JPH10223833A - Multi-chip semiconductor device chip for multi-chip semiconductor device and its formation - Google Patents
Multi-chip semiconductor device chip for multi-chip semiconductor device and its formationInfo
- Publication number
- JPH10223833A JPH10223833A JP30578497A JP30578497A JPH10223833A JP H10223833 A JPH10223833 A JP H10223833A JP 30578497 A JP30578497 A JP 30578497A JP 30578497 A JP30578497 A JP 30578497A JP H10223833 A JPH10223833 A JP H10223833A
- Authority
- JP
- Japan
- Prior art keywords
- chip
- hole
- insulating film
- semiconductor substrate
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/0557—Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/05571—Disposition the external layer being disposed in a recess of the surface
- H01L2224/05572—Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13005—Structure
- H01L2224/13009—Bump connector integrally formed with a via connection of the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/1302—Disposition
- H01L2224/13025—Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16135—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/16145—Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/17—Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
- H01L2224/1751—Function
- H01L2224/17515—Bump connectors having different functions
- H01L2224/17519—Bump connectors having different functions including bump connectors providing primarily thermal dissipation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06555—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
- H01L2225/06568—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices decreasing in size, e.g. pyramidical stack
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/1517—Multilayer substrate
- H01L2924/15192—Resurf arrangement of the internal vias
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1532—Connection portion the connection portion being formed on the die mounting surface of the substrate
- H01L2924/1533—Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
- H01L2924/15331—Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、複数のチップを用
いた半導体装置であるマルチチップ半導体装置、ならび
にマルチチップ半導体層用チップおよびその形成方法に
関する。The present invention relates to a multichip semiconductor device which is a semiconductor device using a plurality of chips, a chip for a multichip semiconductor layer, and a method for forming the same.
【0002】[0002]
【従来の技術】近年、コンピュ−タ−や通信機器の重要
部分には、多数のトランジスタや抵抗等を電気回路を達
成するようにむすびつけ、半導体基板上に集積化して形
成した大規模集積回路(チップ)が多用されている。こ
のため、機器全体の性能は、チップ単体の性能と大きく
結び付いている。2. Description of the Related Art In recent years, large-scale integrated circuits (ICs) formed by integrating a large number of transistors, resistors, and the like on an important part of a computer or a communication device so as to achieve an electric circuit, and integrating them on a semiconductor substrate. Chips) are frequently used. For this reason, the performance of the entire device is greatly linked to the performance of the chip alone.
【0003】一方、複数のチップを用いて、機器全体の
性能を図ったいわゆるマルチチップ半導体装置も提案さ
れている。図25〜図27に、従来のマルチチップ半導
体装置の断面図を示す。On the other hand, a so-called multi-chip semiconductor device using a plurality of chips to improve the performance of the entire device has been proposed. 25 to 27 show sectional views of a conventional multichip semiconductor device.
【0004】図25は、例えば、積層の配線基板81上
に複数のチップ82を平面配置するタイプのマルチチッ
プ半導体装置を示している。なお、図中、83は半田バ
ンプを示している。また、図26は、表面を向かい合わ
せ(Face to Face)にしてチップ同士を接
続するタイプのマルチチップ半導体装置を示している。
また、図27は、複数のチップ82を積層板84を用い
て積層配置するタイプのマルチチップ半導体装置を示し
ている。FIG. 25 shows, for example, a multi-chip semiconductor device of a type in which a plurality of chips 82 are arranged on a stacked wiring substrate 81 in a plane. In the drawing, reference numeral 83 denotes a solder bump. FIG. 26 illustrates a multichip semiconductor device in which chips are connected to each other with their surfaces facing each other (face to face).
FIG. 27 shows a multichip semiconductor device of a type in which a plurality of chips 82 are stacked and arranged using a stacked plate 84.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、これら
の従来のマルチチップ半導体装置には、以下のような問
題がある。However, these conventional multi-chip semiconductor devices have the following problems.
【0006】すなわち、図25の従来のマルチチップ半
導体装置は、複数のチップ82を平面配置するため、装
置の平面面積が大きいという問題がある。That is, the conventional multi-chip semiconductor device shown in FIG. 25 has a problem that the plane area of the device is large because a plurality of chips 82 are arranged on a plane.
【0007】また、図26の従来のマルチチップ半導体
装置は、複数のチップ82を積層するため、装置の平面
面積が大きくなるという問題はないが、積層枚数が2枚
に限定されるという問題がある。また、それぞれのチッ
プを電気的にテストすることが困難である。In the conventional multi-chip semiconductor device shown in FIG. 26, since a plurality of chips 82 are stacked, there is no problem that the planar area of the device becomes large, but there is a problem that the number of stacked devices is limited to two. is there. Also, it is difficult to electrically test each chip.
【0008】また、図27の従来のマルチチップ半導体
装置は、複数のチップ82を積層できるので、装置の平
面面積が大きくなる問題や、積層枚数が2枚に限定され
るという問題はないが、チップ間に積層板84を設ける
必要があるため、構造が複雑になったり、コストや厚さ
が増大したりする。In the conventional multi-chip semiconductor device shown in FIG. 27, since a plurality of chips 82 can be stacked, there is no problem that the planar area of the device becomes large or the number of stacked devices is limited to two. Since it is necessary to provide the laminated plate 84 between the chips, the structure becomes complicated and the cost and thickness increase.
【0009】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、装置の平面面積が小さ
く、構造が単純で、かつ厚さが薄いマルチチップ半導体
装置を提供することにある。また、本発明の他の目的
は、このようなマルチチップ半導体装置の実現を可能と
するマルチチップ半導体装置用チップおよびその形成方
法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a multi-chip semiconductor device having a small plane area, a simple structure, and a small thickness. It is in. Another object of the present invention is to provide a chip for a multi-chip semiconductor device and a method for forming the same, which can realize such a multi-chip semiconductor device.
【0010】[0010]
[構成]上記目的を達成するために、本発明に係るマル
チチップ半導体装置(請求項1)は、表面に素子が集積
形成された半導体基板と、この半導体基板表面上に形成
された層間絶縁膜とを有するチップを複数積層してなる
マルチチップ半導体装置において、少なくとも1つのチ
ップが、その半導体基板および層間絶縁膜を貫通する貫
通孔内に金属からなる接続プラグが形成された構造を有
し、かつこの接続プラグを有する少なくとも1つのチッ
プが、前記接続プラグを介して他のチップと電気的に接
続されていることを特徴とする。[Structure] In order to achieve the above object, a multichip semiconductor device according to the present invention (Claim 1) comprises a semiconductor substrate on which elements are integrated and formed, and an interlayer insulating film formed on the surface of the semiconductor substrate. A multi-chip semiconductor device formed by stacking a plurality of chips having a structure in which at least one chip has a structure in which a connection plug made of metal is formed in a through hole penetrating the semiconductor substrate and the interlayer insulating film; Further, at least one chip having the connection plug is electrically connected to another chip via the connection plug.
【0011】上記層間絶縁膜は、素子を覆う第1層目の
層間絶縁膜である。The interlayer insulating film is a first layer interlayer insulating film covering the element.
【0012】また、本発明に係る他のマルチチップ半導
体装置(請求項2)は、上記マルチチップ装置(請求項
1)において、前記接続プラグを有するチップが、該チ
ップの直上および直下のチップの少なくとも一方のチッ
プに対して、接続部材、または接続部材および実装部材
を介して、電気的に接続されていることを特徴とする。Further, in another multi-chip semiconductor device according to the present invention (claim 2), in the multi-chip device (claim 1), the chip having the connection plug is the same as the chip immediately above and below the chip. It is characterized by being electrically connected to at least one of the chips via a connection member or a connection member and a mounting member.
【0013】接続部材は例えば金属バンプであり、また
実装部材は例えば配線基板またはTABテープである。The connection member is, for example, a metal bump, and the mounting member is, for example, a wiring board or a TAB tape.
【0014】また、本発明に係る他のマルチチップ半導
体装置(請求項3)は、表面に素子が集積形成された半
導体基板と、この半導体基板表面上に形成された層間絶
縁膜と、この層間絶縁膜および前記半導体基板を貫通す
る貫通孔内に形成され、他のチップと電気的に接続する
ための金属からなる接続プラグとを備えていることを特
徴とする。According to another aspect of the present invention, there is provided a multi-chip semiconductor device comprising: a semiconductor substrate having elements formed on a surface thereof; an interlayer insulating film formed on the surface of the semiconductor substrate; A connection plug formed in a through hole penetrating the insulating film and the semiconductor substrate and made of metal for electrically connecting to another chip is provided.
【0015】また、本発明に係る他のマルチチップ半導
体装置(請求項4)は、上記マルチチップ半導体装置用
チップ(請求項3)において、前記接続プラグが、前記
貫通孔内に設けられた金属プラグと、この金属プラグと
前記貫通孔の側壁との間に設けられた絶縁膜とから構成
されていることを特徴とする。Further, in another multi-chip semiconductor device according to the present invention (claim 4), in the multi-chip semiconductor device chip (claim 3), the connection plug is formed of a metal provided in the through hole. It is characterized by comprising a plug and an insulating film provided between the metal plug and a side wall of the through hole.
【0016】また、本発明に係る他のマルチチップ半導
体装置用チップ(請求項5)は、上記マルチチップ半導
体装置用チップ(請求項3)において、前記接続プラグ
が、前記貫通孔内に設けられ、中空部を有する金属プラ
グと、この金属プラグと前記貫通孔の側壁との間に設け
られた絶縁膜と、前記中空部内に設けられ、前記半導体
基板との熱膨脹係数の差が、前記金属プラグよりも小さ
い低ストレス膜とから構成されていることを特徴とす
る。According to another aspect of the present invention, there is provided a chip for a multi-chip semiconductor device, wherein the connection plug is provided in the through-hole. A metal plug having a hollow portion, an insulating film provided between the metal plug and a side wall of the through hole, and a difference in thermal expansion coefficient between the metal plug and the semiconductor substrate provided in the hollow portion. And a smaller low stress film.
【0017】本発明に係るマルチチップ半導体装置用チ
ップ(請求項6)は、上記マルチチップ半導体装置用チ
ップ(請求項3)において、前記接続プラグが、前記貫
通孔の前記半導体基板の表面側の途中の深さまで設けれ
た金属プラグと、この金属プラグと前記貫通孔の側壁と
の間に設けられた絶縁膜と、前記金属プラグ上に設けら
れ、前記貫通孔を充填するキャップ膜とから構成されて
いることを特徴とする。In the chip for a multi-chip semiconductor device according to the present invention (claim 6), in the above-mentioned chip for a multi-chip semiconductor device (claim 3), the connection plug may be provided on a surface side of the semiconductor substrate of the through hole. A metal plug provided to an intermediate depth, an insulating film provided between the metal plug and a side wall of the through hole, and a cap film provided on the metal plug and filling the through hole. It is characterized by having been done.
【0018】また、本発明に係る他のマルチチップ半導
体装置用チップ(請求項7)は、上記マルチチップ半導
体装置用チップ(請求項3)において、前記接続プラグ
が、前記貫通孔の前記半導体基板の裏面側の途中の深さ
まで設けれた金属プラグと、この金属プラグと前記貫通
孔の側壁との間に設けられた絶縁膜とから構成され、前
記貫通孔の未充填部分に、他のチップと電気的に接続す
るための接続部材が設けられることを特徴とする。According to another aspect of the present invention, there is provided a multi-chip semiconductor device chip according to the present invention, wherein the connection plug is formed in the through-hole of the semiconductor substrate. A metal plug provided up to an intermediate depth on the back side of the substrate, and an insulating film provided between the metal plug and a side wall of the through hole. And a connection member for electrically connecting to the connection member is provided.
【0019】ここで、前記接続部材が設けられた側の前
記半導体基板の裏面は、前記接続部材の部分を除いて絶
縁膜で覆われていることが好ましい。Here, it is preferable that the back surface of the semiconductor substrate on the side where the connection member is provided is covered with an insulating film except for the portion of the connection member.
【0020】また、本発明に係るマルチチップ半導体装
置用チップの形成方法(請求項8)は、半導体基板表面
に素子を集積形成する工程と、前記半導体基板表面上に
層間絶縁膜を形成する工程と、この層間絶縁膜および前
記半導体基板をエッチングし、前記層間絶縁膜を貫通
し、かつ前記半導体基板を貫通しない孔を形成する工程
と、この孔の側壁および底部に、該孔を充填しない厚さ
の絶縁膜を形成する工程と、前記絶縁膜で被覆された前
記孔内に金属プラグとしての金属を充填する工程と、前
記半導体基板裏面から、前記半導体基板および前記絶縁
膜を後退させて、前記孔の底部の前記金属プラグを露出
させる工程とを有することを特徴とする。また、本発明
に係る他のマルチチップ半導体装置用チップの形成方法
(請求項9)は、半導体基板表面に素子を集積形成する
工程と、前記半導体基板表面上に層間絶縁膜を形成する
工程と、この層間絶縁膜および前記半導体基板をエッチ
ングし、前記層間絶縁膜を貫通し、かつ前記半導体基板
を貫通しない孔を形成する工程と、この孔の側壁および
底部に、該孔を充填しない厚さの第1の絶縁膜を形成す
る工程と、前記孔内を前記第1の絶縁膜よりもエッチン
グ速度の速い第2の絶縁膜で充填する工程と、前記層間
絶縁膜に接続孔を形成し、この接続孔を介して前記素子
と接続する配線層を形成する工程と、前記半導体基板裏
面から、前記半導体基板および前記第1の絶縁膜を後退
させて、前記孔の底部の前記第2の絶縁膜を露出させる
工程と、前記孔内の前記第2の絶縁膜を選択的にエッチ
ング除去した後、前記第1の絶縁膜で被覆された前記孔
内に金属プラグとしての金属を充填する工程とを有する
ことを特徴とする。According to a second aspect of the present invention, there is provided a method of forming a chip for a multi-chip semiconductor device, comprising the steps of: forming an element on a semiconductor substrate surface; and forming an interlayer insulating film on the semiconductor substrate surface. Forming a hole that penetrates the interlayer insulating film and does not penetrate the semiconductor substrate by etching the interlayer insulating film and the semiconductor substrate; and forming a hole that does not fill the hole on a side wall and a bottom of the hole. Forming an insulating film, and filling a metal as a metal plug into the hole covered with the insulating film, and receding the semiconductor substrate and the insulating film from the back surface of the semiconductor substrate, Exposing the metal plug at the bottom of the hole. According to another aspect of the present invention, there is provided a method of forming a chip for a multi-chip semiconductor device, comprising the steps of: forming an element on a semiconductor substrate surface; and forming an interlayer insulating film on the semiconductor substrate surface. Forming a hole that penetrates the interlayer insulating film and does not penetrate the semiconductor substrate by etching the interlayer insulating film and the semiconductor substrate, and a thickness that does not fill the hole on sidewalls and a bottom of the hole. Forming a first insulating film, filling the inside of the hole with a second insulating film having a higher etching rate than the first insulating film, forming a connection hole in the interlayer insulating film, Forming a wiring layer connected to the element through the connection hole; and retreating the semiconductor substrate and the first insulating film from the back surface of the semiconductor substrate to form a second insulating layer at the bottom of the hole. Step of exposing the film Selectively etching and removing the second insulating film in the hole, and then filling a metal as a metal plug into the hole covered with the first insulating film. I do.
【0021】また、本発明に係る他のマルチチップ半導
体装置用チップの形成方法(請求項10)は、半導体基
板表面に素子を集積形成する工程と、前記半導体基板表
面上に層間絶縁膜を形成する工程と、この層間絶縁膜お
よび前記半導体基板をエッチングし、前記層間絶縁膜を
貫通し、かつ前記半導体基板を貫通しない孔を形成する
工程と、この孔の側壁および底部に、該孔を充填しない
厚さの第1の絶縁膜を形成する工程と、前記第1の絶縁
膜で被覆された前記孔内に金属プラグとしての金属を充
填する工程と、前記孔内の底部の前記第1の絶縁膜が露
出するまで、前記半導体基板裏面から、前記半導体基板
を後退させる工程と、前記孔の底部の前記第1の絶縁膜
より上の、前記孔の側壁の前記第1の絶縁膜が露出する
まで、前記孔の底部側の前記半導体基板を選択的にエッ
チングする工程と、前記孔の底部側の前記半導体基板裏
面全面に第2の絶縁膜を形成する工程と、前記孔の底部
の前記金属プラグが露出するまで、前記第1および第2
の絶縁膜を後退させて、前記孔の底部側の前記半導体基
板裏面に、前記第2の絶縁膜を選択的に残置させる工程
とを有することを特徴とする。According to another aspect of the present invention, there is provided a method for forming a chip for a multi-chip semiconductor device, comprising the steps of: forming an element on a semiconductor substrate surface; and forming an interlayer insulating film on the semiconductor substrate surface. And etching the interlayer insulating film and the semiconductor substrate to form a hole that penetrates the interlayer insulating film and does not penetrate the semiconductor substrate, and fills the side wall and bottom of the hole with the hole. Forming a first insulating film having a thickness not to be changed, filling a hole as a metal plug into the hole covered with the first insulating film, and forming a first insulating film at a bottom of the hole. Retreating the semiconductor substrate from the back surface of the semiconductor substrate until the insulating film is exposed; and exposing the first insulating film on the side wall of the hole above the first insulating film at the bottom of the hole. Until the bottom of the hole Selectively etching the semiconductor substrate on the side, forming a second insulating film on the entire back surface of the semiconductor substrate on the bottom side of the hole, and exposing the metal plug at the bottom of the hole. The first and second
Retreating the insulating film, and selectively leaving the second insulating film on the back surface of the semiconductor substrate on the bottom side of the hole.
【0022】また、本発明に係る他のマルチチップ半導
体装置用チップの形成方法(請求項11)は、上記マル
チチップ半導体装置用チップの形成方法(請求項8〜1
0)において、前記孔の形成を、前記半導体基板上に形
成する配線のうち、最も融点の低い配線を形成する前に
行なうことを特徴とする。According to another aspect of the present invention, there is provided a method for forming a chip for a multi-chip semiconductor device (claim 11).
In 0), the formation of the hole is performed before forming the wiring having the lowest melting point among the wirings formed on the semiconductor substrate.
【0023】また、本発明に係る他のマルチチップ半導
体装置用チップの形成方法(請求項12)は、上記マル
チチップ半導体装置用チップの形成方法(請求項9〜1
0)において、前記半導体基板の後退を、該半導体基板
をウェハから切り出した後に行なうことを特徴とする。According to another aspect of the present invention, there is provided a method for forming a chip for a multi-chip semiconductor device (claim 12).
0), wherein the retreating of the semiconductor substrate is performed after the semiconductor substrate is cut out from a wafer.
【0024】[作用]本発明(請求項1,2)によれ
ば、複数のチップを積層しているので、複数のチップを
平面位置する従来のマルチチップ半導体装置とは異な
り、装置の平面面積が増大するという問題はない。According to the present invention (claims 1 and 2), since a plurality of chips are stacked, unlike a conventional multi-chip semiconductor device in which a plurality of chips are arranged in a plane, the plane area of the device is different from that of the prior art. There is no problem of the increase.
【0025】また、本発明によれば、半導体基板および
層間絶縁膜を貫通する貫通孔内に形成された金属からな
る接続プラグにより、チップ同士を接続しているので、
Face to Faceによりチップ同士を接続する
従来のマルチチップ半導体装置とは異なり、チップの積
層枚数が2枚に限定されるという問題はない。According to the present invention, the chips are connected to each other by the connection plug made of metal formed in the through hole penetrating the semiconductor substrate and the interlayer insulating film.
Unlike a conventional multi-chip semiconductor device in which chips are connected by face-to-face, there is no problem that the number of stacked chips is limited to two.
