状発酵槽が多層階を形成し、
最上段の円筒状発酵槽の上部に設けた原料供給口から有
機物(特に有機廃棄物)が供給されてから、前記撹拌パ
ドルにより撹拌されながら順次下段の円筒状発酵槽に移
送され、最下段の円筒状発酵槽を経て排出口から取り出
されるまでの間に、発酵が進行し、コンポスト化処理が
行われる。
【0011】コンポスト化処理の完了は、第7回廃棄物
学会研究発表会講演論文集第317〜319頁(199
6年10月)などに記載の方法によって腐熟度を測定す
ることにより確認することができる。すなわち、コンポ
スト化過程で一定量の且つ有意な結果を得ることができ
る量の試料を採取し、一定量の水に溶かしこむことによ
り水懸濁液を調製し、固液分離した後、その液相の吸光
度(700〜400nmの間から適宜選択する)を測定
し、その測定値の上昇が止った時点でコンポスト化は完
了しているものと判断することができる。
【0012】本発明による前記の堆肥は、本発明方法に
よって調製するのが好ましい。本発明方法では、前記の
とおり、炭素/窒素比が10.5以下、好ましくは9.
8以下のコンポスト化原料を用い、水分率を30〜60
%、好ましくは35〜50%に実質的に維持してコンポ
スト化処理を実施する。本発明方法により処理すること
のできるコンポスト化原料は、炭素/窒素比が10.5
以下であることを除けば、特に限定されないが、例え
ば、有機廃棄物、例えば、都市ごみ(例えば、厨芥)、
下水汚泥、畜産排泄物、及び/又は農産廃棄物等を挙げ
ることができる。特に、野菜屑、果物屑等を主成分とす
る農産廃棄物、例えば、青果市場生ゴミ等を使用するの
が好ましい。
【0013】前記の農産廃棄物(例えば、青果市場生ゴ
ミ)の炭素/窒素比が10.5を越える場合には、炭素
/窒素比調節剤として、炭素/窒素比の低い有機物(特
に有機廃棄物)を添加して、炭素/窒素比を10.5以
下又はその他の適当な値に調整することができる。炭素
/窒素比の低い有機廃棄物としては、堆肥化を阻害しな
いものであれば特に限定されず、例えば、下水汚泥(脱
水ケーキ)、鶏糞、レストラン系生ゴミ等を使用するこ
とができる。コンポスト化原料の炭素/窒素比が10.
5を超えていると、コンポスト化処理後に得られる堆肥
の炭素/窒素比が9.5以下になることがほとんどな
く、施肥能の優れた堆肥を得ることが困難である。な
お、コンポスト化原料の炭素/窒素比の下限は、炭素/
窒素比調節剤として使用する下水汚泥で8前後、鶏糞で
7.5前後が下限とされているため、本発明方法の好ま
しい処理対象である農産廃棄物(例えば、青果市場生ゴ
ミ)に関しては、せいぜい7.5程度である。
【0014】本発明方法においては、コンポスト化処理
中のコンポスト化原料の水分率を30〜60重量%に実
質的に保持することが必要であるため、コンポスト化処
理を実施する前に、予め原料となる有機物の水分率を3
0〜60重量%に調整する。コンポスト化原料の水分率
が60重量%より高い場合には、例えば、乾燥処理(例
えば、自然乾燥若しくは強制乾燥)、又は乾燥有機物
(例えば、乾燥させた草、藁、籾殻、若しくは木材チッ
プなど)の添加などにより、原料有機物の水分率を30
〜60重量%に調整することができる。コンポスト化原
料の水分率を30〜60重量%に調整する場合には、コ
ンポスト化原料の水分率が10〜30重量%になるまで
コンポスト化原料を乾燥した後、コンポスト化原料の水
分率を30〜60重量%に調整することが好ましい。コ
ンポスト化原料の水分率が10〜30重量%になるまで
コンポスト化原料を乾燥することにより、局所的な水分
率の偏りを是正し、コンポスト化原料中の粗大物が粉砕
され、コンポスト化原料の粒径及び/又は質を均一化す
ることができるからである。また、コンポスト化原料を
乾燥した後、適当な篩目サイズ(例えば、10〜20m