【0026】さらに、チップ同士の接続に積層板を用い
ていないので、積層板によりチップ同士を接続する従来
のマルチチップ半導体装置とは異なり、構造が複雑にな
ったり、厚みが増大するという問題はない。Further, since a laminated board is not used for connecting the chips, unlike the conventional multi-chip semiconductor device in which the chips are connected by the laminated board, the structure becomes complicated and the thickness is increased. Absent.
【0027】したがって、本発明によれば、装置の平面
面積が小さく、構造が単純で、かつ厚さが薄いマルチチ
ップ半導体装置を実現できるようになる。Therefore, according to the present invention, a multi-chip semiconductor device having a small planar area, a simple structure, and a small thickness can be realized.
【0028】また、本発明(請求項3〜7)のマルチチ
ップ半導体装置用チップは、半導体基板および層間絶縁
膜を貫通する貫通孔内に形成され、他のチップと電気的
に接続するための金属からなる接続プラグを有してい
る。Further, the multi-chip semiconductor device chip of the present invention (claims 3 to 7) is formed in a through-hole penetrating the semiconductor substrate and the interlayer insulating film, and is used for electrically connecting to another chip. It has a connection plug made of metal.
【0029】したがって、このようなマルチチップ半導
体装置用チップを用いたマルチチップ半導体装置は、本
発明(請求項1,2)と同じ作用により、装置の平面面
積が小さく、構造が単純で、かつ厚さが薄いものとな
る。Therefore, a multi-chip semiconductor device using such a chip for a multi-chip semiconductor device has a small planar area, a simple structure, and the same effect as the present invention (claims 1 and 2). The thickness becomes thin.
【0030】また、上記本発明(請求項1〜7)におい
て、接続プラグは、チップの放熱を促進するという効果
がある。また、チップ裏面から接続プラグに検査プロー
ブをあてることにより装置またはチップの検査を行なう
ことができる。In the present invention (claims 1 to 7), the connection plug has an effect of promoting heat radiation of the chip. Further, the device or the chip can be inspected by applying an inspection probe to the connection plug from the back surface of the chip.
【0031】また、本発明(請求項8)では、半導体基
板および層間絶縁膜を貫通する貫通孔を直接開孔するこ
とはしない。何故なら、半導体基板は一般に厚く、貫通
孔を直接開孔することは困難であるからである。Further, according to the present invention (claim 8), a through hole penetrating the semiconductor substrate and the interlayer insulating film is not directly formed. This is because semiconductor substrates are generally thick and it is difficult to directly open through holes.
【0032】すなわち、本発明では、まず、層間絶縁膜
は貫通するが半導体基板は貫通しない孔を形成し、次に
この孔内に絶縁膜を介して接続プラグとしての金属膜を
形成する。That is, in the present invention, first, a hole which penetrates the interlayer insulating film but does not penetrate the semiconductor substrate is formed, and then a metal film as a connection plug is formed in the hole via the insulating film.
【0033】このような工程の後、本発明では、孔が形
成された表面と反対側の表面から、半導体基板および絶
縁膜を後退させて、孔の底部側の金属膜を露出させるこ
とにより、貫通孔を形成する。したがって、本発明によ
れば、もとの半導体基板の厚くても、貫通孔を容易に形
成できるようになる。After such a step, according to the present invention, by retracting the semiconductor substrate and the insulating film from the surface opposite to the surface on which the holes are formed, and exposing the metal film on the bottom side of the holes, A through hole is formed. Therefore, according to the present invention, a through hole can be easily formed even if the original semiconductor substrate is thick.
【0034】また、本発明(請求項9)では、孔内を第
1の絶縁膜よりもエッチング速度の速い第2の絶縁膜で
充填した状態で、層間絶縁膜に接続孔を形成し、この接
続孔を介して素子と接続する配線層を形成し、その後第
2の絶縁膜を選択的にエッチング除去して孔内に金属膜
を形成する。このため、金属膜は、配線層を形成する際
の高温の工程の影響を受けずに済む。According to the present invention (claim 9), a connection hole is formed in the interlayer insulating film in a state where the inside of the hole is filled with the second insulating film having a higher etching rate than the first insulating film. A wiring layer connected to the element is formed through the connection hole, and then the second insulating film is selectively removed by etching to form a metal film in the hole. For this reason, the metal film does not need to be affected by a high-temperature process when forming the wiring layer.
【0035】これにより、金属膜の構成元素が半導体基
板に拡散することによるチップの特性劣化を防止するこ
とができる。また、金属膜の構成元素の拡散を防止する
ためにバリア膜などの拡散防止構造を形成する場合とは
異なり、プロセスが複雑化になることも無い。Thus, it is possible to prevent the characteristics of the chip from deteriorating due to the diffusion of the constituent elements of the metal film into the semiconductor substrate. Also, unlike the case where a diffusion prevention structure such as a barrier film is formed to prevent the diffusion of the constituent elements of the metal film, the process does not become complicated.
【0036】また、本発明(請求項10)によれば、貫
通孔を容易に形成できるとともに、孔の底部側の半導体
基板の露出面を第2の絶縁膜により容易に被覆できるよ
うになる。Further, according to the present invention (claim 10), the through hole can be easily formed, and the exposed surface of the semiconductor substrate on the bottom side of the hole can be easily covered with the second insulating film.
【0037】また、半導体基板の後退は、本発明(請求
項12)のように、半導体基板をウェハから切り出した
後に行なうことが好ましい。何故なら、ウェハは一般に
大きく、機械的強度が弱いので、研磨やエッチングによ
り均一に後退を行なうのが困難であるからである。It is preferable that the retreat of the semiconductor substrate is performed after the semiconductor substrate is cut out from the wafer as in the present invention (claim 12). This is because wafers are generally large and have low mechanical strength, making it difficult to uniformly retreat by polishing or etching.
【0038】[0038]
【発明の実施の形態】以下、図面を参照しながら本発明
の実施の形態(以下、実施形態という)を説明する。Embodiments of the present invention (hereinafter, referred to as embodiments) will be described below with reference to the drawings.
【0039】(第1の実施形態)図1は、本発明の第1
の実施形態に係るマルチチップ半導体装置の断面図であ
る。(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
FIG. 3 is a cross-sectional view of the multi-chip semiconductor device according to the embodiment.
【0040】このマルチチップ半導体装置は、3つのチ
ップ11 ,12 ,13 が積層された構成となっている。
各チップ11 ,12 ,13 は、それぞれ、大きく分け
て、表面に素子が集積形成されたシリコン基板2と、集
積形成された素子を所定の関係に接続するための多層配
線層3と、この多層配線層3の第1の層間絶縁膜および
シリコン基板1を貫通する貫通孔内に形成され、チップ
同士を電気的に接続するための接続プラグ(金属プラグ
4、絶縁膜5)とから構成されている。This multi-chip semiconductor device has a configuration in which three chips 1 1 , 1 2 and 13 are stacked.
Each chip 1 1, 1 2, 1 3, respectively, roughly, a silicon substrate 2 which elements are integrated on the surface, a multilayer wiring layer 3 for connecting the integrated forming elements in a predetermined relationship A connection plug (metal plug 4, insulating film 5) formed in a through hole penetrating through the first interlayer insulating film of the multilayer wiring layer 3 and the silicon substrate 1 to electrically connect the chips. It is configured.
【0041】多層配線層3は、素子を覆う第1の層間絶
縁膜と、この第1の層間絶縁膜に形成されたコンタクト
ホール(第1の接続孔)を介して素子に接続する第1の
配線層と、第1の層間絶縁膜上に形成され、第1の配線
層を覆う第2の層間絶縁膜と、この第2の層間絶縁膜に
形成されたヴィアホール(第2の接続孔)を介して第1
の配線層と接続する第2の配線層とを有する。なお、3
層以上の多層配線層であっても良い。The multilayer wiring layer 3 has a first interlayer insulating film covering the device and a first interlayer insulating film connected to the device via a contact hole (first connection hole) formed in the first interlayer insulating film. A wiring layer, a second interlayer insulating film formed on the first interlayer insulating film and covering the first wiring layer, and a via hole (second connection hole) formed in the second interlayer insulating film First through
And a second wiring layer connected to the wiring layer. In addition, 3
It may be a multilayer wiring layer having more than two layers.
【0042】金属プラグ4は素子形成領域の外側に形成
されている。また、金属プラグ4とシリコン基板1およ
び第1の層間絶縁膜との間、言い換えれば金属プラグ4
と貫通孔との間には絶縁膜5が設けられている。この絶
縁膜5と金属プラグ4とで接続プラグが構成されてい
る。The metal plug 4 is formed outside the element formation region. Also, between the metal plug 4 and the silicon substrate 1 and the first interlayer insulating film, in other words, the metal plug 4
An insulating film 5 is provided between the gate and the through hole. The insulating film 5 and the metal plug 4 form a connection plug.
【0043】また、各チップ11 ,12 ,13 の多層配
線層3には、それぞれ、パッド6が設けれている。ま
た、各チップ11 ,12 ,13 のパッド6とは反対側の
シリコン基板2の裏面のシリコン領域、言い換えれば接
続プラグ(金属プラグ4、絶縁膜5)以外の領域は絶縁
膜7で被覆されている。[0043] Further, each chip 1 1, 1 2, 1 3 of the wiring layer 3, respectively, the pad 6 is provided. Further, each chip 1 1, 1 2, 1 3 of the opposite rear surface of the silicon region of the silicon substrate 2 of the pad 6, in other words the connection plug (metal plugs 4, the insulating film 5) other than the region with the insulating film 7 Coated.
【0044】チップ11 の金属プラグ4は、半田バンプ
8を介して、チップ12 の多層配線層3に設けられたパ
ッド6に電気的に接続している。これにより、チップ1
1 はチップ12 と電気的に接続することになる。なお、
半田バンプ8以外のバンプを用いても良い。The chip 1 1 metal plug 4 via the solder bumps 8 are electrically connected to the pad 6 formed on the multilayer wiring layer 3 of the chip 1 2. Thereby, chip 1
1 will be electrically connected to the chip 1 2. In addition,
A bump other than the solder bump 8 may be used.
【0045】同様に、チップ12 の金属プラグ4は、半
田バンプ8を介して、チップ13 の多層配線層3に設け
られたパッド6に電気的に接続し、チップ12 はチップ
13と電気的に接続している。このようにしてチップ1
1 ,12 ,13 間は電気的に接続されることになる。[0045] Similarly, metal plug 4 of the chip 1 2 via the solder bumps 8, electrically connected to the pad 6 formed on the multilayer wiring layer 3 of the chip 1 3, chip 1 2 chip 1 3 Is electrically connected to Thus, chip 1
1, 1 2, 1 3 between will be electrically connected.
【0046】本実施形態によれば、チップ11 ,12 ,
13 を積層しているので、複数のチップを平面位置する
従来のマルチチップ半導体装置とは異なり、装置の平面
面積が増大するという問題はない。According to the present embodiment, the chips 1 1 , 1 2 ,
Since the stacking 1 3, unlike the conventional multi-chip semiconductor device which plane position a plurality of chips, there is no problem that the planar area of the device increases.
【0047】また、本実施形態によれば、シリコン基板
2および第1の層間絶縁膜を貫通する金属プラグ4によ
り、チップ同士を接続しているので、Face to
Faceによりチップ同士を接続する従来のマルチチッ
プ半導体装置とは異なり、チップの積層枚数が2枚に限
定されるという問題はない。According to the present embodiment, the chips are connected to each other by the metal plug 4 penetrating the silicon substrate 2 and the first interlayer insulating film.
Unlike a conventional multi-chip semiconductor device in which chips are connected by Face, there is no problem that the number of stacked chips is limited to two.
【0048】さらに、チップ同士の接続に積層板を用い
ていないので、積層板によりチップ同士を接続する従来
のマルチチップ半導体装置とは異なり、構造が複雑にな
ったり、厚みが増大するという問題はない。Further, since a laminated board is not used for connecting the chips, unlike the conventional multi-chip semiconductor device in which the chips are connected by the laminated board, the structure becomes complicated and the thickness is increased. Absent.
【0049】さらにまた、金属プラグ4には、放熱を促
進する効果がある。Further, the metal plug 4 has an effect of promoting heat radiation.
【0050】したがって、本実施形態によれば、装置の
平面面積が小さく、構造が単純で、厚さが薄く、かつ放
熱性に優れたマルチチップ半導体装置を実現できるよう
になる。Therefore, according to the present embodiment, a multi-chip semiconductor device having a small planar area, a simple structure, a small thickness, and excellent heat dissipation can be realized.
【0051】なお、実施形態では、チップ数が3の場合
について説明したが、本実施形態のチップ構造であれ
ば、4個以上のチップも同様にして接続できる。また、
金属プラグ4を有するチップの全てが必ずしも金属プラ
グ4を介して接続する必要はない。すなわち、放熱性の
改善の目的のみで金属プラグ4を形成したチップがあっ
ても良い。Although the embodiment has been described in connection with the case where the number of chips is three, four or more chips can be connected in the same manner with the chip structure of this embodiment. Also,
Not all the chips having the metal plugs 4 need to be connected via the metal plugs 4. That is, there may be a chip in which the metal plug 4 is formed only for the purpose of improving the heat radiation.
【0052】(第2の実施形態)図2は、本発明の第2
の実施形態に係るマルチチップ半導体装置の断面図であ
る。なお、図1のマルチチップ半導体装置と対応する部
分には図1と同一符号を付してあり、詳細な説明は省略
する。(Second Embodiment) FIG. 2 shows a second embodiment of the present invention.
FIG. 3 is a cross-sectional view of the multi-chip semiconductor device according to the embodiment. Parts corresponding to those of the multi-chip semiconductor device of FIG. 1 are denoted by the same reference numerals as those of FIG. 1, and detailed description is omitted.
【0053】本実施形態は、真中のチップ12 だけが接
続プラグ(金属プラグ4、絶縁膜5)を有する例であ
る。[0053] The present embodiment, only the middle of the chip 1 2 connection plug (metal plugs 4, the insulating film 5) is an example having a.
【0054】チップ1 の多層配線層3に設けられたパッ
ド6は、半田バンプ8を介して、チップ12 の多層配線
層3に設けられたパッド6に電気的に接続している。こ
れにより、チップ1 はチップ12 と電気的に接続するこ
とになる。また、チップ12の金属プラグ4は、半田バ
ンプ8を介して、チップ13 の多層配線層3に設けられ
たパッド6に電気的に接続し、チップ12 はチップ13
と電気的に接続している。このようにしてチップ11 ,
12 ,13 間は電気的に接続されることになる。[0054] pads provided on the wiring layer 3 of the chip 1 6 via the solder bumps 8 are electrically connected to the pad 6 formed on the multilayer wiring layer 3 of the chip 1 2. Thus, the chip 1 will be electrically connected to the chip 1 2. The metal plug 4 of the chip 1 2 via the solder bumps 8, electrically connected to the pad 6 formed on the multilayer wiring layer 3 of the chip 1 3, chip 1 2 chip 1 3
Is electrically connected to In this way, chips 1 1 ,
1 2, 1 3 between will be electrically connected.
【0055】本実施形態でも第1の実施形態と同様な効
果が得られる。ただし、真中のチップ12 だけしか接続
プラグ(金属プラグ4、絶縁膜5)を有していないの
で、4個以上のチップを積層することはできない。しか
し、接続プラグは1個で済むので、コスト的に有利であ
る。In this embodiment, the same effects as in the first embodiment can be obtained. However, only the middle only chip 1 2 connection plug (metal plugs 4, the insulating film 5) because it does not have, it is not possible to stack four or more chips. However, only one connection plug is required, which is advantageous in cost.
【0056】(第3の実施形態)図3は、本発明の第3
の実施形態に係るマルチチップ半導体装置の断面図であ
る。なお、図1のマルチチップ半導体装置と対応する部
分には図1と同一符号を付してあり、詳細な説明は省略
する。(Third Embodiment) FIG. 3 shows a third embodiment of the present invention.
FIG. 3 is a cross-sectional view of the multi-chip semiconductor device according to the embodiment. Parts corresponding to those of the multi-chip semiconductor device of FIG. 1 are denoted by the same reference numerals as those of FIG. 1, and detailed description is omitted.
【0057】本実施形態は、2つのチップ11 ,12 が
セラミック製の積層配線基板9を介して接続する例であ
る。This embodiment is an example in which two chips 1 1 and 1 2 are connected via a laminated wiring board 9 made of ceramic.
【0058】チップ1 の多層配線層3に設けられたパッ
ド6は、半田バンプ8を介して、積層配線基板9に設け
られたパッド6に電気的に接続している。このパッド6
に電気的に接続している積層配線基板9に設けられた他
のパッド6は、チップ12 の多層配線層3に設けられた
パッド6に電気的に接続している。これにより、チップ
1 はチップ12 と電気的に接続することになる。The pads 6 provided on the multilayer wiring layer 3 of the chip 1 are electrically connected to the pads 6 provided on the laminated wiring board 9 via the solder bumps 8. This pad 6
Other pads 6 provided on the multilayer wiring board 9 are electrically connected to is electrically connected to the pad 6 formed on the multilayer wiring layer 3 of the chip 1 2. This allows the chip
1 will be electrically connected to the chip 1 2.
【0059】本実施形態でも第1の実施形態と同様な効
果が得られる。さらに、本実施形態によれば、チップ1
2 の多層配線層3に設けられたパッド6に検査プローブ
をあてて装置の検査を行なうことができる。In this embodiment, the same effects as in the first embodiment can be obtained. Further, according to the present embodiment, the chip 1
The device can be inspected by applying an inspection probe to the pad 6 provided on the second multilayer wiring layer 3.
【0060】これに対して、図2に示すように、金属プ
ラグ4を有するチップ12 がチップ間にある構成だと、
検査プローブをあてることができないので、このような
検査は行なうことができない。[0060] In contrast, as shown in FIG. 2, the chip 1 2 having a metal plug 4 that's configured in between the chips,
Such an inspection cannot be performed because the inspection probe cannot be applied.
【0061】(第4の実施形態)図4、図5は、本発明
の第4の実施形態に係るマルチチップ半導体装置用チッ
プの形成方法を示す工程断面図である。(Fourth Embodiment) FIGS. 4 and 5 are process sectional views showing a method for forming a chip for a multichip semiconductor device according to a fourth embodiment of the present invention.
【0062】まず、図4(a)に示すように、シリコン
基板10を用意する。このシリコン基板10は素子形成
後のものであり、その表面は第1の層間絶縁膜11で覆
われている。この第1の層間絶縁膜11の材料には、窒
化シリコンのようにSiO2とエッチング選択比が取れ
るものが選ばれている。First, as shown in FIG. 4A, a silicon substrate 10 is prepared. The silicon substrate 10 has been formed after the device has been formed, and its surface is covered with a first interlayer insulating film 11. As a material of the first interlayer insulating film 11, a material having an etching selectivity with respect to SiO 2 such as silicon nitride is selected.
【0063】次に図4(b)に示すように、SiO2 か
らなる厚さ1μmのマスクパターン12を第1の層間絶
縁膜11上に形成した後、マスクパターン12をマスク
にして、エッチングガスがF系ガスのRIE法にて、第
1の層間絶縁膜11およびシリコン基板10をエッチン
グすることにより、第1の層間絶縁膜11を貫通し、か
つシリコン基板10を貫通しない孔13を形成する。こ
の後、孔13の形成の際に生じたシリコン基板10の欠
陥を回復するためのアニールを行なうことが好ましい。Next, as shown in FIG. 4B, after a mask pattern 12 made of SiO 2 and having a thickness of 1 μm is formed on the first interlayer insulating film 11, an etching gas is formed using the mask pattern 12 as a mask. Etches the first interlayer insulating film 11 and the silicon substrate 10 by the RIE method using an F-based gas to form a hole 13 that penetrates the first interlayer insulating film 11 but does not penetrate the silicon substrate 10. . Thereafter, it is preferable to perform annealing for recovering a defect of the silicon substrate 10 generated at the time of forming the hole 13.
【0064】シリコン基板10における孔の深さは10
0μmである。これに第1の層間絶縁膜11の厚さを加
えたものが孔13の全体の深さとなる。孔13は最終的
には貫通孔となる。The depth of the hole in the silicon substrate 10 is 10
0 μm. The total depth of the holes 13 is obtained by adding the thickness of the first interlayer insulating film 11 to this. The hole 13 eventually becomes a through hole.
【0065】なお、シリコン基板10をRIE法にてエ
ッチングして孔を形成し、次に第1の層間絶縁膜11を
形成し、次に第1の層間絶縁膜11、または第1の層間
絶縁膜11およびシリコン基板10をRIE法にてエッ
チングして、孔13を形成することも可能である。The silicon substrate 10 is etched by RIE to form holes, then a first interlayer insulating film 11 is formed, and then the first interlayer insulating film 11 or the first interlayer insulating film 11 is formed. The hole 13 can be formed by etching the film 11 and the silicon substrate 10 by RIE.
【0066】この場合、最初のエッチングの際に用いる
マスクパターンとしては、SiO2やAlやAl2 O3
などの材料からなるものが使用できる。In this case, as a mask pattern used at the time of the first etching, SiO 2 , Al or Al 2 O 3
Materials made of such materials can be used.
【0067】また、孔13(貫通孔)を形成する加工技
術はRIEに限定されるものではなく、光エッチング、
ウエットエッチング、超音波加工、放電加工を用いるこ
ともできる。さらに、上記加工技術を適宜組み合わせて
も良い。なお、RIEまたは光エッチングと、ウエット
エッチングとを組み合わせた方法については後で説明す
る。Further, the processing technique for forming the holes 13 (through holes) is not limited to RIE.
Wet etching, ultrasonic machining, and electric discharge machining can also be used. Further, the above processing techniques may be appropriately combined. A method in which RIE or optical etching is combined with wet etching will be described later.
【0068】次に図4(c)に示すように、全面に厚さ
100nmのSiO2 膜、厚さ100nmのSi3 N4
膜をLPCVD法を用いて順次堆積して、SiO2 /S
i3N4 の積層絶縁膜14(第1の絶縁膜)を形成す
る。なお、積層絶縁膜14の代わりに、単層の絶縁膜を
用いても良い。Next, as shown in FIG. 4C, a 100-nm-thick SiO 2 film and a 100-nm-thick Si 3 N 4
Films are sequentially deposited by using the LPCVD method, and SiO 2 / S
An i 3 N 4 laminated insulating film 14 (first insulating film) is formed. Note that a single-layer insulating film may be used instead of the stacked insulating film 14.
【0069】次に図4(d)に示すように、金属プラグ
となる金属膜15を孔13から溢れる厚さに全面に形成
して、孔13を金属膜15で埋め込む。Next, as shown in FIG. 4D, a metal film 15 serving as a metal plug is formed on the entire surface so as to overflow the hole 13, and the hole 13 is filled with the metal film 15.
【0070】ここで、金属膜15としては、例えばW
膜、Mo膜、Ni膜、Ti膜、これらの金属シリサイド
膜があげられる。また、金属膜15の形成方法として
は、例えばCVD法、スパッタ法またはメッキ法があげ
られる。Here, as the metal film 15, for example, W
Films, Mo films, Ni films, Ti films, and metal silicide films thereof. Examples of the method for forming the metal film 15 include a CVD method, a sputtering method, and a plating method.
【0071】次に図5(e)に示すように、CMP法や
エッチバック法等の方法を用いて、第1の層間絶縁膜1
1の表面が露出するまで、金属膜15、積層絶縁膜14
を後退させる。Next, as shown in FIG. 5E, the first interlayer insulating film 1 is formed by using a method such as a CMP method or an etch-back method.
1 until the surface of the metal film 15 is exposed.
Retreat.
【0072】この結果、孔13に金属膜(金属プラグ)
15が埋め込まれた構造が形成される。このような構造
は他の形成方法でも形成できる。その形成方法は後で説
明する(図14、図15)。As a result, a metal film (metal plug) is formed in the hole 13.
15 is formed. Such a structure can be formed by other forming methods. The formation method will be described later (FIGS. 14 and 15).
【0073】次に図5(f)に示すように、シリコン基
板10上に第1の層間絶縁膜11とともに多層配線層を
構成する多層配線構造16を形成する。多層配線構造1
6は金属配線(配線層)、層間絶縁膜、プラグなどから
構成される。この後、多層配線構造16の表面に溝を形
成した後、この溝にパッド17を形成する。Next, as shown in FIG. 5F, a multilayer wiring structure 16 constituting a multilayer wiring layer is formed on the silicon substrate 10 together with the first interlayer insulating film 11. Multilayer wiring structure 1
Reference numeral 6 includes a metal wiring (wiring layer), an interlayer insulating film, a plug and the like. Thereafter, a groove is formed on the surface of the multilayer wiring structure 16, and a pad 17 is formed in the groove.
【0074】図6、図7に、それぞれ、孔13の領域の
多層配線層、素子領域の多層配線層の具体的な構造の一
例を示す。FIGS. 6 and 7 show examples of specific structures of the multilayer wiring layer in the region of the hole 13 and the multilayer wiring layer in the element region, respectively.
【0075】素子領域にはMOSトランジスタが形成さ
れている。また、図において、11aは第2の層間絶縁
膜、11bは第3の層間絶縁膜、11cは第4の層間絶
縁膜、11nはn番目の層間絶縁膜、19aおよび20
aは第1の金属配線、19bおよび20bは第2の金属
配線、20cは第3の金属配線を示している。In the element region, a MOS transistor is formed. In the figure, 11a is a second interlayer insulating film, 11b is a third interlayer insulating film, 11c is a fourth interlayer insulating film, 11n is an nth interlayer insulating film, 19a and 20a.
a indicates a first metal wiring, 19b and 20b indicate second metal wirings, and 20c indicates a third metal wiring.
【0076】次に図5(g)に示すように、孔13の底
部の絶縁膜14が露出するまで、孔13が形成された表
面と反対側のシリコン基板裏面から、シリコン基板10
を後退させる。Next, as shown in FIG. 5G, the silicon substrate 10 is removed from the back surface of the silicon substrate opposite to the surface where the holes 13 are formed until the insulating film 14 at the bottom of the holes 13 is exposed.
Retreat.
【0077】ここで、シリコン基板10の後退(薄化)
は、例えば、CMP、化学研磨、機械研磨、ウエットエ
ッチング、プラズマエッチングまたはガスエッチングの
加工技術を用いた方法、またはこれら加工技術を組み合
わせた方法により行なう。これらの中ではCMPが最も
代表的な方法であり、また好ましい。Here, the silicon substrate 10 is set back (thinned).
Is performed by, for example, a method using a processing technique of CMP, chemical polishing, mechanical polishing, wet etching, plasma etching, or gas etching, or a method combining these processing techniques. Of these, CMP is the most representative method and is preferred.
【0078】この図5(g)の工程は、シリコン基板1
0と絶縁膜14の間で選択比が取れる条件で行なうこと
が好ましい。このような条件で行なえば、絶縁膜14の
ところで自動的に同工程を終了することが可能となる。In the step of FIG.
It is preferable to perform the process under the condition that a selectivity can be obtained between 0 and the insulating film 14. Under such conditions, the same step can be automatically completed at the insulating film 14.
【0079】次に図5(h)に示すように、孔13の底
部の絶縁膜14より上の、孔13の側壁の絶縁膜14が
露出するまで、孔13の底部側のシリコン基板10の裏
面を選択的にエッチングする。このエッチングには、例
えば、CDE、RIE等のドライエッチングまたはウエ
ットエッチングを用いる。なお、エッチングの代りにC
MPを用いても良い。Next, as shown in FIG. 5H, the silicon substrate 10 on the bottom side of the hole 13 is exposed until the insulating film 14 on the side wall of the hole 13 is exposed above the insulating film 14 on the bottom of the hole 13. The back surface is selectively etched. For this etching, for example, dry etching such as CDE or RIE or wet etching is used. Note that instead of etching, C
MP may be used.
【0080】この後、上記エッチングまたはCMPによ
り生じたダメージ層を例えばウエットエッチングにより
除去する。なお、この除去工程は、ダメージ層が生じな
い場合には不要である。ダメージ層を除去する理由は、
ダメージ層は次のSiO2 膜18の形成工程に影響を与
えるからである。Thereafter, the damaged layer caused by the etching or the CMP is removed by, for example, wet etching. Note that this removal step is unnecessary when no damage layer is formed. The reason for removing the damaged layer is
This is because the damaged layer affects the next step of forming the SiO 2 film 18.
【0081】次に同図(h)に示すように、プラズマC
VD法を用いて、孔13の底部側ののシリコン基板10
の裏面全面にSiO2 膜18(第2の絶縁膜)を形成す
る。なお、低温プロセスが要求される場合には、SiO
2 膜18の代わりに、SOG膜等の塗布膜を用いると良
い。また、シリコン基板10が受ける応力を小さくした
い場合には、SiO2 膜18の代わりに、ポリイミド膜
等の有機膜を用いると良い。Next, as shown in FIG.
The silicon substrate 10 on the bottom side of the hole 13 is formed by using the VD method.
To the entire back surface forming a SiO 2 film 18 (second insulating film). When a low-temperature process is required, SiO 2
A coating film such as an SOG film may be used instead of the two films 18. When it is desired to reduce the stress applied to the silicon substrate 10, an organic film such as a polyimide film may be used instead of the SiO 2 film 18.
【0082】次に図5(i)に示すように、金属プラグ
15を露出するまで、CMP法を用いてSiO2 膜1
8、積層絶縁膜14を研磨する。Next, as shown in FIG. 5 (i), the SiO 2 film 1 is
8. The laminated insulating film 14 is polished.
【0083】この結果、貫通孔(孔13)内に絶縁膜1
4と金属プラグ15からなる接続プラグが埋め込まれ、
かつシリコン基板10の裏面のシリコン領域がSiO2
膜18で被覆された構造が完成する。As a result, the insulating film 1 is formed in the through hole (hole 13).
A connection plug consisting of 4 and a metal plug 15 is embedded,
The silicon region on the back surface of the silicon substrate 10 is made of SiO 2
The structure covered with the film 18 is completed.
【0084】以上述べたように、本実施形態では、シリ
コン基板10の表面に該シリコン基板10を貫通しない
孔13を形成した後、裏面からシリコン基板10等を研
磨することにより、貫通孔(孔13)内が接続プラグ
(絶縁膜14、金属プラグ15)で埋め込まれた構造を
形成している。As described above, in the present embodiment, after the hole 13 that does not penetrate the silicon substrate 10 is formed on the surface of the silicon substrate 10, the silicon substrate 10 and the like are polished from the back surface to form the through hole (hole). 13) forms a structure in which the inside is filled with connection plugs (insulating film 14, metal plug 15).
【0085】したがって、本実施形態によれば、もとの
シリコン基板1が厚くても(通常は厚い)、深い貫通孔
を形成する必要がないので、貫通孔(孔13)が接続プ
ラグ(絶縁膜14、金属プラグ15)で埋め込まれた構
造を容易に形成できるようになる。Therefore, according to the present embodiment, even if the original silicon substrate 1 is thick (usually thick), it is not necessary to form a deep through-hole, so that the through-hole (hole 13) is connected to the connection plug (insulating). The structure embedded with the film 14 and the metal plug 15) can be easily formed.
【0086】また、本実施形態の方法は、厚いシリコン
基板の裏面からエッチングして深い貫通孔を形成する方
法の場合とは異なり、表/裏のパターンの位置合わせが
必要なフォトリソグラフィが不要となるので、接続プラ
グの形成プロセスは簡単で工程数も少なくて済む。The method of this embodiment is different from the method of forming a deep through-hole by etching from the back surface of a thick silicon substrate, and eliminates the need for photolithography which requires alignment of the front / back pattern. Therefore, the process of forming the connection plug is simple and the number of steps is small.
【0087】なお、裏面のシリコン領域をSiO2 膜1
8で覆う必要がない場合には、図5(g)の工程で、金
属プラグ15が露出するまで、シリコン基板10および
積層絶縁膜14を研磨することで、貫通孔(孔13)が
接続プラグ(絶縁膜14、金属プラグ15)で埋め込ま
れた構造が完成する。[0087] Incidentally, SiO 2 film 1 a back surface of the silicon region
If the metal plug 15 does not need to be covered, the silicon substrate 10 and the laminated insulating film 14 are polished until the metal plug 15 is exposed in the step of FIG. The structure buried with (the insulating film 14 and the metal plug 15) is completed.
【0088】また、シリコン基板10の研磨(後退)
は、シリコン基板10をウェハから切り出した後に行な
うことが好ましい。何故なら、ウェハは一般に大きく、
機械的強度が弱いので、均一に研磨(後退)を行なうの
が困難であるからである。Polishing (retreating) of the silicon substrate 10
Is preferably performed after cutting the silicon substrate 10 from the wafer. Because wafers are generally large,
This is because it is difficult to uniformly polish (retreat) since the mechanical strength is low.
【0089】また、金属配線の形成前に孔13を形成
し、その内部に金属膜を埋め込んで金属プラグ15を形
成しているので、金属配線は金属プラグ15を形成する
際の熱工程の影響を受けずに済む。さらに、金属配線は
孔13をRIEにより形成した後に行なう欠陥回復のた
めのアニールの影響も受けずに済む。Further, since the hole 13 is formed before the formation of the metal wiring, and the metal film is buried therein to form the metal plug 15, the metal wiring is affected by the heat process when the metal plug 15 is formed. You don't have to. Furthermore, the metal wiring is not affected by annealing for defect recovery performed after the hole 13 is formed by RIE.
【0090】これにより、例えば金属配線としてAl配
線(Alの融点は660℃)を用いた場合に、金属プラ
グ15を抵抗の低いAu等の導電ペースト(焼結温度は
600℃程度)で形成することが可能となる。Thus, for example, when an Al wiring (the melting point of Al is 660 ° C.) is used as the metal wiring, the metal plug 15 is formed of a conductive paste such as Au having a low resistance (sintering temperature is about 600 ° C.). It becomes possible.
【0091】また、素子形成後に金属プラグ15を形成
しているので、金属プラグ15の構成金属の拡散による
素子特性の劣化を防止できる。Further, since the metal plug 15 is formed after the element is formed, deterioration of the element characteristics due to diffusion of the constituent metal of the metal plug 15 can be prevented.
【0092】逆に、金属プラグ15を形成した後に素子
を形成すると、素子を形成するために必要な高温の熱工
程で、金属プラグ15の構成金属が素子領域にまで拡散
し、素子特性が劣化するという問題が生じる。Conversely, when an element is formed after the metal plug 15 is formed, the constituent metal of the metal plug 15 diffuses into the element region in a high-temperature heat step required for forming the element, and the element characteristics deteriorate. Problem arises.
【0093】図8に、種々の構造の接続プラグの断面図
を示す。これは図5(f)の工程に相当する断面図であ
る。なお、図において、19は金属配線を示している。FIG. 8 shows sectional views of connection plugs having various structures. This is a cross-sectional view corresponding to the step of FIG. In the figure, reference numeral 19 denotes a metal wiring.
【0094】図8(a)は、本実施形態の接続プラグを
示している。FIG. 8A shows a connection plug according to the present embodiment.
【0095】図8(b)は、低ストレス膜18を有する
接続プラグを示している。FIG. 8B shows a connection plug having the low stress film 18.
【0096】すなわち、この接続プラグでは、貫通孔内
に未充填部分ができるように金属プラグ15が形成さ
れ、そして未充填部分に半導体基板10aとの熱膨脹係
数の差が金属プラグ15よりも小さい低ストレス膜18
が形成され、貫通孔が充填されている。That is, in this connection plug, the metal plug 15 is formed so that an unfilled portion is formed in the through hole, and the difference in thermal expansion coefficient between the unfilled portion and the semiconductor substrate 10a is smaller than that of the metal plug 15. Stress film 18
Are formed, and the through holes are filled.
【0097】低ストレス膜18は、絶縁膜、半導体膜、
金属膜のいずれでも良い。具体的には、導電ペースト
膜、FOX膜、SOG膜、HDP(High Density Plasm
a )−CVD法で形成したSiO2 膜などがあげられ
る。The low stress film 18 is an insulating film, a semiconductor film,
Any of a metal film may be used. Specifically, conductive paste films, FOX films, SOG films, HDP (High Density Plasm
a) An SiO 2 film formed by a CVD method.
【0098】このような接続プラグを用いることによ
り、接続プラグの形成部分に大きなストレスがかかり、
シリコン基板10中に欠陥が発生することによる素子特
性の劣化を防止することができる。By using such a connection plug, a large stress is applied to a portion where the connection plug is formed.
Deterioration of element characteristics due to the occurrence of defects in the silicon substrate 10 can be prevented.
【0099】図8(c)は、キャップ金属膜45を有す
る接続プラグを示している。FIG. 8C shows a connection plug having a cap metal film 45.
【0100】すなわち、金属プラグ15は、貫通孔の途
中の深さまでしか形成されておらず、この金属プラグ1
5の上面には、貫通孔を充填するキャップ金属膜45が
形成されている。また、図8(d)は、キャップ金属膜
45の代わりに、キャップ絶縁膜46を用いた接続プラ
グを示している。That is, the metal plug 15 is formed only up to a certain depth in the through hole.
On the upper surface of 5, a cap metal film 45 filling the through hole is formed. FIG. 8D shows a connection plug using a cap insulating film 46 instead of the cap metal film 45.
【0101】このようなキャップ金属膜45、キャップ
絶縁膜46により、金属プラグ15の表面を平坦にで
き、これにより金属プラグ15上に微細な金属配線19
を容易に形成することができるようになる。With the cap metal film 45 and the cap insulating film 46, the surface of the metal plug 15 can be flattened.
Can be easily formed.
【0102】また、低温で形成できるキャップ絶縁膜4
6を用いることにより、後工程で金属プラグ15の表面
が酸化されるなどの不都合を防止することができる。The cap insulating film 4 which can be formed at a low temperature
By using 6, it is possible to prevent inconvenience such as oxidation of the surface of the metal plug 15 in a later step.
【0103】図9は、孔13の他の形成方法を示す工程
断面図である。これは、RIEまたは光エッチングと、
ウエットエッチングとを組み合わせた形成方法である。FIG. 9 is a process sectional view showing another method of forming the hole 13. In FIG. This is RIE or photo etching,
This is a formation method combining wet etching.
【0104】まず、図9(a)に示すように、主面が
{100}のシリコン基板10上に第1の層間絶縁膜1
1を形成する。次に同図(a)に示すように、第1の層
間絶縁膜11上にマスクパターン12を形成した後、こ
のマスクパターン12をマスクにして第1の層間絶縁膜
11およびシリコン基板10をエッチングして、断面形
状が長方形の孔131 を形成する。First, as shown in FIG. 9A, a first interlayer insulating film 1 is formed on a silicon substrate 10 having a main surface of {100}.
Form one. Next, as shown in FIG. 1A, after a mask pattern 12 is formed on the first interlayer insulating film 11, the first interlayer insulating film 11 and the silicon substrate 10 are etched using the mask pattern 12 as a mask. and, the cross-sectional shape to form the hole 13 1 of the rectangle.
【0105】ここで、エッチングとしては、RIE、ま
たは光エッチング(光化学エッチング、光溶発(光アブ
レーション)エッチング)を用いる。特に光エッチング
は、高速エッチング、低ダメージという利点を有するの
で、深い孔131 を形成するのに適している。光化学エ
ッチングの場合には、例えば、エッチングガスとしてC
l2 ガス、励起光として紫外線を用いる。Here, RIE or photoetching (photochemical etching, photoablation (photoablation) etching) is used as the etching. Particularly light etching is fast etching, so has the advantage of low damage, it is suitable for forming a deep hole 13 1. In the case of photochemical etching, for example, C is used as an etching gas.