m)のふるいを用いてふるい分けを実施することによ
り、コンポスト化原料以外の夾雑物を除去してもよい。
コンポスト化原料の水分率が30重量%より低い場合に
は、例えば、水を加えてコンポスト化原料の水分率を3
0〜60重量%に調整するか、あるいは水分率が10〜
30重量%になるまでコンポスト化原料を乾燥した後、
コンポスト化原料の水分率を30〜60重量%に調整す
ることができる。
【0015】本発明においては、コンポスト化原料の水
分率を30〜60重量%に実質的に保持した条件下でコ
ンポスト化処理を行う。すなわち、本発明においては、
コンポスト化処理を実施している間、すなわち、コンポ
スト処理開始直後からコンポスト化処理終了時までの
間、常に、コンポスト化原料の水分率を30〜60重量
%に実質的に維持する。コンポスト化処理中には、発酵
により熱が発生し、更に、通常、給気及び撹拌を実施す
るため、水分の補充を実施しないとコンポスト化原料の
水分率は減少してしまう。本発明においては、水分を補
充することによって、コンポスト化原料の水分率を30
〜60重量%に実質的に保持することができる。水分を
補充する方法としては、これに限定されるわけではない
が、例えば水をそのまま、若しくは噴霧状にして添加す
る方法、又は加湿気体をコンポスト化原料と接触させる
方法などをあげることができる。補充する水分量、補充
頻度などは、例えば、コンポスト化処理中のコンポスト
化原料の一部を採取し、その水分率を測定することによ
り適宜決定することができる。あるいは、パイロット試
験を行って、補充する水分量及び補充間隔を予め決定す
ることもできる。
【0016】本発明においては、コンポスト化処理を実
施している間、コンポスト化原料の水分率を30〜60
重量%に「実質的に」保持する。本明細書においては、
「コンポスト化原料の水分率を30〜60重量%に実質
的に保持している」状態には、コンポスト化原料の水分
率が30〜60重量%の範囲をはずれる場合であって
も、コンポスト化処理の総処理時間及び処理されるコン
ポスト化原料の全体量から判断して、短時間及び局所的
である場合を含む。例えば、コンポスト化処理は、一般
に大型の発酵槽を使用して実施するため、発酵槽の全体
にわたって均一にコンポスト化原料の水分率を30〜6
0重量%の範囲に保持することが困難なことがある。こ
の場合に、水をそのまま添加することにより水分を補充
すると、短時間(例えば、30分以内)であっても、局
所的に60重量%を越えることがある。あるいは、局所
的に温度が高い場所(例えば、局所的に発酵が活発に行
われている場所、若しくは外部から加熱する必要がある
場合にはその加熱手段の近傍など)では、乾燥が他の場
所に比べて著しく進み、水分率が30重量%を下回るこ
とがある。このように、コンポスト化処理中にコンポス
ト化原料の水分率が30〜60重量%の範囲をはずれる
場合であっても、コンポスト化処理の総処理時間及び処
理されるコンポスト化原料の全体量から判断して、短時
間及び局所的である場合には、コンポスト化原料の水分
率を30〜60重量%の範囲に実質的に保持していると
みなすことができるので、本発明の範囲に含まれる。
【0017】
【作用】原料となるコンポスト化原料の水分率を30〜
60重量%とし、コンポスト化処理中の水分の減少分を
補充した場合、コンポスト化処理過程で中心的な働きを
する好気性微生物にとっての適切な環境(「適度な水の
存在」及び「適度な通気性」)が確保され、その機能が
十分に発揮されるため、良好にコンポスト化処理が進行
する。原料水分率を30重量%よりも小さくした場合、
前記「適度な水の存在」が確保できなくなるため、好気
性微生物の活性が低下し、処理は良好に進まない。ま
た、原料水分率を60重量%より大きくした場合、原料