L 2 gas and ultraviolet light are used as excitation light.
【0106】次に図9(b)に示すように、マスクパタ
ーン12をマスクにしてシリコン基板10をウエットエ
ッチングして、{111}面を露出させる。この結果、
断面形状が三角形の孔132 が形成される。エッチング
液としては、例えば、温度が60〜90℃のKOH溶液
を用いる。Next, as shown in FIG. 9B, the silicon substrate 10 is wet-etched using the mask pattern 12 as a mask to expose the {111} plane. As a result,
Sectional shape hole 13 2 of the triangle is formed. As an etching solution, for example, a KOH solution having a temperature of 60 to 90 ° C. is used.
【0107】次に同図(b)に示すように、孔132 内
に、例えば、Ni、Ti、Zr、Hf、V等の金属21
を配置する。具体的には、金属21を孔132 の底の部
分に配置する。[0107] Then, as shown in FIG. (B), the holes 13 2, for example, Ni, Ti, Zr, Hf, metals V, etc. 21
Place. Specifically, placing the metal 21 in the bottom portion of the hole 13 2.
【0108】次に図9(c)に示すように、熱処理によ
り、金属21とシリコン基板10とを反応させて、孔1
32 の下部のシリコン基板10に金属シリサイド膜22
を形成する。Next, as shown in FIG. 9C, the metal 21 and the silicon substrate 10 react with each other by heat treatment,
3 2 metal in the silicon substrate 10 of the lower silicide layer 22
To form
【0109】次に図9(d)に示すように、金属シリサ
イド膜22を選択的にエッチング除去して、より深い孔
133 を形成する。最後に、絶縁膜形成および金属埋め
込みを行なった後、基板裏面を研磨することにより、深
い貫通孔が得られる。[0109] Next, as shown in FIG. 9 (d), the metal silicide film 22 is selectively etched away to form a deeper hole 13 3. Finally, after forming the insulating film and embedding the metal, the back surface of the substrate is polished to obtain a deep through-hole.
【0110】このように孔を段階的に深くすることによ
り、深い孔を容易に形成できるようになり、これにより
貫通孔を容易に形成できるようになる。By gradually increasing the depth of the hole as described above, it is possible to easily form a deep hole, thereby easily forming a through hole.
【0111】図10に、金属プラグの他の形成方法を示
す。FIG. 10 shows another method of forming a metal plug.
【0112】図10(a)は、全面に導電ペースト23
を塗布した後、熱処理により導電ペースト23を流動化
させて、孔内に導電ペースト23を埋め込むという方法
を示している。孔外の余剰な導電ペースト23は、例え
ばCMP法を用いて除去する。FIG. 10A shows that the conductive paste 23 is formed on the entire surface.
Is applied, the conductive paste 23 is fluidized by heat treatment, and the conductive paste 23 is embedded in the holes. Excess conductive paste 23 outside the holes is removed by, for example, a CMP method.
【0113】図10(b)は、全面に金属微粒子24を
堆積して、孔内を微粒子24で埋め込んだ後、孔外の余
剰な金属微粒子24をCMP法等を用いて除去するとい
う方法を示している。FIG. 10B shows a method of depositing metal fine particles 24 on the entire surface, filling the inside of the holes with the fine particles 24, and then removing excess metal fine particles 24 outside the holes by using a CMP method or the like. Is shown.
【0114】なお、金属微粒子29の代わりに、金属粒
が分散された溶剤(懸濁液)を用いても良い。Note that, instead of the metal fine particles 29, a solvent (suspension) in which metal particles are dispersed may be used.
【0115】図10(c)は、全面にシリコン膜25を
堆積し、次にシリコン膜25上にTi膜等の高融点金属
膜(不図示)を堆積した後、熱処理により高融点金属膜
とシリコン膜25とを反応させて、金属シリサイド膜2
6を形成するという方法を示している。孔外の余剰な金
属シリサイド膜26は、例えばCMP法等を用いて除去
する。FIG. 10C shows that a silicon film 25 is deposited on the entire surface, and then a high-melting metal film (not shown) such as a Ti film is deposited on the silicon film 25, and then a high-melting metal film is formed by heat treatment. By reacting with the silicon film 25, the metal silicide film 2
6 is shown. Excess metal silicide film 26 outside the hole is removed by using, for example, a CMP method.
【0116】シリコン膜は絶縁膜上にコンフォーマルに
堆積する。また、シリコン膜と金属膜の密着性は高い。
したがって、図10(c)の方法の場合、孔が深くて
も、孔内の積層絶縁膜14の全面はシリコン膜25で覆
われるので、孔内の積層絶縁膜14の全面を覆う金属シ
リサイド膜31が形成される。なお、孔内に空胴部が残
った場合には、例えば、低ストレス膜で埋めると良い。The silicon film is conformally deposited on the insulating film. Further, the adhesion between the silicon film and the metal film is high.
Therefore, in the case of the method of FIG. 10C, even if the hole is deep, the entire surface of the laminated insulating film 14 in the hole is covered with the silicon film 25, so that the metal silicide film covering the entire surface of the laminated insulating film 14 in the hole is formed. 31 are formed. If a cavity remains in the hole, it may be filled with, for example, a low stress film.
【0117】図11に、金属プラグのさらに別の形成方
法を示す。FIG. 11 shows still another method of forming a metal plug.
【0118】まず、図11(a)に示すように、孔13
の側壁および底部の全面を被覆し、空胴部を有するシリ
コン膜27を形成する。この後、同図(a)に示すよう
に、孔13内に直径10μm程度のNi粒28(金属ボ
ール)を配置する。First, as shown in FIG.
Is formed to cover the entire surface of the side wall and the bottom of the silicon film 27 and to form a silicon film 27 having a cavity. Thereafter, Ni particles 28 (metal balls) having a diameter of about 10 μm are arranged in the holes 13 as shown in FIG.
【0119】次に図11(b)に示すように、熱処理に
よりシリコン膜27とNi粒28とを反応させ、孔13
内にニッケルシリサイド膜29を形成する。孔13内に
は十分な量のシリコン膜27およびNi粒28がないの
で、ニッケルシリサイド膜29の上部には空胴部が残
る。Next, as shown in FIG. 11B, the silicon film 27 and the Ni grains 28 react by heat treatment,
A nickel silicide film 29 is formed therein. Since a sufficient amount of the silicon film 27 and the Ni grains 28 do not exist in the hole 13, a cavity remains on the nickel silicide film 29.
【0120】最後に、図11(c)に示すように、全面
にキャップ膜30となる絶縁膜または金属膜を堆積した
後、この絶縁膜または金属膜を研磨して、ニッケルシリ
サイド膜30の上部の空胴部をキャップ膜35で埋め
る。Finally, as shown in FIG. 11C, after depositing an insulating film or a metal film to be the cap film 30 on the entire surface, the insulating film or the metal film is polished to form an upper portion of the nickel silicide film 30. Is filled with a cap film 35.
【0121】なお、金属プラグを形成する方法はこれま
でに述べた方法(CVD法、スパッタ法、メッキ法、導
電ペーストを用いた方法、金属微粒子を用いた方法、金
属ボールを用いた方法、懸濁液を用いた方法)に限定さ
れるものではなく、これらの方法を適宜組み合わせた方
法など種々の方法が可能である。The method of forming metal plugs is the same as the method described above (CVD method, sputtering method, plating method, method using conductive paste, method using metal fine particles, method using metal balls, The method is not limited to a method using a turbid liquid, but various methods such as a method of appropriately combining these methods are possible.
【0122】図12に、接続プラグの他の形成方法を示
す。この方法がこれまでの方法と異なる点は、シリコン
基板11の裏面を研磨して貫通孔を形成した後、金属プ
ラグ15を形成することにある。FIG. 12 shows another method of forming a connection plug. This method differs from the conventional methods in that the metal plug 15 is formed after the back surface of the silicon substrate 11 is polished to form a through hole.
【0123】まず、図12(a)に示すように、表面に
素子が形成されたシリコン基板10上にAlからなるマ
スクパターン12aを形成した後、このマスクパターン
12aをマスクにして、第1の層間絶縁膜11およびシ
リコン基板10をエッチングし、孔13を形成する。こ
の後、マスクパターン12aを除去する。First, as shown in FIG. 12A, a mask pattern 12a made of Al is formed on a silicon substrate 10 having an element formed on its surface, and then the first mask pattern 12a is used as a mask. The hole 13 is formed by etching the interlayer insulating film 11 and the silicon substrate 10. After that, the mask pattern 12a is removed.
【0124】次に図12(b)に示すように、全面にS
OG膜31を形成した後、孔13が完全に埋め込まれる
ように全面にFOX膜32を形成する。Next, as shown in FIG.
After the formation of the OG film 31, the FOX film 32 is formed on the entire surface so that the holes 13 are completely filled.
【0125】次に図12(c)に示すように、孔13外
のSOG膜31およびFOX膜32を例えばCMP法ま
たはエッチバック法を用いて除去する。Next, as shown in FIG. 12C, the SOG film 31 and the FOX film 32 outside the hole 13 are removed by using, for example, a CMP method or an etch-back method.
【0126】この後、図5(e)〜図5(i)に示した
工程を行なう。Thereafter, the steps shown in FIGS. 5E to 5I are performed.
【0127】次に図12(d)に示すように、孔13内
のFOX膜32を例えばCDE法を用いて除去した後、
図4(d)、図5(e)の工程と同様に、孔13内に金
属膜からなる金属プラグ15を埋込み形成する。Next, as shown in FIG. 12D, after the FOX film 32 in the hole 13 is removed by using, for example, the CDE method,
As in the steps shown in FIGS. 4D and 5E, a metal plug 15 made of a metal film is buried in the hole 13.
【0128】なお、図13に示すような接続構造の場合
には、金属プラグ15の形成後にパッド33、Auボー
ルなどの金属ボール34を形成する。In the case of the connection structure shown in FIG. 13, after the metal plug 15 is formed, a pad 33 and a metal ball 34 such as an Au ball are formed.
【0129】図14および図15に、接続プラグのさら
に別の形成方法を示す。この方法がこれまでの方法と異
なる点は、シリコン基板10とは別のところであらかじ
め形成された金属プラグ15を孔13内に埋め込むこと
にある。FIGS. 14 and 15 show still another method of forming a connection plug. This method differs from the conventional methods in that a metal plug 15 formed beforehand at a place different from the silicon substrate 10 is embedded in the hole 13.
【0130】最初に、金属プラグ15の形成方法につい
て説明する。First, a method for forming the metal plug 15 will be described.
【0131】まず、図14(a)に示すように、SiO
2 からなる基板35の表面に溝36を形成する。First, as shown in FIG.
A groove 36 is formed on the surface of the substrate 35 made of 2 .
【0132】次に同図(a)に示すように、溝36内に
金属ボール37を埋め込む。Next, a metal ball 37 is buried in the groove 36 as shown in FIG.
【0133】最後に、図14(b)に示すように、熱処
理により金属ボール37を溶融することにより、溝36
内に金属膜からなる金属プラグ15を形成する。Finally, as shown in FIG. 14B, the metal balls 37 are melted by heat treatment to form the grooves 36.
A metal plug 15 made of a metal film is formed therein.
【0134】次にこのようにあらかじめ形成された金属
プラグ15を利用して、接続プラグを形成する方法につ
いて説明する。Next, a method of forming a connection plug using the metal plug 15 formed in advance as described above will be described.
【0135】まず、図14(c)に示すように、粘着フ
ィルム38に金属プラグ15を接着させる。First, as shown in FIG. 14C, the metal plug 15 is adhered to the adhesive film.
【0136】次に図15(d)に示すように、粘着フィ
ルム38に接着された金属プラグ15を溝36から取り
出す。Next, as shown in FIG. 15D, the metal plug 15 adhered to the adhesive film 38 is taken out from the groove 36.
【0137】次に図15(e)に示すように、図4
(c)の工程の段階のシリコン基板10の孔13内に、
粘着フィルム38に接着された金属プラグ15を埋め込
む。この後、粘着フィルム38を除去する。Next, as shown in FIG.
In the hole 13 of the silicon substrate 10 at the stage of the process (c),
The metal plug 15 bonded to the adhesive film 38 is embedded. Thereafter, the adhesive film 38 is removed.
【0138】次に図15(f)に示すように、熱処理に
より金属プラグ15を溶融させることにより、金属プラ
グ15を孔13内に固定する。Next, as shown in FIG. 15F, the metal plug 15 is fixed in the hole 13 by melting the metal plug 15 by heat treatment.
【0139】このような基板15にあらかじめ形成され
た金属プラグ15を利用する方法の場合、スパッタ法や
CVD法などの成膜法を用いて、シリコン基板10上に
金属プラグ4となる金属膜を形成する方法の場合に比べ
て、スループットが高くなり、またプロセス温度も低く
て済む。In the case of using such a metal plug 15 formed in advance on the substrate 15, a metal film to be the metal plug 4 is formed on the silicon substrate 10 by using a film forming method such as a sputtering method or a CVD method. The throughput is higher and the process temperature is lower than in the case of the forming method.
【0140】なお、ここでは基板35の材料としてSi
O2 を選んだが、金属ボール37と反応しない材料であ
れば他の材料を用いても良い。Here, the material of the substrate 35 is Si
Although O 2 is selected, another material may be used as long as it does not react with the metal ball 37.
【0141】なお、金属ボール37の代わりに、Auま
たはPd等の低抵抗の導電ペーストを用いても良い。こ
の場合、スクリーン印刷法を用いて溝36内に導電性ペ
ーストを埋め込んだ後、導電ペーストを焼結して金属プ
ラグ15を形成する。Incidentally, instead of the metal balls 37, a low-resistance conductive paste such as Au or Pd may be used. In this case, after the conductive paste is embedded in the groove 36 using a screen printing method, the conductive paste is sintered to form the metal plug 15.
【0142】ここで、AuまたはPd等の導電ペースト
は焼結温度の高いものであるが、導電ペーストの焼結
は、シリコン基板10とは別のとろである基板35で行
なうので問題はない。また、導電ペーストは通常のもの
とは異なり、樹脂やガラスなどを含んでいる必要はな
い。Here, the conductive paste such as Au or Pd has a high sintering temperature, but there is no problem because the conductive paste is sintered on the substrate 35 which is different from the silicon substrate 10. Further, unlike the usual conductive paste, the conductive paste does not need to contain resin, glass, or the like.
【0143】また、粘着フィルム38を用いて金属プラ
グ15を溝36から取り出したが、ピンセット等の他の
手段により取り出しても良い。Although the metal plug 15 is taken out of the groove 36 using the adhesive film 38, it may be taken out by other means such as tweezers.
【0144】また、孔13内にあらかじめ接着層を形成
することにより、金属プラグ15を孔13内に固定して
も良い。具体的には、例えばSOGまたはFOXなどを
孔13内に塗布して接着層を形成した後、孔13内に金
属プラグ15を埋め込む。その後、接着層を硬化させ
る。Further, the metal plug 15 may be fixed in the hole 13 by forming an adhesive layer in the hole 13 in advance. Specifically, for example, SOG or FOX is applied in the hole 13 to form an adhesive layer, and then the metal plug 15 is embedded in the hole 13. Then, the adhesive layer is cured.
【0145】(第5の実施形態)図16は、本発明の第
5の実施形態に係るマルチチップ半導体装置用チップの
形成方法を示す断面図である。なお、図4、図5のマル
チチップ半導体装置用チップと対応する部分には図4、
図5と同一符号を付してあり、詳細な説明は省略する。(Fifth Embodiment) FIG. 16 is a sectional view showing a method for forming a chip for a multichip semiconductor device according to a fifth embodiment of the present invention. 4 and 5 correspond to the chip for the multi-chip semiconductor device shown in FIGS.
The same reference numerals as in FIG. 5 are used, and detailed description is omitted.
【0146】本実施形態では、第4の実施形態の図5
(i)の工程の後、図16(a)に示すように、シリコ
ン基板10の裏面から、金属プラグ15をエッチングし
て、貫通孔に未充填部分を形成する。This embodiment is different from the fourth embodiment in FIG.
After the step (i), as shown in FIG. 16A, the metal plug 15 is etched from the back surface of the silicon substrate 10 to form an unfilled portion in the through hole.
【0147】次に図16(b)に示すように、金属プラ
グ15(貫通孔の未充填部分の凹部)と半田バンプ8と
を位置合せした後、金属プラグ15と半田バンプ8とを
接続する。Next, as shown in FIG. 16B, after the metal plug 15 (the concave portion of the unfilled portion of the through hole) and the solder bump 8 are aligned, the metal plug 15 and the solder bump 8 are connected. .
【0148】ここで、金属プラグ15と半田バンプ8と
の位置合せは、画像処理により行なうことが好ましい。
何故なら、画面上で、未充填部分の凹部とそうでないと
ころで濃淡の差が明確になるので、正確な位置合せを容
易に行なえるからである。Here, the alignment between the metal plug 15 and the solder bump 8 is preferably performed by image processing.
This is because on the screen, the difference between the light and dark portions in the unfilled portion and the light and dark portions in the other portion becomes clear, so that accurate positioning can be easily performed.
【0149】また、バンプ8の側面が貫通孔の側面と接
触することにより、未充填部分の凹部がない場合に比べ
て、バンプ8はより強固に固定されることになる。Further, since the side surface of the bump 8 comes into contact with the side surface of the through hole, the bump 8 is more firmly fixed than in the case where there is no concave portion in the unfilled portion.
【0150】なお、逆に金属プラグ15が貫通孔から突
出する凸構造にしても良い。この場合、バンプ8はシリ
コン基板10とは接しないので、バンプ8によるシリコ
ン基板10の汚染を効果的に防止することができる。Conversely, a convex structure in which the metal plug 15 protrudes from the through hole may be used. In this case, since the bump 8 does not contact the silicon substrate 10, contamination of the silicon substrate 10 by the bump 8 can be effectively prevented.
【0151】(第6の実施形態)図17は、本発明の第
6の実施形態に係るマルチチップ半導体装置の断面図で
ある。なお、図1のマルチチップ半導体装置と対応する
部分には図1と同一符号を付してある。また、チップ1
1 ,12 において、多層配線層3や絶縁膜5,7やパッ
ド6などは省略してある。(Sixth Embodiment) FIG. 17 is a sectional view of a multichip semiconductor device according to a sixth embodiment of the present invention. Note that portions corresponding to those of the multi-chip semiconductor device in FIG. 1 are denoted by the same reference numerals as in FIG. Chip 1
In FIGS. 1 and 12 , the multilayer wiring layer 3, the insulating films 5, 7 and the pads 6 are omitted.
【0152】本実施形態の特徴は、チップ11 上に放熱
フィン39を設けたことにある。この放熱フィン39は
接着剤40によりチップ11 に固定されている。なお、
絶縁膜上にメタライズすることにより固定するなど他の
固定方法を用いても良い。[0152] This embodiment is characterized in the provision of the heat radiation fins 39 on the chip 1 1. The radiation fin 39 is fixed to the tip 1 1 by an adhesive 40. In addition,
Other fixing methods such as fixing by metallizing on an insulating film may be used.
【0153】本実施形態によれば、金属プラグ4および
放熱ファン39によって装置の放熱性を十分に高くする
ことができるようになる。According to the present embodiment, the heat radiation of the device can be made sufficiently high by the metal plug 4 and the heat radiation fan 39.
【0154】(第7の実施形態)図18は、本発明の第
7の実施形態に係るマルチチップ半導体装置の断面図で
ある。なお、図1のマルチチップ半導体装置と対応する
部分には図1と同一符号を付してある。図中、7aは絶
縁膜、42はソルダーを示している。(Seventh Embodiment) FIG. 18 is a sectional view of a multichip semiconductor device according to a seventh embodiment of the present invention. Note that portions corresponding to those of the multi-chip semiconductor device in FIG. 1 are denoted by the same reference numerals as in FIG. In the figure, 7a denotes an insulating film, and 42 denotes a solder.
【0155】本実施形態の特徴は、チップ11 とチップ
12 との間に放熱用のダミーバンプ8dを設けたことに
ある。[0155] This embodiment is characterized in the provision of the dummy bump 8d for heat radiation between the chip 1 1 and the chip 1 2.
【0156】チップ11 とチップ12 とはダミーバンプ
8dを介して機械的には接続するが電気的には接続しな
い。ダミーバンプ8dは、例えば図示しない金属膜を介
してチップ11 およびチップ12 と接続させる。[0156] The chip 1 1 and the chip 1 2 connected to the mechanical via dummy bumps 8d are not in electrical connection. Dummy bumps 8d is to connect the chip 1 1 and the chip 1 2 via a metal film (not shown), for example.
【0157】ダミーバンプ8dの材料としては、例えば
Au等の金属があげられる。金属でなくても、熱伝導の
良い材料であれば、半導体や絶縁体を用いても良い。ま
た、充填剤でも良い。また、ダミーバンプ8dと配線用
バンプ8とを同じ材料で形成すれば、これらのバンプを
同時に形成でき、工程数の増加を防止することができ
る。The material of the dummy bump 8d is, for example, a metal such as Au. Even if it is not a metal, a semiconductor or an insulator may be used as long as the material has good heat conductivity. Further, a filler may be used. If the dummy bumps 8d and the wiring bumps 8 are formed of the same material, these bumps can be formed at the same time, and an increase in the number of steps can be prevented.
【0158】なお、ダミーバンプ8dだけでも放熱性は
改善されるが、放熱性を効果的に高めるためには、ダミ
ーバンプ8dを放熱フィンに繋げる構成にすることが好
ましい。Although the heat dissipation is improved only by the dummy bumps 8d, it is preferable to connect the dummy bumps 8d to the radiation fins in order to effectively enhance the heat dissipation.
【0159】(第8の実施形態)図19は、本発明の第
8の実施形態に係るマルチチップ半導体装置の製造方法
を示す図である。(Eighth Embodiment) FIG. 19 is a diagram showing a method of manufacturing a multi-chip semiconductor device according to an eighth embodiment of the present invention.
【0160】図16に示した方法では、金属プラグ15
に半田バンプ8を形成したが、本実施形態では、逆に、
接続先の部材47(例えば金属プラグを有するチップ、
金属プラグを有しないチップまたは積層配線基板)に半
田バンプ8を形成し、この半田バンプ8と、シリコン基
板2の裏面から突出した金属プラグ4を接続する。In the method shown in FIG.
Although the solder bumps 8 are formed on the substrate, in the present embodiment, conversely,
Connection destination member 47 (for example, a chip having a metal plug,
A solder bump 8 is formed on a chip or a laminated wiring board having no metal plug, and the solder bump 8 is connected to the metal plug 4 protruding from the back surface of the silicon substrate 2.
【0161】この場合も、バンプ8はシリコン基板10
とは接しないので、バンプ8によるシリコン基板10の
汚染を効果的に防止することができる。Also in this case, the bumps 8 are
Therefore, the contamination of the silicon substrate 10 by the bumps 8 can be effectively prevented.
【0162】(第9の実施形態)図20は、本発明の第
9の実施形態に係るマルチチップ半導体装置を示す模式
図である。(Ninth Embodiment) FIG. 20 is a schematic diagram showing a multichip semiconductor device according to a ninth embodiment of the present invention.
【0163】なお、図1のマルチチップ半導体装置と対
応する部分には図1と同一符号を付してある。また、チ
ップ11 ,12 ,13 において、多層配線層3や絶縁膜
5,7やパッド6などは省略してある。また、チップ1
3 は金属プラグ4が有っても無くても良い。Note that parts corresponding to those of the multi-chip semiconductor device of FIG. 1 are denoted by the same reference numerals as in FIG. Further, in the chip 1 1, 1 2, 1 3, a multilayer wiring layer 3 and the insulating films 5 and 7 and the pad 6 are omitted. Chip 1
3 may or may not have the metal plug 4.
【0164】本実施形態は、実装部材としてTABテー
プを用いた例である。図中、43はプラスチックテー
プ、44はリード端子を示している。なお、図21に、
TABテープを用いた従来のマルチチップ半導体装置の
模式図を示す。図から、本実施形態に比べて平面面積が
大きいことが分かる。This embodiment is an example in which a TAB tape is used as a mounting member. In the figure, 43 is a plastic tape, and 44 is a lead terminal. In FIG. 21,
1 shows a schematic view of a conventional multi-chip semiconductor device using a TAB tape. From the figure, it can be seen that the planar area is larger than in the present embodiment.
【0165】本実施形態によれば、チップ同士を積層で
き、平面面積を小さくできるという効果の他に、金属プ
ラグ4を用いて全てのチップ、一部のチップまたは各チ
ップの検査を行なうことができる。According to the present embodiment, in addition to the effect that the chips can be stacked and the plane area can be reduced, it is possible to inspect all chips, some chips or each chip using the metal plug 4. it can.
【0166】装置全体の検査であれば、図20に示した
状態で、チップ11 の多層配線層に設けられたパッド
(不図示)に検査プローブをあてて行なう。また、チッ
プ11,12 の検査であれば、チップ11 ,12 を接続
した後、チップ12 の多層配線層に設けられたパッド
(不図示)に検査プローブをあてて行なう。[0166] If the inspection of the entire apparatus, in the state shown in FIG. 20, is performed by applying a test probe to the pads provided on the wiring layer of the chip 1 1 (not shown). Also, if the test of the chip 1 1, 1 2, after connecting the chip 1 1, 1 2, carried out by applying the test probes to the pads provided on the wiring layer of the chip 1 2 (not shown).
【0167】(第10の実施形態)図22〜図24は、
本発明の第10の実施形態に係るマルチチップ半導体装
置の製造方法を示す図である。(Tenth Embodiment) FIG. 22 to FIG.
FIG. 21 is a diagram illustrating the method for manufacturing the multi-chip semiconductor device according to the tenth embodiment of the present invention.
【0168】まず、周知の方法に従って、図22(a)
に示すように、シリコン基板50にNAND型EEPR
OMのメモリセルおよび図示しない周辺素子を形成した
後、第1の層間絶縁膜56を形成する。First, according to a well-known method, FIG.
As shown in FIG.
After forming an OM memory cell and a peripheral element (not shown), a first interlayer insulating film 56 is formed.
【0169】なお、図中、51はトンネル酸化膜、52
F は浮遊ゲート電極、53はゲート電極間絶縁膜、52
C は制御ゲート電極、54はソース拡散層、55はドレ
イン拡散層を示している。また、実際には複数のメモリ
セルを形成するが、図には簡単なために1個のメモリセ
ルしか示していない。In the figure, reference numeral 51 denotes a tunnel oxide film;
F is a floating gate electrode, 53 is an insulating film between gate electrodes, 52
C indicates a control gate electrode, 54 indicates a source diffusion layer, and 55 indicates a drain diffusion layer. Although a plurality of memory cells are actually formed, only one memory cell is shown in the figure for simplicity.
【0170】次に同図(a)に示すように、第1の層間
絶縁膜56にコンタクトホールを形成した後、Ti・T
iN積層膜57、Wビット線プラグ58を形成する。Next, as shown in FIG. 17A, after a contact hole is formed in the first interlayer insulating film 56, Ti.T
An iN laminated film 57 and a W bit line plug 58 are formed.
【0171】具体的には、まず、コンタクトホールを形
成し、次にTi膜、TiN膜を順次全面に形成した後、
ブランケットCVD法を用いてW膜を全面に形成する。
最後に、CMP法を用いてコンタクトホール外のW膜、
Ti膜およびTiN膜を除去する。Specifically, first, a contact hole is formed, and then a Ti film and a TiN film are sequentially formed on the entire surface.
A W film is formed on the entire surface by using a blanket CVD method.
Finally, using a CMP method, a W film outside the contact hole,
The Ti film and the TiN film are removed.
【0172】次に図22(b)に示すように、第1の層
間絶縁膜56上に例えばAlからなるマスクパターン5
9を形成し、このマスクパターン59をマスクにして、
接続プラグが形成される領域の第1の層間絶縁膜56お
よびシリコン基板50をエッチングすることにより、深
さが150〜200μmで、100μm×100μm角
の孔60を形成する。この後、マスクパターン59を除
去する。Then, as shown in FIG. 22B, a mask pattern 5 made of, for example, Al is formed on the first interlayer insulating film 56.
9 and using the mask pattern 59 as a mask,
By etching the first interlayer insulating film 56 and the silicon substrate 50 in the region where the connection plug is formed, a hole 60 having a depth of 150 to 200 μm and a size of 100 μm × 100 μm is formed. After that, the mask pattern 59 is removed.
【0173】次に図22(c)に示すように、孔60内
を覆うSiO2 膜61を形成し、その上に密着膜として
の厚さ500nmの多結晶シリコン膜62を形成した
後、孔60内に金属プラグとしてのNi膜63を埋め込
む。Next, as shown in FIG. 22C, a SiO 2 film 61 covering the inside of the hole 60 is formed, and a polycrystalline silicon film 62 having a thickness of 500 nm as an adhesion film is formed thereon. A Ni film 63 as a metal plug is embedded in 60.
【0174】具体的には、厚さ500nmのSiO2 膜
61、厚さ500nmの多結晶シリコン膜62、Ni膜
63を全面に順次形成した後、CMP法を用いて孔60
外の余剰なSiO2 膜61、多結晶シリコン膜62、N
i膜63を除去する。Specifically, after a 500 nm thick SiO 2 film 61, a 500 nm thick polycrystalline silicon film 62, and a Ni film 63 are sequentially formed on the entire surface, a hole 60 is formed by CMP.
Extra surplus SiO 2 film 61, polycrystalline silicon film 62, N
The i film 63 is removed.
【0175】また、Ni膜63は、例えばスクリーン印
刷法を用いて孔60内にNiペーストを埋め込んだ後、
600℃の熱処理によりNiペーストを焼結することに
より形成する。The Ni film 63 is formed by embedding a Ni paste in the hole 60 using, for example, a screen printing method.
It is formed by sintering a Ni paste by heat treatment at 600 ° C.
【0176】次に図23(d)に示すように、周知の方
法に従って、ビット線64、第1の配線層65を形成す
る。Next, as shown in FIG. 23D, a bit line 64 and a first wiring layer 65 are formed according to a known method.
【0177】具体的には、例えばビット線64、第1の
配線層65となる厚さ10nmのTi膜、厚さ10nm
のTiN膜、厚さ400nmのAlCu膜、厚さ40n
mのTiN膜の積層膜を形成した後、この積層膜をフォ
トリソグラフィとエッチングを用いて加工することによ
り形成する。More specifically, for example, a 10 nm-thick Ti film serving as the bit line 64 and the first wiring layer 65, and a 10 nm-thick
TiN film, 400 nm thick AlCu film, 40 n thick
After forming a laminated film of m TiN films, the laminated film is formed by processing using photolithography and etching.
【0178】次に同図(d)に示すように、第2の層間
絶縁膜66を形成し、この第2の層間絶縁膜66にヴィ
アホールを形成した後、プラグ67を介して第1の配線
層65と接続する第2の配線層68を形成する。Next, as shown in FIG. 17D, a second interlayer insulating film 66 is formed, and a via hole is formed in the second interlayer insulating film 66. A second wiring layer 68 connected to the wiring layer 65 is formed.
【0179】第2の配線層68の形成方法は第1の配線
層65のそれと同じである。また、プラグ67として
は、例えばW膜を用いる。なお、メモリセルの領域の第
2の配線層は省略してある。The method of forming the second wiring layer 68 is the same as that of the first wiring layer 65. Further, as the plug 67, for example, a W film is used. Note that the second wiring layer in the memory cell area is omitted.
【0180】次に同図(d)に示すように、第2の配線
層68を覆うパッシベーション膜としての厚さ450n
mの感光性のポリイミド膜69をプラズマCVD法を用
いて形成した後、フォトリソグラフィとエッチングを用
いて第2の配線層68上に開孔(パッド孔)を形成す
る。この後、パッド(不図示)にプローブをあてて、ウ
ェハに形成された各チップについてその良品、不良品の
判別を行なうことが望ましい。Next, as shown in FIG. 17D, a 450 nm thick passivation film covering the second wiring layer 68 is formed.
After the photosensitive polyimide film 69 of m is formed by using the plasma CVD method, an opening (pad hole) is formed on the second wiring layer 68 by using photolithography and etching. Thereafter, it is desirable that a probe be applied to a pad (not shown) to determine whether each chip formed on the wafer is good or bad.
【0181】次に図23(e)に示すように、シリコン
基板50の裏面を機械的に研磨してNi膜63を露出さ
せる。Next, as shown in FIG. 23E, the back surface of the silicon substrate 50 is mechanically polished to expose the Ni film 63.
【0182】この研磨工程は、シリコン基板50をウェ
ハから切り出した後に行なうことが好ましい。その理由
は先に述べたように、ウェハの状態では均一な研磨が困
難であるからである。この後、研磨で生じたダメージを
ウエットエッチングにより除去する。なお、ウェハの表
面に浅いスクライブラインを予め入れておき、裏面の研
磨によってウェハが薄くなったときに、チップ分割が自
動的に行なわれるようにすることが好ましい。This polishing step is preferably performed after cutting the silicon substrate 50 from the wafer. This is because, as described above, uniform polishing is difficult in a wafer state. Thereafter, the damage caused by the polishing is removed by wet etching. Note that it is preferable that a shallow scribe line is previously formed on the front surface of the wafer so that chip division is automatically performed when the wafer is thinned by polishing the back surface.
【0183】次に図23(f)に示すように、第2の配
線層68上にAuボールバンプ70を形成した後、転写
法を用いてAuボールバンプ70上に半田71を形成す
る。このとき、プローブ測定により良品のチップが予め
分かっている場合には、その良品のチップのみにAuボ
ールバンプ70を形成することで、歩留まりや生産効率
の向上を図ることができる。Next, as shown in FIG. 23F, after forming an Au ball bump 70 on the second wiring layer 68, a solder 71 is formed on the Au ball bump 70 by using a transfer method. At this time, if a good chip is known in advance by probe measurement, the yield and production efficiency can be improved by forming the Au ball bump 70 only on the good chip.
【0184】最後に、図24に示すように、半田71
(Auボールバンプ70)とNi膜(金属プラグ)63
との位置合わせを行なった後、半田71とNi膜(金属
プラグ)63とを接続し、シリコン基板50同士を接続
することにより、EEPROMのマルチチップ半導体装
置が完成する。その後、電気特性評価を行ない、積層し
たチップに不良がある場合には、ハンダ71をメルト温
度まで加熱することで、チップ同士の接続を切断し、不
良チップを良品チップと交換する。Finally, as shown in FIG.
(Au ball bump 70) and Ni film (metal plug) 63
Then, the solder 71 and the Ni film (metal plug) 63 are connected to each other, and the silicon substrates 50 are connected to each other, thereby completing the EEPROM multi-chip semiconductor device. Thereafter, the electrical characteristics are evaluated, and if the stacked chips have a defect, the solder 71 is heated to the melt temperature to disconnect the chips and replace the defective chip with a non-defective chip.
【0185】なお、本実施形態では、NAND型EEP
ROMのマルチチップ半導体装置について説明したが、
本実施形態と同様な方法により、NOR型EEPROM
のマルチチップ半導体装置、DRAMのマルチチップ半
導体装置も製造することができる。さらには、EEPR
OM、DRAMもしくはその他の半導体メモリまたはこ
れらの組み合わせと、CPUとから構成されたパーソナ
ルコンピュータ等の情報処理装置のマルチチップ半導体
装置も製造することができる。In this embodiment, the NAND type EEP
The multi-chip semiconductor device of ROM was explained,
By the same method as in the present embodiment, a NOR type EEPROM
And a multi-chip semiconductor device of DRAM can also be manufactured. Furthermore, EEPR
A multi-chip semiconductor device of an information processing device such as a personal computer including an OM, a DRAM, or another semiconductor memory, or a combination thereof, and a CPU can also be manufactured.
【0186】[0186]
【発明の効果】以上詳述したように本発明(請求項1,
2)によれば、少なくとも1つのチップがその半導体基
板および層間絶縁膜を貫通する貫通孔内に金属からなる
接続プラグが形成された構造を有し、かつこの接続プラ
グを有するチップが該接続プラグを介して他のチップと
電気的に接続されているので、装置の平面面積が小さ
く、構造が単純で、かつ厚さが薄いマルチチップ半導体
装置を実現できるようになる。As described in detail above, the present invention (Claim 1,
According to 2), at least one chip has a structure in which a connection plug made of metal is formed in a through hole penetrating the semiconductor substrate and the interlayer insulating film, and the chip having this connection plug is connected to the connection plug. Since it is electrically connected to another chip via the semiconductor chip, a multi-chip semiconductor device having a small planar area, a simple structure, and a small thickness can be realized.
【0187】また、本発明(請求項3〜7)では、マル
チチップ半導体装置用チップとして、素子が形成された
半導体基板と、この半導体基板およびその上に形成され
た層間絶縁膜を貫通する貫通孔内に形成され、他のチッ
プと電気的に接続するための金属からなる接続プラグと
からなる構成のもの用いている。In the present invention (claims 3 to 7), as a chip for a multi-chip semiconductor device, a semiconductor substrate on which elements are formed, a through-hole penetrating the semiconductor substrate and an interlayer insulating film formed thereon are provided. A connection plug formed in a hole and made of metal for electrically connecting to another chip is used.
【0188】したがって、このような構成のマルチチッ
プ半導体装置用チップを用いることにより、本発明(請
求項1,2)に係るマルチチップ半導体装置を実現でき
るようになる。Therefore, by using the chip for a multichip semiconductor device having such a configuration, the multichip semiconductor device according to the present invention (claims 1 and 2) can be realized.
【0189】また、本発明(請求項8〜請求項12)で
は、層間絶縁膜は貫通するが半導体基板は貫通しない孔
を形成した後、裏面から半導体基板を後退させて貫通孔
を形成しているので、もとの半導体基板が厚くても貫通
孔を容易に形成できる。Further, in the present invention (claims 8 to 12), after forming a hole which penetrates the interlayer insulating film but does not penetrate the semiconductor substrate, the semiconductor substrate is receded from the back surface to form a through hole. Therefore, the through hole can be easily formed even if the original semiconductor substrate is thick.
【0190】したがって、半導体基板が厚くても、本発
明(請求項3〜7)に係るマルチチップ半導体装置用チ
ップを容易に形成できるようになる。Therefore, even if the semiconductor substrate is thick, the chip for a multichip semiconductor device according to the present invention (claims 3 to 7) can be easily formed.
【図1】本発明の第1の実施形態に係るマルチチップ半
導体装置の断面図FIG. 1 is a sectional view of a multi-chip semiconductor device according to a first embodiment of the present invention.
【図2】本発明の第2の実施形態に係るマルチチップ半
導体装置の断面図FIG. 2 is a sectional view of a multichip semiconductor device according to a second embodiment of the present invention;
【図3】本発明の第3の実施形態に係るマルチチップ半
導体装置の断面図FIG. 3 is a sectional view of a multi-chip semiconductor device according to a third embodiment of the present invention.
【図4】本発明の第4の実施形態に係るマルチチップ半
導体装置用チップの形成方法を示す前半の工程断面図FIG. 4 is a first-half process cross-sectional view showing a method for forming a chip for a multi-chip semiconductor device according to a fourth embodiment of the present invention;
【図5】本発明の第4の実施形態に係るマルチチップ半
導体装置用チップの形成方法を示す後半の工程断面図FIG. 5 is a sectional view of the latter half of a process showing a method for forming a chip for a multi-chip semiconductor device according to a fourth embodiment of the present invention;
【図6】孔領域の多層配線層の具体的な構造例を示す断
面図FIG. 6 is a sectional view showing a specific structure example of a multilayer wiring layer in a hole region;
【図7】素子領域の多層配線層の具体的な構造例を示す
断面図FIG. 7 is a sectional view showing a specific example of the structure of a multilayer wiring layer in an element region.