が汚泥状態になり嫌気的な環境となる。そのため、上記
「適度な通気性」を確保することができなくなり、やは
り好気性微生物の活性が低下し、処理は良好に進まな
い。また、原料水分率を30〜60重量%としても、水
分の減少分を補充しなかった場合、水分率が30重量%
よりも低下する。そのため、上記「適度な水の存在」を
確保できなくなり、やはり好気性微生物の活性が低下
し、処理は良好に進まない。更に、コンポスト化処理を
実施する前に、コンポスト化原料の水分率が10〜30
重量%になるまでコンポスト化原料を乾燥すると、局所
的な水分率の偏りを是正し、コンポスト化原料中の粗大
物が粉砕され、コンポスト化原料の粒径及び/又は質を
均一化することができる。この状態で水分を補給する
と、コンポスト化処理中における水分の偏在が解消し、
発酵が均一化するため、良好にコンポスト化処理が進行
するものと考えられる。更に、原料となるコンポスト化
原料の炭素/窒素比が10.5以下であるので、得られ
る堆肥の炭素/窒素比が9.5以下となり、優れた施肥
能を示す堆肥を得ることができる。
【0018】
【実施例】以下、実施例によって本発明を具体的に説明
するが、これらは本発明の範囲を限定するものではな
い。以下の実施例において、炭素/窒素比は、JIS−
M−8813により炭素量及び窒素量を測定して計算し
た。それぞれの測定は各々のサンプルにつき3回実施
し、その平均値を求めた。
【実施例1〜7及び比較例1〜3】青果市場から排出さ
れ、野菜屑を主成分とする生ゴミを、大型のタテ型蒸気
間接乾燥機を用いて、約80℃で2時間処理することに
より、水分率45%まで乾燥させた。この状態で炭素/
窒素比を測定したところ、12.5であった。一方、炭
素/窒素比改良剤として、レストラン系生ゴミを、同じ
く大型乾燥機で同様に処理することにより、水分率45
%まで乾燥させた。この状態で炭素/窒素比を測定した
ところ、7.9であった。前記の乾燥野菜屑系生ゴミ
(C/N比=12.5)と、前記の乾燥レストラン系生
ゴミ(C/N比=7.9)とを混合して、炭素/窒素比
が7.9〜12.5に徐々に増加する9種のコンポスト
化原料を調製した。即ち、炭素/窒素比が7.9である
コンポスト化原料(実施例1)、8.5であるコンポス
ト化原料(実施例2)、9.0であるコンポスト化原料
(実施例3)、9.5であるコンポスト化原料(実施例
4)、9.8であるコンポスト化原料(実施例5)、1
0.0であるコンポスト化原料(実施例6)、10.5
であるコンポスト化原料(実施例7)、11.0である
コンポスト化原料(比較例1)、及び12.5であるコ
ンポスト化原料(比較例2)を調製した。
【0019】前記の各コンポスト化原料40リットル
を、実験用堆肥化装置(50リットル)に投入し、コン
ポスト化原料1kg当たりの空気吹込み量を0.33リ
ットル/分とする条件で通気し、切り返しを1日に1回
ビニールシート上にあけることにより実施した。また、
発酵物の水分率を40〜45%に維持できるように必要
に応じて気散した分の水分を補給した。こうしたコンポ
スト化処理を40日間実施した。得られた堆肥の炭素/
窒素比を測定したところ、実施例1のコンポスト化原料
(C/N比=7.9)からは、C/N比が6.7の堆肥
が得られ、以下同様に、実施例2の原料(C/N比=
8.5)からC/N比が7.1の堆肥、実施例3の原料
(C/N比=9.0)からC/N比が8.0の堆肥、実
施例4の原料(C/N比=9.5)からC/N比が8.
2の堆肥、実施例5の原料(C/N比=9.8)からC
/N比が8.5の堆肥、実施例6の原料(C/N比=1
0.0)からC/N比が9.0の堆肥、実施例7の原料
(C/N比=10.5)からC/N比が9.5の堆肥、
比較例1の原料(C/N比=11.0)からC/N比が
9.6の堆肥、及び比較例2の原料(C/N比=12.