【図8】貫通プラグを示す断面図FIG. 8 is a sectional view showing a through plug.
【図9】孔の他の形成方法を示す工程断面図FIG. 9 is a process sectional view showing another method for forming a hole.
【図10】金属プラグの他の形成方法を示す断面図FIG. 10 is a sectional view showing another method of forming a metal plug.
【図11】金属プラグのさらに別の形成方法を示す断面
図FIG. 11 is a sectional view showing still another method for forming a metal plug.
【図12】接続プラグの他の形成方法を示す工程断面図FIG. 12 is a process sectional view showing another method for forming a connection plug.
【図13】マルチチップの他の接続構造を示す断面図FIG. 13 is a sectional view showing another connection structure of the multichip.
【図14】接続プラグのさらに別の方法を示す前半の工
程断面図FIG. 14 is a process sectional view of the first half showing still another method of the connection plug.
【図15】接続プラグのさらに別の方法を示す後半の工
程断面図FIG. 15 is a sectional view of a process in the latter half showing another method of connecting plugs;
【図16】本発明の第5の実施形態に係るマルチチップ
半導体装置用チップの形成方法を示す断面図FIG. 16 is a sectional view showing a method of forming a chip for a multi-chip semiconductor device according to a fifth embodiment of the present invention.
【図17】本発明の第6の実施形態に係るマルチチップ
半導体装置の断面図FIG. 17 is a sectional view of a multichip semiconductor device according to a sixth embodiment of the present invention.
【図18】本発明の第7の実施形態に係るマルチチップ
半導体装置の断面図FIG. 18 is a sectional view of a multichip semiconductor device according to a seventh embodiment of the present invention.
【図19】本発明の第8の実施形態に係るマルチチップ
半導体装置の製造方法を示す図FIG. 19 is a view illustrating a method of manufacturing a multi-chip semiconductor device according to an eighth embodiment of the present invention.
【図20】本発明の第9の実施形態に係るマルチチップ
半導体装置を示す模式図FIG. 20 is a schematic view showing a multi-chip semiconductor device according to a ninth embodiment of the present invention.
【図21】TABテープを用いた従来のマルチチップ半
導体装置を示す模式図FIG. 21 is a schematic view showing a conventional multi-chip semiconductor device using a TAB tape.
【図22】本発明の第10の実施形態に係るマルチチッ
プ半導体装置の製造方法を示す前半の工程断面図FIG. 22 is a process sectional view of the first half showing the method of manufacturing the multi-chip semiconductor device according to the tenth embodiment of the present invention;
【図23】本発明の第10の実施形態に係るマルチチッ
プ半導体装置の製造方法を示す後半の工程断面図FIG. 23 is a process sectional view of the latter half showing the method for manufacturing the multi-chip semiconductor device according to the tenth embodiment of the present invention;
【図24】本発明の第10の実施形態に係るマルチチッ
プ半導体装置の製造方法を示す断面図FIG. 24 is a sectional view showing the method of manufacturing the multi-chip semiconductor device according to the tenth embodiment of the present invention.
【図25】従来のマルチチップ半導体装置の断面図FIG. 25 is a sectional view of a conventional multichip semiconductor device.
【図26】従来の他のマルチチップ半導体装置の断面図FIG. 26 is a sectional view of another conventional multi-chip semiconductor device.
【図27】従来のさらに別のマルチチップ半導体装置の
断面図FIG. 27 is a sectional view of still another conventional multi-chip semiconductor device.
11 ,12 ,13 …チップ 2…シリコン基板 3…多層配線層 4…金属膜(金属プラグ) 5…絶縁膜 6…パッド 7…絶縁膜 7a…絶縁膜 8…半田バンプ(接続部材) 8d…ダミーバンプ 9…積層配線基板(実装部材) 10…シリコン基板 11…第1の層間絶縁膜 11a…第2の層間絶縁膜 11b…第3の層間絶縁膜 11c…第4の層間絶縁膜 11n…第nの層間絶縁膜 12…マスクパターン 12a…マスクパターン 13,131 〜133 …孔(貫通孔) 14…積層絶縁膜(第1の絶縁膜) 15…金属膜(金属プラグ) 16…多層配線構造 17…パッド 18…SiO2 膜(第2の絶縁膜) 19…金属配線 19a…第1の金属配線 19b…第2の金属配線 20a…第1の金属配線 20b…第2の金属配線 20c…第3の金属配線 21…金属 22…金属シリサイド膜 23…導電ペースト 24…金属粒子 25…シリコン膜 26…金属シリサイド膜 27…シリコン膜 28…Ni粒 29…ニッケルシリサイド膜 30…キャップ膜 31…SOG膜 32…FOX膜 33…パッド 34…金属ボール 35…基板 36…溝 37…金属ボール 38…接着フィルム 39…放熱フィン 40…接着剤 41…絶縁膜 42…ソルダー 43…プラスチックテープ 44…リード端子 45…キャップ金属膜 46…キャップ絶縁膜 47…接続先の部材 50…シリコン基板 51…トンネル酸化膜 52F …浮遊ゲート電極 53C …制御ゲート電極 53…ゲート電極間絶縁膜 54…ソース拡散層 55…ドレイン拡散層 56…第1の層間絶縁膜 57…Ti・TiN積層膜 58…Wビット線プラグ 59…マスクパターン 60…孔 61…SiO2 膜 62…多結晶シリコン膜 63…Ni膜 64…ビット線 65…第1の配線層 66…第2の層間絶縁膜 67…プラグ 68…第2の配線層 69…ポリイミド膜 70…Auボールバンプ1 1 , 1 2 , 1 3 ... chip 2 ... silicon substrate 3 ... multilayer wiring layer 4 ... metal film (metal plug) 5 ... insulating film 6 ... pad 7 ... insulating film 7 a ... insulating film 8 ... solder bump (connection member) 8d: dummy bump 9: laminated wiring board (mounting member) 10: silicon substrate 11: first interlayer insulating film 11a: second interlayer insulating film 11b: third interlayer insulating film 11c: fourth interlayer insulating film 11n the n of the interlayer insulating film 12 ... mask pattern 12a ... mask pattern 13, 13 1 to 13 3 ... hole (through hole) 14 ... laminated insulating film (first insulating film) 15 ... metal film (metal plugs) 16 ... multilayer Wiring structure 17 Pad 18 SiO 2 film (second insulating film) 19 Metal wiring 19 a First metal wiring 19 b Second metal wiring 20 a First metal wiring 20 b Second metal wiring 20 c … The third metal distribution DESCRIPTION OF SYMBOLS 21 ... Metal 22 ... Metal silicide film 23 ... Conductive paste 24 ... Metal particle 25 ... Silicon film 26 ... Metal silicide film 27 ... Silicon film 28 ... Ni grain 29 ... Nickel silicide film 30 ... Cap film 31 ... SOG film 32 ... FOX film 33 ... Pad 34 ... Metal ball 35 ... Substrate 36 ... Groove 37 ... Metal ball 38 ... Adhesive film 39 ... Heat radiation fin 40 ... Adhesive 41 ... Insulating film 42 ... Solder 43 ... Plastic tape 44 ... Lead terminal 45 ... Cap metal film 46 ... cap insulating film 47 ... connection of members 50 ... silicon substrate 51 ... tunnel oxide film 52 F ... floating gate electrode 53 C ... control gate electrode 53 ... gate insulating film 54 ... source diffusion layer 55 ... drain diffusion layer 56 ... First interlayer insulating film 57... Ti / TiN laminated film 58. Grayed 59 ... mask pattern 60 ... holes 61 ... SiO 2 film 62 ... polycrystalline silicon film 63 ... Ni film 64 ... of the bit line 65 ... first wiring layer 66: second interlayer insulating film 67 ... plug 68 ... second Wiring layer 69: Polyimide film 70: Au ball bump
Claims (12)
るチップを複数積層してなるマルチチップ半導体装置に
おいて、 少なくとも1つのチップは、その半導体基板および層間
絶縁膜を貫通する貫通孔内に、金属からなる接続プラグ
が形成された構造を有し、かつこの接続プラグを有する
少なくとも1つのチップは、前記接続プラグを介して他
のチップと電気的に接続されていることを特徴とするマ
ルチチップ半導体装置。1. A multi-chip semiconductor device comprising a plurality of chips having a semiconductor substrate on which elements are integrally formed on a surface thereof and an interlayer insulating film formed on the surface of the semiconductor substrate, wherein at least one chip comprises: A connection plug made of metal is formed in a through-hole penetrating the semiconductor substrate and the interlayer insulating film, and at least one chip having this connection plug is connected to another chip through the connection plug. A multi-chip semiconductor device, which is electrically connected to the semiconductor device.
プの直上および直下のチップの少なくとも一方のチップ
に対して、接続部材、または接続部材および実装部材を
介して、電気的に接続されていることを特徴とする請求
項1に記載のマルチチップ半導体装置。2. A chip having the connection plug is electrically connected to at least one of chips directly above and below the chip via a connection member or a connection member and a mounting member. The multi-chip semiconductor device according to claim 1, wherein:
と、 この半導体基板表面上に形成された層間絶縁膜と、 この層間絶縁膜および前記半導体基板を貫通する貫通孔
内に形成され、他のチップと電気的に接続するための金
属からなる接続プラグとを具備してなることを特徴とす
るマルチチップ半導体装置用チップ。3. A semiconductor substrate having elements formed on the surface thereof, an interlayer insulating film formed on the surface of the semiconductor substrate, and a through hole formed through the interlayer insulating film and the semiconductor substrate. And a connection plug made of a metal for electrically connecting the chip to a multi-chip semiconductor device chip.
れた金属プラグと、この金属プラグと前記貫通孔の側壁
との間に設けられた絶縁膜とから構成されていることを
特徴とする請求項3に記載のマルチチップ半導体装置用
チップ。4. The connection plug comprises a metal plug provided in the through-hole and an insulating film provided between the metal plug and a side wall of the through-hole. The chip for a multichip semiconductor device according to claim 3.
れ、中空部を有する金属プラグと、この金属プラグと前
記貫通孔の側壁との間に設けられた絶縁膜と、前記中空
部内に設けられ、前記半導体基板との熱膨脹係数の差
が、前記金属プラグよりも小さい低ストレス膜とから構
成されていることを特徴とする請求項3に記載のマルチ
チップ半導体装置用チップ。5. A metal plug having a hollow portion provided in the through-hole, an insulating film provided between the metal plug and a side wall of the through-hole, and a connecting plug provided in the hollow portion. 4. The chip for a multi-chip semiconductor device according to claim 3, wherein the chip is provided with a low-stress film having a difference in thermal expansion coefficient from the semiconductor substrate smaller than that of the metal plug.
体基板表面側の途中の深さまで設けられた金属プラグ
と、この金属プラグと前記貫通孔の側壁との間に設けら
れた絶縁膜と、前記金属プラグ上に設けられ、前記貫通
孔を充填するキャップ膜とから構成されていることを特
徴とする請求項3に記載のマルチチップ半導体装置用チ
ップ。6. A connection plug comprising: a metal plug provided to a depth halfway of the through hole on the semiconductor substrate surface side; and an insulating film provided between the metal plug and a side wall of the through hole. 4. The multi-chip semiconductor device chip according to claim 3, further comprising: a cap film provided on the metal plug and filling the through hole.
体基板表面側の途中の深さまで設けれた金属プラグと、
この金属プラグと前記貫通孔の側壁との間に設けられた
絶縁膜とから構成され、前記貫通孔の未充填部分に、他
のチップと電気的に接続するための接続部材が設けられ
ることを特徴とする請求項3に記載のマルチチップ半導
体装置用チップ。7. A metal plug provided up to a depth halfway of the through hole on the semiconductor substrate surface side, wherein:
The metal plug and an insulating film provided between a side wall of the through hole and an unfilled portion of the through hole are provided with a connection member for electrically connecting to another chip. The chip for a multi-chip semiconductor device according to claim 3, wherein:
と、 前記半導体基板表面上に層間絶縁膜を形成する工程と、 この層間絶縁膜および前記半導体基板をエッチングし、
前記層間絶縁膜を貫通し、かつ前記半導体基板を貫通し
ない孔を形成する工程と、 この孔の側壁および底部に、該孔を充填しない厚さの絶
縁膜を形成する工程と、 前記絶縁膜で被覆された前記孔内に金属プラグとしての
金属を充填する工程と、 前記半導体基板裏面から、前記半導体基板および前記絶
縁膜を後退させて、前記孔の底部の前記金属プラグを露
出させる工程とを有することを特徴とするマルチチップ
半導体装置用チップの形成方法。8. A step of integrally forming elements on the surface of the semiconductor substrate, a step of forming an interlayer insulating film on the surface of the semiconductor substrate, etching the interlayer insulating film and the semiconductor substrate,
Forming a hole that penetrates the interlayer insulating film and does not penetrate the semiconductor substrate; forming an insulating film having a thickness that does not fill the hole on a side wall and a bottom of the hole; A step of filling a metal as a metal plug in the covered hole, and a step of retracting the semiconductor substrate and the insulating film from the back surface of the semiconductor substrate to expose the metal plug at the bottom of the hole. A method for forming a chip for a multi-chip semiconductor device, comprising:
と、 前記半導体基板表面上に層間絶縁膜を形成する工程と、 この層間絶縁膜および前記半導体基板をエッチングし、
前記層間絶縁膜を貫通し、かつ前記半導体基板を貫通し
ない孔を形成する工程と、 この孔の側壁および底部に、該孔を充填しない厚さの第
1の絶縁膜を形成する工程と、 前記孔内を前記第1の絶縁膜よりもエッチング速度の速
い第2の絶縁膜で充填する工程と、 前記層間絶縁膜に接続孔を形成し、この接続孔を介して
前記素子と接続する配線層を形成する工程と、 前記半導体基板裏面から、前記半導体基板および前記第
1の絶縁膜を後退させて、前記孔の底部の前記第2の絶
縁膜を露出させる工程と、 前記孔内の前記第2の絶縁膜を選択的にエッチング除去
した後、前記第1の絶縁膜で被覆された前記孔内に金属
プラグとしての金属を充填する工程とを有することを特
徴とするマルチチップ半導体装置用チップの形成方法。9. A step of integrating and forming elements on the surface of the semiconductor substrate; a step of forming an interlayer insulating film on the surface of the semiconductor substrate; etching the interlayer insulating film and the semiconductor substrate;
Forming a hole penetrating the interlayer insulating film and not penetrating the semiconductor substrate; forming a first insulating film having a thickness not filling the hole on a side wall and a bottom of the hole; Filling the inside of the hole with a second insulating film having a higher etching rate than the first insulating film; forming a connection hole in the interlayer insulating film and connecting to the element via the connection hole; Forming the semiconductor substrate and the first insulating film from the back surface of the semiconductor substrate to expose the second insulating film at the bottom of the hole; and forming the second insulating film in the hole. Selectively etching and removing the second insulating film, and then filling a metal as a metal plug in the hole covered with the first insulating film. Formation method.
程と、 前記半導体基板表面上に層間絶縁膜を形成する工程と、 この層間絶縁膜および前記半導体基板をエッチングし、
前記層間絶縁膜を貫通し、かつ前記半導体基板を貫通し
ない孔を形成する工程と、 この孔の側壁および底部に、該孔を充填しない厚さの第
1の絶縁膜を形成する工程と、 前記第1の絶縁膜で被覆された前記孔内に金属プラグと
しての金属を充填する工程と、 前記孔内の底部の前記第1の絶縁膜が露出するまで、前
記半導体基板裏面から、前記半導体基板を後退させる工
程と、 前記孔の底部の前記第1の絶縁膜より上の、前記孔の側
壁の前記第1の絶縁膜が露出するまで、前記孔の底部側
の前記半導体基板を選択的にエッチングする工程と、 前記孔の底部側の前記半導体基板裏面全面に第2の絶縁
膜を形成する工程と、 前記孔の底部の前記金属プラグが露出するまで、前記第
1および第2の絶縁膜を後退させて、前記孔の底部側の
前記半導体基板裏面に、前記第2の絶縁膜を選択的に残
置させる工程とを有することを特徴とするマルチチップ
半導体装置用チップの形成方法。10. A step of integrally forming an element on a surface of a semiconductor substrate; a step of forming an interlayer insulating film on the surface of the semiconductor substrate; and etching the interlayer insulating film and the semiconductor substrate;
Forming a hole penetrating the interlayer insulating film and not penetrating the semiconductor substrate; forming a first insulating film having a thickness not filling the hole on a side wall and a bottom of the hole; Filling a metal as a metal plug into the hole covered with the first insulating film; and removing the semiconductor substrate from the back surface of the semiconductor substrate until the first insulating film at the bottom of the hole is exposed. And selectively removing the semiconductor substrate on the bottom side of the hole until the first insulating film on the side wall of the hole is exposed above the first insulating film on the bottom of the hole. Etching; forming a second insulating film on the entire back surface of the semiconductor substrate on the bottom side of the hole; and forming the first and second insulating films until the metal plug on the bottom of the hole is exposed. And retract the semi-conductor on the bottom side of the hole. The back surface of the substrate, a method of forming the multi-chip semiconductor device chip, characterized in that it comprises a step of selectively leaving the second insulating film.
成する配線層のうち、最も融点の低い配線層を形成する
前に行なうことを特徴とする請求項8、請求項9および
請求項10のいずれかに記載のマルチチップ半導体装置
用チップの形成方法。11. The semiconductor device according to claim 8, wherein said hole is formed before forming a wiring layer having the lowest melting point among wiring layers formed on said semiconductor substrate. 11. The method for forming a chip for a multi-chip semiconductor device according to any one of the above items 10.
をウェハから切り出した後に行なうことを特徴とする請
求項8、請求項9および請求項10のいずれかに記載の
マルチチップ半導体装置用チップの形成方法。12. The chip for a multi-chip semiconductor device according to claim 8, wherein the retreating of the semiconductor substrate is performed after the semiconductor substrate is cut out from a wafer. Formation method.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30578497A JP4011695B2 (en) | 1996-12-02 | 1997-11-07 | Chip for multi-chip semiconductor device and method for forming the same |
US09/377,486 US6809421B1 (en) | 1996-12-02 | 1999-08-20 | Multichip semiconductor device, chip therefor and method of formation thereof |
US10/902,391 US7335517B2 (en) | 1996-12-02 | 2004-07-30 | Multichip semiconductor device, chip therefor and method of formation thereof |
US11/980,641 US7829975B2 (en) | 1996-12-02 | 2007-10-31 | Multichip semiconductor device, chip therefor and method of formation thereof |
US12/926,104 US8174093B2 (en) | 1996-12-02 | 2010-10-26 | Multichip semiconductor device, chip therefor and method of formation thereof |
US13/067,180 US8283755B2 (en) | 1996-12-02 | 2011-05-13 | Multichip semiconductor device, chip therefor and method of formation thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32193196 | 1996-12-02 | ||
JP8-321931 | 1996-12-02 | ||
JP30578497A JP4011695B2 (en) | 1996-12-02 | 1997-11-07 | Chip for multi-chip semiconductor device and method for forming the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007122807A Division JP2007201512A (en) | 1996-12-02 | 2007-05-07 | Multi-chip semiconductor device, chip for multi-chip semiconductor device, and method of forming same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10223833A true JPH10223833A (en) | 1998-08-21 |
JP4011695B2 JP4011695B2 (en) | 2007-11-21 |
Family
ID=26564457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30578497A Expired - Fee Related JP4011695B2 (en) | 1996-12-02 | 1997-11-07 | Chip for multi-chip semiconductor device and method for forming the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4011695B2 (en) |
Cited By (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000196014A (en) * | 1998-12-25 | 2000-07-14 | Texas Instr Japan Ltd | Semiconductor chip and semiconductor device mounted with the semiconductor chip |
JP2000277689A (en) * | 1999-03-29 | 2000-10-06 | Sony Corp | Semiconductor device and manufacture thereof |
US6222276B1 (en) * | 1998-04-07 | 2001-04-24 | International Business Machines Corporation | Through-chip conductors for low inductance chip-to-chip integration and off-chip connections |
US6235624B1 (en) | 1998-06-01 | 2001-05-22 | Kabushiki Kaisha Toshiba | Paste connection plug, burying method, and semiconductor device manufacturing method |
US6239495B1 (en) | 1998-07-29 | 2001-05-29 | Kabushiki Kaisha Toshiba | Multichip semiconductor device and memory card |
KR100338929B1 (en) * | 1999-09-27 | 2002-05-30 | 박종섭 | Stacked micro ball grid array package and manufacturing method thereof |
JP2002164354A (en) * | 2000-09-14 | 2002-06-07 | Semiconductor Energy Lab Co Ltd | Semiconductor device and its manufacturing method |
JP2003503834A (en) * | 1999-06-23 | 2003-01-28 | ギーゼッケ ウント デフリエント ゲーエムベーハー | Semiconductor memory chip module |
JP2003078171A (en) * | 2001-09-03 | 2003-03-14 | Sony Corp | Wiring and its forming method, connection hole and its manufacturing method, wiring body and its forming method, display element and its manufacturing method, and image display device and its manufacturing method |
US6661077B2 (en) | 2001-01-10 | 2003-12-09 | Shinko Electric Industries Co., Ltd | Semiconductor device including primary connecting plug and an auxiliary connecting plug |
KR100414839B1 (en) * | 1999-10-26 | 2004-01-13 | 샤프 가부시키가이샤 | Stacked semiconductor device |
JP2004014706A (en) * | 2002-06-05 | 2004-01-15 | Tokyo Seimitsu Co Ltd | Method and apparatus for working substrate |
US6682948B2 (en) | 2000-06-27 | 2004-01-27 | Seiko Epson Corporation | Semiconductor device and method for manufacturing the same |
US6717251B2 (en) | 2000-09-28 | 2004-04-06 | Kabushiki Kaisha Toshiba | Stacked type semiconductor device |
JP2004111915A (en) * | 2002-07-11 | 2004-04-08 | Dainippon Printing Co Ltd | Multilayered wiring board and manufacturing method thereof |
US6720661B2 (en) | 2000-06-02 | 2004-04-13 | Seiko Epson Corporation | Semiconductor device, method of fabricating the same, stack-type semiconductor device, circuit board and electronic instrument |
JP2004152810A (en) * | 2002-10-28 | 2004-05-27 | Sharp Corp | Semiconductor device and laminated semiconductor device |
JP2004152812A (en) * | 2002-10-28 | 2004-05-27 | Sharp Corp | Semiconductor device and stacked semiconductor device |
KR100434201B1 (en) * | 2001-06-15 | 2004-06-04 | 동부전자 주식회사 | Semiconductor package and fabrication method |
US6831367B2 (en) | 2002-09-30 | 2004-12-14 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
US6830946B2 (en) | 2001-02-01 | 2004-12-14 | Sony Corporation | Device transfer method and panel |
JP2005026670A (en) * | 2003-06-10 | 2005-01-27 | Dainippon Printing Co Ltd | Multilayer wiring substrate and method for manufacturing the same |
WO2005043622A1 (en) * | 2003-10-30 | 2005-05-12 | Japan Science And Technology Agency | Semiconductor device and process for fabricating the same |
JP2005286184A (en) * | 2004-03-30 | 2005-10-13 | Nec Electronics Corp | Through electrode, spacer using the same, and methods for manufacturing them |
JP2006019431A (en) * | 2004-06-30 | 2006-01-19 | Nec Electronics Corp | Semiconductor device and semiconductor module using the same |
US7067353B2 (en) | 2003-06-19 | 2006-06-27 | Shinko Electric Industries Co., Ltd. | Method for manufacturing semiconductor package having electrodes penetrating through semiconductor wafer |
KR100605434B1 (en) * | 2000-09-28 | 2006-07-28 | 가부시끼가이샤 도시바 | Stacked type semiconductor device |
JP2006245311A (en) * | 2005-03-03 | 2006-09-14 | Oki Electric Ind Co Ltd | Semiconductor device and its manufacturing process |
EP1703553A3 (en) * | 2005-03-18 | 2006-11-08 | Sharp Kabushiki Kaisha | Via in semiconductor substrate and its fabrication method |
KR100650728B1 (en) | 2004-12-24 | 2006-11-27 | 주식회사 하이닉스반도체 | stacked package and method for manufacturing the same |
US7215033B2 (en) | 2003-11-19 | 2007-05-08 | Samsung Electronics Co., Ltd. | Wafer level stack structure for system-in-package and method thereof |
JP2007115922A (en) * | 2005-10-20 | 2007-05-10 | Nec Electronics Corp | Semiconductor device |
US7222420B2 (en) | 2000-07-27 | 2007-05-29 | Fujitsu Limited | Method for making a front and back conductive substrate |
JP2007520051A (en) * | 2003-09-23 | 2007-07-19 | マイクロン テクノロジー,インコーポレイテッド | Process and integration scheme for manufacturing semiconductor components including conductive components, through vias and conductive through wafer vias |
US7247518B2 (en) | 2001-11-01 | 2007-07-24 | Rohm Co., Ltd. | Semiconductor device and method for manufacturing same |
JP2007201512A (en) * | 1996-12-02 | 2007-08-09 | Toshiba Corp | Multi-chip semiconductor device, chip for multi-chip semiconductor device, and method of forming same |
US7276799B2 (en) | 2003-08-26 | 2007-10-02 | Samsung Electronics Co., Ltd. | Chip stack package and manufacturing method thereof |
US7282444B2 (en) | 2003-12-04 | 2007-10-16 | Rohm Co., Ltd. | Semiconductor chip and manufacturing method for the same, and semiconductor device |
US7291911B2 (en) | 2004-02-03 | 2007-11-06 | Nec Electronics Corporation | Semiconductor device and manufacturing method thereof |
CN100367452C (en) * | 2003-06-19 | 2008-02-06 | 精工爱普生株式会社 | Semiconductor device and its manufacturing method |
EP1630864A3 (en) * | 2004-08-23 | 2008-02-13 | Tecnisco Ltd. | Substrate with many via contact means disposed therein |
JP2008066455A (en) * | 2006-09-06 | 2008-03-21 | Sumitomo Bakelite Co Ltd | Semiconductor device and its manufacturing method |
JP2008085126A (en) * | 2006-09-28 | 2008-04-10 | Hitachi Ltd | Semiconductor device and its manufacturing method |
US7358602B2 (en) | 2003-01-15 | 2008-04-15 | Seiko Epson Corporation | Semiconductor chip, and semiconductor wafer including a variable thickness insulating layer |
US7402903B2 (en) | 2003-01-22 | 2008-07-22 | Kabushiki Kaisha Toshiba | Semiconductor device |
JP2008182264A (en) * | 2008-03-18 | 2008-08-07 | Matsushita Electric Ind Co Ltd | Semiconductor device, manufacturing and inspection methods therefor |
US7419906B2 (en) | 2005-03-25 | 2008-09-02 | Oki Electric Industry Co., Ltd. | Method for manufacturing a through conductor |
JP2008235299A (en) * | 2007-03-16 | 2008-10-02 | Oki Electric Ind Co Ltd | Semiconductor device and manufacturing method thereof |
JP2008251721A (en) * | 2007-03-29 | 2008-10-16 | Fujikura Ltd | Through wiring board and its manufacturing method |
CN100429755C (en) * | 2004-12-21 | 2008-10-29 | 精工爱普生株式会社 | Semiconductor device manufacturing method, semiconductor device, laminated semiconductor device, circuit substrate, and electronic apparatus |
JP2008270354A (en) * | 2007-04-17 | 2008-11-06 | Applied Materials Inc | Manufacturing method of three-dimensional semiconductor device, manufacturing method of substrate product, substrate product, and three-dimensional semiconductor device |
US7491582B2 (en) | 2004-08-31 | 2009-02-17 | Seiko Epson Corporation | Method for manufacturing semiconductor device and semiconductor device |
JP2009508357A (en) * | 2005-09-14 | 2009-02-26 | フリースケール セミコンダクター インコーポレイテッド | Semiconductor stacked die / wafer construction and packaging, and method thereof |
US7528476B2 (en) | 2004-12-21 | 2009-05-05 | Seiko Epson Corporation | Semiconductor device, method for manufacturing semiconductor device, circuit board, and electronic instrument |
US7564118B2 (en) | 2001-12-19 | 2009-07-21 | International Business Machines Corporation | Chip and wafer integration process using vertical connections |
US7576413B2 (en) | 2004-11-30 | 2009-08-18 | Kyushu Institute Of Technology | Packaged stacked semiconductor device and method for manufacturing the same |
US7589415B2 (en) | 1999-02-23 | 2009-09-15 | Rohm Co., Ltd. | Semiconductor chip and semiconductor device using the same, and method of fabricating semiconductor chip |
WO2009117882A1 (en) * | 2008-03-27 | 2009-10-01 | Hong Kong Applied Science and Technology Research Institute Co. Ltd | Pulse-laser bonding method for through-silicon-via based stacking of electronic components |
US7598617B2 (en) | 2006-03-17 | 2009-10-06 | Hynix Semiconductor Inc. | Stack package utilizing through vias and re-distribution lines |
JP2010016392A (en) * | 2001-10-01 | 2010-01-21 | Xsil Technology Ltd | Processing of substrate, especially semiconductor wafer |
JP2010503986A (en) * | 2006-09-18 | 2010-02-04 | エヌエックスピー ビー ヴィ | Method for manufacturing vertical contacts on a semiconductor substrate |
JP2010034591A (en) * | 2002-09-24 | 2010-02-12 | Hamamatsu Photonics Kk | Semiconductor device and method of manufacturing the same |
JP2010103195A (en) * | 2008-10-21 | 2010-05-06 | Nikon Corp | Multilayer type semiconductor device and method of manufacturing the same |
JP2010114350A (en) * | 2008-11-10 | 2010-05-20 | Hitachi Ltd | Method of manufacturing semiconductor device, and semiconductor device |
JP2010147308A (en) * | 2008-12-19 | 2010-07-01 | Canon Inc | Method of manufacturing wiring board, and method of manufacturing board for ink-jet recording head |
JP2010153848A (en) * | 2008-12-02 | 2010-07-08 | Imec | Method for producing interconnect structures for integrated circuits |
US7808064B2 (en) | 2007-12-27 | 2010-10-05 | Kabushiki Kaisha Toshiba | Semiconductor package including through-hole electrode and light-transmitting substrate |
US7829975B2 (en) | 1996-12-02 | 2010-11-09 | Kabushiki Kaisha Toshiba | Multichip semiconductor device, chip therefor and method of formation thereof |
US7851346B2 (en) | 2008-07-21 | 2010-12-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bonding metallurgy for three-dimensional interconnect |
US7884459B2 (en) | 2003-01-15 | 2011-02-08 | Fujitsu Semiconductor Limited | Semiconductor device suitable for a stacked structure |
US7898086B2 (en) | 2005-02-28 | 2011-03-01 | Oki Semiconductor Co., Ltd. | Semiconductor device having a package base with at least one through electrode |
JP2011096978A (en) * | 2009-11-02 | 2011-05-12 | Shinko Electric Ind Co Ltd | Semiconductor package, method of evaluating the same, and method of manufacturing the same |
US7964972B2 (en) | 2004-06-30 | 2011-06-21 | Renesas Electronics Corporation | Semiconductor device providing a first electrical conductor and a second electrical conductor in one through hole and method for manufacturing the same |
JP2011124524A (en) * | 2009-12-09 | 2011-06-23 | Korea Electronics Telecommun | Method for fabricating semiconductor element |
JP2011129918A (en) * | 2009-12-15 | 2011-06-30 | Commissariat A L'energie Atomique & Aux Energies Alternatives | Production of tsv interconnection structures made up of insulating contour and conductive zone situated in the contour and disconnected from the contour |
WO2011148445A1 (en) * | 2010-05-27 | 2011-12-01 | パナソニック株式会社 | Semiconductor device and process for production thereof |
JP2012009847A (en) * | 2010-06-28 | 2012-01-12 | Samsung Electronics Co Ltd | Semiconductor device and manufacturing method of the same |
US8119448B2 (en) | 2009-10-28 | 2012-02-21 | Samsung Electronics Co., Ltd. | Semiconductor chip, wafer stack package using the same, and methods of manufacturing the same |
JP2012060091A (en) * | 2010-09-13 | 2012-03-22 | Semiconductor Energy Lab Co Ltd | Semiconductor element, semiconductor device, and manufacturing method of semiconductor element |
KR101173698B1 (en) * | 2004-08-20 | 2012-08-13 | 로무 가부시키가이샤 | Semiconductor chip manufacturing method, semiconductor chip, semiconductor device manufacturing method, and semiconductor device |
US8278738B2 (en) | 2005-02-17 | 2012-10-02 | Sharp Kabushiki Kaisha | Method of producing semiconductor device and semiconductor device |
JP2012209545A (en) * | 2011-03-17 | 2012-10-25 | Sekisui Chem Co Ltd | Manufacturing method of semiconductor laminate |
US8319324B2 (en) | 2006-12-05 | 2012-11-27 | Samsung Electronics Co., Ltd. | High I/O semiconductor chip package and method of manufacturing the same |
JP2013042025A (en) * | 2011-08-18 | 2013-02-28 | Fujitsu Semiconductor Ltd | Semiconductor device |
US8476729B2 (en) | 2009-04-16 | 2013-07-02 | Kabushiki Kaisha Toshiba | Solid-state imaging device comprising through-electrode |
US8580652B2 (en) | 2009-09-24 | 2013-11-12 | Kabushiki Kaisha Toshiba | Semiconductor device and manufacturing method thereof |
JP5354765B2 (en) * | 2004-08-20 | 2013-11-27 | カミヤチョウ アイピー ホールディングス | Manufacturing method of semiconductor device having three-dimensional laminated structure |
JP2015046606A (en) * | 2000-09-14 | 2015-03-12 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
US9099443B2 (en) | 2013-02-21 | 2015-08-04 | Kabushiki Kaisha Toshiba | Semiconductor device and manufacturing method thereof |
JP2016171323A (en) * | 2015-03-10 | 2016-09-23 | Sppテクノロジーズ株式会社 | Wiring board manufacturing method |
JP2016219689A (en) * | 2015-05-25 | 2016-12-22 | 富士通株式会社 | Semiconductor device and electronic apparatus |
CN110047810A (en) * | 2018-01-17 | 2019-07-23 | 三星电子株式会社 | Semiconductor package part and semiconductor devices including it |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5412506B2 (en) | 2009-03-27 | 2014-02-12 | パナソニック株式会社 | Semiconductor device |
-
1997
- 1997-11-07 JP JP30578497A patent/JP4011695B2/en not_active Expired - Fee Related
Cited By (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8283755B2 (en) | 1996-12-02 | 2012-10-09 | Kabushiki Kaisha Toshiba | Multichip semiconductor device, chip therefor and method of formation thereof |
US8174093B2 (en) | 1996-12-02 | 2012-05-08 | Kabushiki Kaisha Toshiba | Multichip semiconductor device, chip therefor and method of formation thereof |
US7829975B2 (en) | 1996-12-02 | 2010-11-09 | Kabushiki Kaisha Toshiba | Multichip semiconductor device, chip therefor and method of formation thereof |
JP2007201512A (en) * | 1996-12-02 | 2007-08-09 | Toshiba Corp | Multi-chip semiconductor device, chip for multi-chip semiconductor device, and method of forming same |
US6410431B2 (en) | 1998-04-07 | 2002-06-25 | International Business Machines Corporation | Through-chip conductors for low inductance chip-to-chip integration and off-chip connections |
US6222276B1 (en) * | 1998-04-07 | 2001-04-24 | International Business Machines Corporation | Through-chip conductors for low inductance chip-to-chip integration and off-chip connections |
US6657306B1 (en) | 1998-06-01 | 2003-12-02 | Kabushiki Kaisha Toshiba | Paste including a mixture of powders, connection plug, burying method, and semiconductor device manufacturing method |
US7049223B2 (en) | 1998-06-01 | 2006-05-23 | Kabushiki Kaisha Toshiba | Paste including a mixture of powders, connection plug, burying method, and semiconductor device manufacturing method |
US6235624B1 (en) | 1998-06-01 | 2001-05-22 | Kabushiki Kaisha Toshiba | Paste connection plug, burying method, and semiconductor device manufacturing method |
US6239495B1 (en) | 1998-07-29 | 2001-05-29 | Kabushiki Kaisha Toshiba | Multichip semiconductor device and memory card |
JP2000196014A (en) * | 1998-12-25 | 2000-07-14 | Texas Instr Japan Ltd | Semiconductor chip and semiconductor device mounted with the semiconductor chip |
US7589415B2 (en) | 1999-02-23 | 2009-09-15 | Rohm Co., Ltd. | Semiconductor chip and semiconductor device using the same, and method of fabricating semiconductor chip |
JP4547728B2 (en) * | 1999-03-29 | 2010-09-22 | ソニー株式会社 | Semiconductor device and manufacturing method thereof |
JP2000277689A (en) * | 1999-03-29 | 2000-10-06 | Sony Corp | Semiconductor device and manufacture thereof |
JP2003503834A (en) * | 1999-06-23 | 2003-01-28 | ギーゼッケ ウント デフリエント ゲーエムベーハー | Semiconductor memory chip module |
KR100338929B1 (en) * | 1999-09-27 | 2002-05-30 | 박종섭 | Stacked micro ball grid array package and manufacturing method thereof |
KR100414839B1 (en) * | 1999-10-26 | 2004-01-13 | 샤프 가부시키가이샤 | Stacked semiconductor device |
KR100447830B1 (en) * | 2000-06-02 | 2004-09-08 | 세이코 엡슨 가부시키가이샤 | Semiconductor device and method of manufacturing the same, stacked-type semiconductor device, circuit board, and electronic instrument |
US6720661B2 (en) | 2000-06-02 | 2004-04-13 | Seiko Epson Corporation | Semiconductor device, method of fabricating the same, stack-type semiconductor device, circuit board and electronic instrument |
US6962865B2 (en) | 2000-06-02 | 2005-11-08 | Seiko Epson Corporation | Semiconductor device, method of fabricating the same, stack-type semiconductor device, circuit board and electronic instrument |
US7102219B2 (en) | 2000-06-02 | 2006-09-05 | Seiko Epson Corporation | Semiconductor device, method of fabricating the same, stack-type semiconductor device, circuit board and electronic instrument |
US6682948B2 (en) | 2000-06-27 | 2004-01-27 | Seiko Epson Corporation | Semiconductor device and method for manufacturing the same |