5)からC/N比が10.2の堆肥が得られた。
【0020】得られた堆肥を、以下の農地還元試験によ
って評価した。即ち、前記実施例1〜7又は比較例1〜
2で調製した各堆肥5gを、それぞれ市販の園芸用黒ぼ
く土2kgに施用し、1週間静置した。次に、それらの
土壌を1/5000aワグネルポットに詰め、コマツナ
の種を20粒ずつ蒔いた。1週間後に間引きを行い、ポ
ット当たり5株として、更に40日間栽培してから収穫
した。得られた5株の全重量(地上部及び根部の合計)
を総計して生育量(g)とした。なお、コントロール試
験(比較例3)として、市販の園芸用黒ぼく土のみを使
用すること以外は前記と同様に操作した栽培も実施し
た。農地還元試験の結果を表1に示す。
【表1】 原料C/N比 堆肥C/N比 生育量(g) 実施例1 7.9 6.7 57.2 実施例2 8.5 7.1 61.3 実施例3 9.0 8.0 59.5 実施例4 9.5 8.2 62.1 実施例5 9.8 8.5 55.2 実施例6 10.0 9.0 33.5 実施例7 10.5 9.5 21.2 比較例1 11.0 9.6 17.7 比較例2 12.5 10.2 9.5比較例3 15.9 以上のように、炭素/窒素比が9.5以下の堆肥は、農
地還元試験で良好な成績を示した。また、原料段階での
炭素/窒素比を10.5以下に調整して堆肥化すること
により、農地還元試験で良好な成績を示す堆肥を製造す
ることができた。
【0021】
【実施例8〜13及び比較例4〜6】前記実施例1〜7
に記載の青果市場から排出された生ゴミ(C/N比=1
2.5)と、前記実施例1〜7に記載のレストラン系生
ゴミ(C/N比=7.9)とを混合し、炭素/窒素比が
9.5及び10.5の混合生ゴミをそれぞれ調製した。
その後、これらを大型のタテ型蒸気間接乾燥機を用い
て、一定の水分率になるまで乾燥させた。炭素/窒素比
が9.5の混合生ゴミからは、水分率20%、30%、
40%、50%、60%、及び70%の混合生ゴミをそ
れぞれ調製し、炭素/窒素比が10.5のものからは、
30%、60%、及び70%の混合生ゴミをそれぞれ調
製した。すなわち、炭素/窒素比が9.5で水分率が2
0%であるコンポスト化原料(比較例4)、炭素/窒素
比が9.5で水分率が30%であるコンポスト化原料
(実施例8)、炭素/窒素比が9.5で水分率が40%
であるコンポスト化原料(実施例9)、炭素/窒素比が
9.5で水分率が50%であるコンポスト化原料(実施
例10)、炭素/窒素比が9.5で水分率が60%であ
るコンポスト化原料(実施例11)、炭素/窒素比が
9.5で水分率が70%であるコンポスト化原料(比較
例5)、炭素/窒素比が10.5で水分率が30%であ
るコンポスト化原料(実施例12)、炭素/窒素比が1
0.5で水分率が60%であるコンポスト化原料(実施
例13)、及び炭素/窒素比が10.5で水分率が70
%であるコンポスト化原料(比較例6)をそれぞれ調製
した。
【0022】前記の各コンポスト化原料40リットル
を、実験用堆肥化装置(50リットル)に投入し、コン
ポスト化原料1kg当たりの空気吹き込み量を0.33
リットル/分とする条件で通気し、切り返しを1日に1
回ビニールシート上にあけることにより実施した。ま
た、発酵物の水分率は最初に設定した値に維持できるよ
うに必要に応じて気散した分の水分を補給した。こうし
てコンポスト化処理を40日間実施した。得られた堆肥
の炭素/窒素比を測定したところ、比較例4のコンポス
ト化原料(C/N比=9.5、水分率20%)からはC
/N比が9.5の堆肥が得られ、以下同様に、実施例8
のコンポスト化原料(C/N比=9.5、水分率30
%)からはC/N比が8.3の堆肥、実施例9のコンポ
スト化原料(C/N比=9.5、水分率40%)からは
C/N比が8.1の堆肥、実施例10のコンポスト化原
料(C/N比=9.5、水分率50%)からはC/N比
が8.2の堆肥、実施例11のコンポスト化原料(C/
N比=9.5、水分率60%)からはC/N比が8.7
の堆肥、比較例5のコンポスト化原料(C/N比=9.
5、水分率70%)からはC/N比が9.4の堆肥、実
施例12のコンポスト化原料(C/N比=10.5、水
分率30%)からはC/N比が9.4の堆肥、実施例1
3のコンポスト化原料(C/N比=10.5、水分率6
0%)からはC/N比が9.6の堆肥、及び比較例6の
コンポスト化原料(C/N比=10.5、水分率70
%)からはC/N比が10.4の堆肥が得られた。得ら
れた堆肥を、前記と同様の方法で農地還元試験によって
評価した。結果を表2に示す。
【表2】 原料C/N比 水分率(%) 堆肥C/N比 生育量(g) 比較例4 9.5 20 9.5 19.8 実施例8 9.5 30 8.3 61.2 実施例9 9.5 40 8.1 60.5 実施例10 9.5 50 8.2 62.5 実施例11 9.5 60 8.7 43.5 比較例5 9.5 70 9.4 18.6 実施例12 10.5 30 9.4 19.2 実施例13 10.5 60 9.6 17.8比較例6 10.5 70 10.4 9.7 以上のように、原料混合生ゴミの水分率が30〜60%
の場合において、その堆肥化物は、農地還元試験で良好
な成績を示した。
【0023】
【実施例14及び実施例15】前記実施例1〜7に記載
の青果市場から排出された生ゴミ(C/N比=12.
5)と、前記実施例1〜7に記載のレストラン系生ゴミ
(C/N比=7.9)とを混合し、炭素/窒素比が9.
5の混合生ゴミを調製した。その後、これらを大型のタ
テ型蒸気間接乾燥機を用いて、水分率が12%又は25
%になるまで強乾燥させた。その後、水分率が12%の
強乾燥混合生ゴミに水を添加し、水分率を35%に調製
し、コンポスト化原料(実施例14)とした。一方、水
分率が25%の強乾燥混合生ゴミに水を添加し、水分率
を40%に調製し、コンポスト化原料(実施例15)と
した。
【0024】前記の各コンポスト化原料40リットル
を、実験用堆肥化装置(50リットル)に投入し、コン
ポスト化原料1kg当たりの空気吹き込み量を0.33
リットル/分とする条件で通気し、切り返しを1日に1
回ビニールシート上にあけることにより実施した。ま
た、発酵物の水分率は最初に設定した値に維持できるよ
うに必要に応じて気散した分の水分を補給した。こうし
てコンポスト化処理を40日間実施した。得られた堆肥
の炭素/窒素比を測定したところ、実施例14のコンポ
スト化原料〔C/N比=9.5、強乾燥(水分率20
%)後、水添加により水分率35%に調整〕からはC/
N比が8.0の堆肥が得られ、実施例15のコンポスト
化原料〔C/N比=9.5、強乾燥(水分率25%)
後、水添加により水分率40%に調整〕からはC/N比
が8.1の堆肥が得られた。得られた堆肥を、前記と同
様の方法で農地還元試験によって評価した。結果を表3
及び表4に示す。
【表3】 原料C/N比 乾燥後水分率(%) 乾燥後水分率(%) 実施例14 9.5 12 35実施例15 9.5 25 40
【表4】 以上のように、強乾燥により水分率を12〜25%にま
で低下させた原料生ゴミでも、その後、適正水分率に調
整することにより堆肥化は順調に進行し、その堆肥化物
は、農地還元試験で良好な成績を示した。
【0025】
【発明の効果】本発明によれば、優れた施肥能を有する
堆肥を提供することができる。また、本発明方法によれ
ば、高効率で優れた施肥能を有する堆肥を製造すること
ができる。

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 コンポスト化処理完了後の堆肥における
    炭素(C)と窒素(N)との重量比(C/N)が9.5
    以下であることを特徴とする堆肥。
  2. 【請求項2】 炭素(C)と窒素(N)との重量比(C
    /N)が10.5以下であるコンポスト化原料を用い、
    水分率を30〜60%に維持してコンポスト化処理を実
    施することを特徴とする、請求項1に記載の堆肥の製造
    方法。
  3. 【請求項3】 乾燥により水分率を10〜30%に調整
    したコンポスト化原料を用いる、請求項2に記載の方
    法。
JP10588398A 1997-04-07 1998-04-01 低炭素/窒素比堆肥及びその製造方法 Pending JPH10338587A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10588398A JPH10338587A (ja) 1997-04-07 1998-04-01 低炭素/窒素比堆肥及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10381597 1997-04-07
JP9-103815 1997-04-07
JP10588398A JPH10338587A (ja) 1997-04-07 1998-04-01 低炭素/窒素比堆肥及びその製造方法

Publications (1)

Publication Number Publication Date
JPH10338587A true JPH10338587A (ja) 1998-12-22

Family

ID=26444406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10588398A Pending JPH10338587A (ja) 1997-04-07 1998-04-01 低炭素/窒素比堆肥及びその製造方法

Country Status (1)

Country Link
JP (1) JPH10338587A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215476A (ja) * 2009-03-18 2010-09-30 Menicon Co Ltd 高窒素含有堆肥の製造方法
CN103274775A (zh) * 2013-05-20 2013-09-04 邬金飞 一种毛木耳栽培料配伍及此栽培料的制作方法
CN103819233A (zh) * 2014-03-11 2014-05-28 天津师范大学 改性纳米碳联合草坪草及螯合剂阻隔富集堆肥重金属方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215476A (ja) * 2009-03-18 2010-09-30 Menicon Co Ltd 高窒素含有堆肥の製造方法
CN103274775A (zh) * 2013-05-20 2013-09-04 邬金飞 一种毛木耳栽培料配伍及此栽培料的制作方法
CN103819233A (zh) * 2014-03-11 2014-05-28 天津师范大学 改性纳米碳联合草坪草及螯合剂阻隔富集堆肥重金属方法
CN103819233B (zh) * 2014-03-11 2016-01-13 天津师范大学 改性纳米碳联合草坪草及螯合剂阻隔富集堆肥重金属方法

Similar Documents

Publication Publication Date Title
Sweeten Composting manure and sludge
CN106106372A (zh) 一种基于蚯蚓养殖的固废生物处理技术
JPWO2001068563A1 (ja) 有機肥料の製造方法と装置
JP2014506224A (ja) 野菜、果物及び園芸廃棄物を処理する方法
KR20120104507A (ko) 축산 분뇨를 이용한 악취 제거용 종균의 제조 및 퇴비화 방법
Marchaim et al. A suggested solution for slaughterhouse wastes: uses of the residual materials after anaerobic digestion
JPH0782069A (ja) 堆肥製造法
KR100248494B1 (ko) 시비효능이 우수한 퇴비 및 그 제조방법
JP4230788B2 (ja) 堆肥浸出液およびその製造方法、並びに植物成長促進資材
JP6901091B2 (ja) 発酵処理物の製造方法
JP2008050248A (ja) イネ科植物由来の有機発酵肥料及びその製造方法
JP2002143896A (ja) 有機系廃棄物並びに下水汚泥若しくは畜糞又は下水汚泥及び畜糞の処理方法
JPH10338587A (ja) 低炭素/窒素比堆肥及びその製造方法
JP2002068877A (ja) 短時間で出来る有機質肥料とその製造法
JPS5830274B2 (ja) 有機性廃棄物の新規堆肥化法
JP4463951B2 (ja) 発酵処理用の土壌菌担持水分調節材料及びその製造方法
JP4643203B2 (ja) 牛糞を発酵・分解・処理する微生物、及びこれを用いた牛糞の処理方法
JP2000327470A (ja) 菌床栽培キノコの栽培残さと有機質資材等を使った発酵肥料の製造方法と発酵後の肥料成分の計算方法
JPH08217579A (ja) 好気性発酵による肥料の製造方法
JPH07315972A (ja) コンポストの製造方法
JPS6138697A (ja) 酵母培養型醗酵による高水分含有廃棄物の処理方法
WO2022255448A1 (ja) 微生物製剤の製造方法、微生物製剤及び堆肥製造方法
Zaalouk et al. Engineering factor affecting organic compost production
JPH0222191A (ja) 堆肥及びその製造方法
JP2004299935A (ja) 有機質肥料、土壌改良材およびそれらの製造方法