US7033935B2 (en) | 2000-06-27 | 2006-04-25 | Seiko Epson Corporation | Semiconductor device and method for manufacturing the same |
US7222420B2 (en) | 2000-07-27 | 2007-05-29 | Fujitsu Limited | Method for making a front and back conductive substrate |
US7579553B2 (en) | 2000-07-27 | 2009-08-25 | Fujitsu Limited | Front-and-back electrically conductive substrate |
JP2002164354A (en) * | 2000-09-14 | 2002-06-07 | Semiconductor Energy Lab Co Ltd | Semiconductor device and its manufacturing method |
JP2015046606A (en) * | 2000-09-14 | 2015-03-12 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
KR100605434B1 (en) * | 2000-09-28 | 2006-07-28 | 가부시끼가이샤 도시바 | Stacked type semiconductor device |
US6717251B2 (en) | 2000-09-28 | 2004-04-06 | Kabushiki Kaisha Toshiba | Stacked type semiconductor device |
US6661077B2 (en) | 2001-01-10 | 2003-12-09 | Shinko Electric Industries Co., Ltd | Semiconductor device including primary connecting plug and an auxiliary connecting plug |
US6830946B2 (en) | 2001-02-01 | 2004-12-14 | Sony Corporation | Device transfer method and panel |
US6921675B2 (en) | 2001-02-01 | 2005-07-26 | Sony Corporation | Device transfer method and panel |
US7233030B2 (en) | 2001-02-01 | 2007-06-19 | Sony Corporation | Device transfer method and panel |
KR100434201B1 (en) * | 2001-06-15 | 2004-06-04 | 동부전자 주식회사 | Semiconductor package and fabrication method |
JP2003078171A (en) * | 2001-09-03 | 2003-03-14 | Sony Corp | Wiring and its forming method, connection hole and its manufacturing method, wiring body and its forming method, display element and its manufacturing method, and image display device and its manufacturing method |
JP2010016392A (en) * | 2001-10-01 | 2010-01-21 | Xsil Technology Ltd | Processing of substrate, especially semiconductor wafer |
US7247518B2 (en) | 2001-11-01 | 2007-07-24 | Rohm Co., Ltd. | Semiconductor device and method for manufacturing same |
US7564118B2 (en) | 2001-12-19 | 2009-07-21 | International Business Machines Corporation | Chip and wafer integration process using vertical connections |
JP2004014706A (en) * | 2002-06-05 | 2004-01-15 | Tokyo Seimitsu Co Ltd | Method and apparatus for working substrate |
JP2004111915A (en) * | 2002-07-11 | 2004-04-08 | Dainippon Printing Co Ltd | Multilayered wiring board and manufacturing method thereof |
JP2010034591A (en) * | 2002-09-24 | 2010-02-12 | Hamamatsu Photonics Kk | Semiconductor device and method of manufacturing the same |
US6831367B2 (en) | 2002-09-30 | 2004-12-14 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
US7276780B2 (en) | 2002-10-28 | 2007-10-02 | Sharp Kabushiki Kaisha | Semiconductor device and chip-stack semiconductor device |
US7115972B2 (en) | 2002-10-28 | 2006-10-03 | Sharp Kabushiki Kaisha | Semiconductor device and chip-stack semiconductor device |
JP2004152810A (en) * | 2002-10-28 | 2004-05-27 | Sharp Corp | Semiconductor device and laminated semiconductor device |
JP2004152812A (en) * | 2002-10-28 | 2004-05-27 | Sharp Corp | Semiconductor device and stacked semiconductor device |
US7358602B2 (en) | 2003-01-15 | 2008-04-15 | Seiko Epson Corporation | Semiconductor chip, and semiconductor wafer including a variable thickness insulating layer |
US7884459B2 (en) | 2003-01-15 | 2011-02-08 | Fujitsu Semiconductor Limited | Semiconductor device suitable for a stacked structure |
US8216934B2 (en) | 2003-01-15 | 2012-07-10 | Fujitsu Semiconductor Limited | Semiconductor device suitable for a stacked structure |
CN100394601C (en) * | 2003-01-15 | 2008-06-11 | 精工爱普生株式会社 | Semiconductor chip, semiconductor wafer and semiconductor device and its manufacturing method |
US7402903B2 (en) | 2003-01-22 | 2008-07-22 | Kabushiki Kaisha Toshiba | Semiconductor device |
JP4537753B2 (en) * | 2003-06-10 | 2010-09-08 | 大日本印刷株式会社 | Multilayer wiring board and manufacturing method thereof |
JP2005026670A (en) * | 2003-06-10 | 2005-01-27 | Dainippon Printing Co Ltd | Multilayer wiring substrate and method for manufacturing the same |
US7067353B2 (en) | 2003-06-19 | 2006-06-27 | Shinko Electric Industries Co., Ltd. | Method for manufacturing semiconductor package having electrodes penetrating through semiconductor wafer |
CN100367452C (en) * | 2003-06-19 | 2008-02-06 | 精工爱普生株式会社 | Semiconductor device and its manufacturing method |
US7537959B2 (en) | 2003-08-26 | 2009-05-26 | Samsung Electronics Co., Ltd. | Chip stack package and manufacturing method thereof |
US7977156B2 (en) | 2003-08-26 | 2011-07-12 | Samsung Electronics Co., Ltd. | Chipstack package and manufacturing method thereof |
US8368231B2 (en) | 2003-08-26 | 2013-02-05 | Samsung Electronics Co., Ltd. | Chipstack package and manufacturing method thereof |
US7276799B2 (en) | 2003-08-26 | 2007-10-02 | Samsung Electronics Co., Ltd. | Chip stack package and manufacturing method thereof |
JP2007520051A (en) * | 2003-09-23 | 2007-07-19 | マイクロン テクノロジー,インコーポレイテッド | Process and integration scheme for manufacturing semiconductor components including conductive components, through vias and conductive through wafer vias |
US9093431B2 (en) | 2003-10-30 | 2015-07-28 | Lapis Semiconductor Co., Ltd. | Semiconductor device and process for fabricating the same |
US8664666B2 (en) | 2003-10-30 | 2014-03-04 | Oki Semiconductor Co., Ltd. | Semiconductor device and process for fabricating the same |
US11127657B2 (en) | 2003-10-30 | 2021-09-21 | Lapis Semiconductor Co., Ltd. | Semiconductor device and process for fabricating the same |
US10559521B2 (en) | 2003-10-30 | 2020-02-11 | Lapis Semiconductor Co., Ltd. | Semiconductor device and process for fabricating the same |
US10199310B2 (en) | 2003-10-30 | 2019-02-05 | Lapis Semiconductor Co., Ltd. | Semiconductor device and process for fabricating the same |
US7944058B2 (en) | 2003-10-30 | 2011-05-17 | Oki Semiconductor Co., Ltd. | Semiconductor device and process for fabricating the same |
WO2005043622A1 (en) * | 2003-10-30 | 2005-05-12 | Japan Science And Technology Agency | Semiconductor device and process for fabricating the same |
US9887147B2 (en) | 2003-10-30 | 2018-02-06 | Lapis Semiconductor Co., Ltd. | Semiconductor device and process for fabricating the same |
KR100814177B1 (en) * | 2003-10-30 | 2008-03-14 | 마사미치 이시하라 | Semiconductor device and process for fabricating the same |
US9559041B2 (en) | 2003-10-30 | 2017-01-31 | Lapis Semiconductor Co., Ltd. | Semiconductor device and process for fabricating the same |
US8278766B2 (en) | 2003-11-19 | 2012-10-02 | Samsung Electronics Co., Ltd. | Wafer level stack structure for system-in-package and method thereof |
US7786594B2 (en) | 2003-11-19 | 2010-08-31 | Samsung Electronics Co., Ltd. | Wafer level stack structure for system-in-package and method thereof |
US7824959B2 (en) | 2003-11-19 | 2010-11-02 | Samsung Electronics Co., Ltd. | Wafer level stack structure for system-in-package and method thereof |
US7215033B2 (en) | 2003-11-19 | 2007-05-08 | Samsung Electronics Co., Ltd. | Wafer level stack structure for system-in-package and method thereof |
US7282444B2 (en) | 2003-12-04 | 2007-10-16 | Rohm Co., Ltd. | Semiconductor chip and manufacturing method for the same, and semiconductor device |
US7488674B2 (en) | 2004-02-03 | 2009-02-10 | Nec Electronics Corporation | Semiconductor device and manufacturing method thereof |
US7291911B2 (en) | 2004-02-03 | 2007-11-06 | Nec Electronics Corporation | Semiconductor device and manufacturing method thereof |
JP2005286184A (en) * | 2004-03-30 | 2005-10-13 | Nec Electronics Corp | Through electrode, spacer using the same, and methods for manufacturing them |
US7994048B2 (en) | 2004-03-30 | 2011-08-09 | Renesas Electronics Corporation | Method of manufacturing a through electrode |
JP4568039B2 (en) * | 2004-06-30 | 2010-10-27 | ルネサスエレクトロニクス株式会社 | Semiconductor device and semiconductor module using the same |
JP2006019431A (en) * | 2004-06-30 | 2006-01-19 | Nec Electronics Corp | Semiconductor device and semiconductor module using the same |
US7898073B2 (en) | 2004-06-30 | 2011-03-01 | Renesas Electronics Corporation | Semiconductor device and semiconductor module employing thereof |
US8390098B2 (en) | 2004-06-30 | 2013-03-05 | Renesas Electronics Corporation | Semiconductor device providing a first electrical conductor and a second electrical conductor in one through hole and method for manufacturing the same |
US7964972B2 (en) | 2004-06-30 | 2011-06-21 | Renesas Electronics Corporation | Semiconductor device providing a first electrical conductor and a second electrical conductor in one through hole and method for manufacturing the same |
US7768133B2 (en) | 2004-06-30 | 2010-08-03 | Nec Electronics Corporation | Semiconductor device and semiconductor module employing thereof |
JP5354765B2 (en) * | 2004-08-20 | 2013-11-27 | カミヤチョウ アイピー ホールディングス | Manufacturing method of semiconductor device having three-dimensional laminated structure |
KR101173698B1 (en) * | 2004-08-20 | 2012-08-13 | 로무 가부시키가이샤 | Semiconductor chip manufacturing method, semiconductor chip, semiconductor device manufacturing method, and semiconductor device |
EP1630864A3 (en) * | 2004-08-23 | 2008-02-13 | Tecnisco Ltd. | Substrate with many via contact means disposed therein |
US7491582B2 (en) | 2004-08-31 | 2009-02-17 | Seiko Epson Corporation | Method for manufacturing semiconductor device and semiconductor device |
US7576413B2 (en) | 2004-11-30 | 2009-08-18 | Kyushu Institute Of Technology | Packaged stacked semiconductor device and method for manufacturing the same |
US7528476B2 (en) | 2004-12-21 | 2009-05-05 | Seiko Epson Corporation | Semiconductor device, method for manufacturing semiconductor device, circuit board, and electronic instrument |
CN100429755C (en) * | 2004-12-21 | 2008-10-29 | 精工爱普生株式会社 | Semiconductor device manufacturing method, semiconductor device, laminated semiconductor device, circuit substrate, and electronic apparatus |
KR100650728B1 (en) | 2004-12-24 | 2006-11-27 | 주식회사 하이닉스반도체 | stacked package and method for manufacturing the same |
US8278738B2 (en) | 2005-02-17 | 2012-10-02 | Sharp Kabushiki Kaisha | Method of producing semiconductor device and semiconductor device |
US7898086B2 (en) | 2005-02-28 | 2011-03-01 | Oki Semiconductor Co., Ltd. | Semiconductor device having a package base with at least one through electrode |
US7649249B2 (en) | 2005-03-03 | 2010-01-19 | Oki Semiconductor Co., Ltd. | Semiconductor device, stacked structure, and manufacturing method |
JP4688526B2 (en) * | 2005-03-03 | 2011-05-25 | Okiセミコンダクタ株式会社 | Semiconductor device and manufacturing method thereof |
JP2006245311A (en) * | 2005-03-03 | 2006-09-14 | Oki Electric Ind Co Ltd | Semiconductor device and its manufacturing process |
EP1703553A3 (en) * | 2005-03-18 | 2006-11-08 | Sharp Kabushiki Kaisha | Via in semiconductor substrate and its fabrication method |
US7419906B2 (en) | 2005-03-25 | 2008-09-02 | Oki Electric Industry Co., Ltd. | Method for manufacturing a through conductor |
JP2009508357A (en) * | 2005-09-14 | 2009-02-26 | フリースケール セミコンダクター インコーポレイテッド | Semiconductor stacked die / wafer construction and packaging, and method thereof |
JP2007115922A (en) * | 2005-10-20 | 2007-05-10 | Nec Electronics Corp | Semiconductor device |
US7598617B2 (en) | 2006-03-17 | 2009-10-06 | Hynix Semiconductor Inc. | Stack package utilizing through vias and re-distribution lines |
JP2008066455A (en) * | 2006-09-06 | 2008-03-21 | Sumitomo Bakelite Co Ltd | Semiconductor device and its manufacturing method |
JP2010503986A (en) * | 2006-09-18 | 2010-02-04 | エヌエックスピー ビー ヴィ | Method for manufacturing vertical contacts on a semiconductor substrate |
JP2008085126A (en) * | 2006-09-28 | 2008-04-10 | Hitachi Ltd | Semiconductor device and its manufacturing method |
US8319324B2 (en) | 2006-12-05 | 2012-11-27 | Samsung Electronics Co., Ltd. | High I/O semiconductor chip package and method of manufacturing the same |
JP4700642B2 (en) * | 2007-03-16 | 2011-06-15 | Okiセミコンダクタ株式会社 | Semiconductor device and manufacturing method thereof |
JP2008235299A (en) * | 2007-03-16 | 2008-10-02 | Oki Electric Ind Co Ltd | Semiconductor device and manufacturing method thereof |
JP2008251721A (en) * | 2007-03-29 | 2008-10-16 | Fujikura Ltd | Through wiring board and its manufacturing method |
JP2008270354A (en) * | 2007-04-17 | 2008-11-06 | Applied Materials Inc | Manufacturing method of three-dimensional semiconductor device, manufacturing method of substrate product, substrate product, and three-dimensional semiconductor device |
US7808064B2 (en) | 2007-12-27 | 2010-10-05 | Kabushiki Kaisha Toshiba | Semiconductor package including through-hole electrode and light-transmitting substrate |
JP2008182264A (en) * | 2008-03-18 | 2008-08-07 | Matsushita Electric Ind Co Ltd | Semiconductor device, manufacturing and inspection methods therefor |
US8138577B2 (en) | 2008-03-27 | 2012-03-20 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Pulse-laser bonding method for through-silicon-via based stacking of electronic components |
WO2009117882A1 (en) * | 2008-03-27 | 2009-10-01 | Hong Kong Applied Science and Technology Research Institute Co. Ltd | Pulse-laser bonding method for through-silicon-via based stacking of electronic components |
US8242611B2 (en) | 2008-07-21 | 2012-08-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bonding metallurgy for three-dimensional interconnect |
US7851346B2 (en) | 2008-07-21 | 2010-12-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bonding metallurgy for three-dimensional interconnect |
JP2010103195A (en) * | 2008-10-21 | 2010-05-06 | Nikon Corp | Multilayer type semiconductor device and method of manufacturing the same |
JP4696152B2 (en) * | 2008-11-10 | 2011-06-08 | 株式会社日立製作所 | Semiconductor device manufacturing method and semiconductor device |
JP2010114350A (en) * | 2008-11-10 | 2010-05-20 | Hitachi Ltd | Method of manufacturing semiconductor device, and semiconductor device |
JP2015181177A (en) * | 2008-12-02 | 2015-10-15 | アイメックImec | Method for producing interconnecting structure for integrated circuit |
JP2010153848A (en) * | 2008-12-02 | 2010-07-08 | Imec | Method for producing interconnect structures for integrated circuits |
JP2010147308A (en) * | 2008-12-19 | 2010-07-01 | Canon Inc | Method of manufacturing wiring board, and method of manufacturing board for ink-jet recording head |
US8476729B2 (en) | 2009-04-16 | 2013-07-02 | Kabushiki Kaisha Toshiba | Solid-state imaging device comprising through-electrode |
US8580652B2 (en) | 2009-09-24 | 2013-11-12 | Kabushiki Kaisha Toshiba | Semiconductor device and manufacturing method thereof |
US8119448B2 (en) | 2009-10-28 | 2012-02-21 | Samsung Electronics Co., Ltd. | Semiconductor chip, wafer stack package using the same, and methods of manufacturing the same |
JP2011096978A (en) * | 2009-11-02 | 2011-05-12 | Shinko Electric Ind Co Ltd | Semiconductor package, method of evaluating the same, and method of manufacturing the same |
JP2011124524A (en) * | 2009-12-09 | 2011-06-23 | Korea Electronics Telecommun | Method for fabricating semiconductor element |
JP2011129918A (en) * | 2009-12-15 | 2011-06-30 | Commissariat A L'energie Atomique & Aux Energies Alternatives | Production of tsv interconnection structures made up of insulating contour and conductive zone situated in the contour and disconnected from the contour |
WO2011148445A1 (en) * | 2010-05-27 | 2011-12-01 | パナソニック株式会社 | Semiconductor device and process for production thereof |
JP2012009847A (en) * | 2010-06-28 | 2012-01-12 | Samsung Electronics Co Ltd | Semiconductor device and manufacturing method of the same |
JP2012060091A (en) * | 2010-09-13 | 2012-03-22 | Semiconductor Energy Lab Co Ltd | Semiconductor element, semiconductor device, and manufacturing method of semiconductor element |
JP2012209545A (en) * | 2011-03-17 | 2012-10-25 | Sekisui Chem Co Ltd | Manufacturing method of semiconductor laminate |
JP2013042025A (en) * | 2011-08-18 | 2013-02-28 | Fujitsu Semiconductor Ltd | Semiconductor device |
US9099443B2 (en) | 2013-02-21 | 2015-08-04 | Kabushiki Kaisha Toshiba | Semiconductor device and manufacturing method thereof |
JP2016171323A (en) * | 2015-03-10 | 2016-09-23 | Sppテクノロジーズ株式会社 | Wiring board manufacturing method |
JP2016219689A (en) * | 2015-05-25 | 2016-12-22 | 富士通株式会社 | Semiconductor device and electronic apparatus |
CN110047810A (en) * | 2018-01-17 | 2019-07-23 | 三星电子株式会社 | Semiconductor package part and semiconductor devices including it |
Also Published As
Publication number | Publication date |
---|---|
JP4011695B2 (en) | 2007-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4011695B2 (en) | Chip for multi-chip semiconductor device and method for forming the same | |
US8174093B2 (en) | Multichip semiconductor device, chip therefor and method of formation thereof | |
JP3767398B2 (en) | Semiconductor device and manufacturing method thereof | |
JP4139803B2 (en) | Manufacturing method of semiconductor device | |
JP4246132B2 (en) | Semiconductor device and manufacturing method thereof | |
US6022797A (en) | Method of manufacturing through holes in a semiconductor device | |
JPWO2004064159A1 (en) | Semiconductor device, three-dimensional mounting semiconductor device, and method for manufacturing semiconductor device | |
JP2002110799A (en) | Semiconductor device and method for manufacturing the same | |
JP2000216191A (en) | Manufacture of semiconductor integrated circuit | |
JP2003142485A (en) | Semiconductor device and method of manufacturing the same | |
US11562976B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3651346B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3673094B2 (en) | Multi-chip semiconductor device | |
TWI757946B (en) | Semiconductor device and method for fabricating the same | |
US20230245927A1 (en) | Semiconductor device, method of manufacturing semiconductor device, and method of recycling substrate | |
JP2007201512A (en) | Multi-chip semiconductor device, chip for multi-chip semiconductor device, and method of forming same | |
JP4764710B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2006041512A (en) | Method of manufacturing integrated-circuit chip for multi-chip package, and wafer and chip formed by the method thereof | |
JP2002110897A (en) | Semiconductor device and its manufacturing method | |
JP3395747B2 (en) | Manufacturing method of semiconductor integrated circuit | |
TWI645478B (en) | Semiconductor chip packaging method and packaging structure | |
KR100787547B1 (en) | Semiconductor device, three-dimensional mounting semiconductor apparatus, method for manufacturing semiconductor device | |
JP2001068603A (en) | Semiconductor device and its manufacture | |
JPH0430471A (en) | Semiconductor device and manufacture thereof | |
JP2004228598A (en) | Multi-chip semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041108 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060926 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070904 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070906 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |