JP2008270354A - Manufacturing method of three-dimensional semiconductor device, manufacturing method of substrate product, substrate product, and three-dimensional semiconductor device - Google Patents

Manufacturing method of three-dimensional semiconductor device, manufacturing method of substrate product, substrate product, and three-dimensional semiconductor device Download PDF

Info

Publication number
JP2008270354A
JP2008270354A JP2007108312A JP2007108312A JP2008270354A JP 2008270354 A JP2008270354 A JP 2008270354A JP 2007108312 A JP2007108312 A JP 2007108312A JP 2007108312 A JP2007108312 A JP 2007108312A JP 2008270354 A JP2008270354 A JP 2008270354A
Authority
JP
Japan
Prior art keywords
substrate
hole
sacrificial material
wiring
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007108312A
Other languages
Japanese (ja)
Other versions
JP5355863B2 (en
Inventor
Keiji Horioka
啓治 堀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to JP2007108312A priority Critical patent/JP5355863B2/en
Publication of JP2008270354A publication Critical patent/JP2008270354A/en
Application granted granted Critical
Publication of JP5355863B2 publication Critical patent/JP5355863B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13025Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of three-dimensional semiconductor device for easily forming interlayer wirings formed of metal materials, a manufacturing method of substrate product, a substrate product, and a three-dimensional semiconductor device. <P>SOLUTION: The manufacturing method comprises a step to form a hole 82 having the bottom on the front surface 80a of a silicon substrate 80, a step to embed the hole 82 with a sacrifice material 85, a step to form an integrated circuit for forming an integrated circuit layer 90 on the front surface 80a of the silicon substrate 80, a step for exposing a part of the sacrifice material 85 from the rear surface 80b of the silicon substrate 80 through the hole 82 by thinning the silicon substrate 80 from the rear surface 80b of the silicon substrate 80, a step to form an interlayer wiring by removing the sacrifice material 85 and embedding a metal material, and a step to stack the silicon substrate 80 on the other substrate to electrically connect a circuit of the integrated circuit layer 90 to a circuit of the other substrate via the interlayer wiring. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、三次元半導体デバイスの製造方法、基板生産物の製造方法、基板生産物、及び三次元半導体デバイスに関するものである。   The present invention relates to a method for manufacturing a three-dimensional semiconductor device, a method for manufacturing a substrate product, a substrate product, and a three-dimensional semiconductor device.

表面に集積回路が形成された複数のシリコン基板を薄膜化して積層した構造を有する三次元半導体デバイスが提案されている。このような三次元半導体デバイスは、ICチップの更なる集積化に寄与する。また、ゲート長などの寸法が各々異なる演算処理回路及びメモリを集積する際に、演算処理回路とメモリとを別個のシリコン基板上に形成し、これらのシリコン基板同士を重ねて互いを電気的に接続することで、演算処理回路及びメモリを一枚のシリコン基板上に形成する場合と比較してプロセスを簡易にできる。   There has been proposed a three-dimensional semiconductor device having a structure in which a plurality of silicon substrates having integrated circuits formed on the surface thereof are thinned and stacked. Such a three-dimensional semiconductor device contributes to further integration of IC chips. In addition, when integrating arithmetic processing circuits and memories having different dimensions such as gate lengths, the arithmetic processing circuit and the memory are formed on separate silicon substrates, and these silicon substrates are overlapped to electrically connect each other. By connecting, the process can be simplified as compared with the case where the arithmetic processing circuit and the memory are formed on a single silicon substrate.

従来より、このような三次元半導体デバイスにおいては、各基板間の電気的接続の為にワイヤボンディングが用いられている。しかし、ワイヤボンディングによる接続方式では、ワイヤボンディング用のスペースとなる基板周辺部が積層方向から見て露出している必要があり、積層数が多くなるほど上層側の基板の面積が小さくなってしまう。また、ワイヤが有するインダクタンスにより信号遅れが生じてしまい、集積回路の高速動作を妨げてしまう。最近では、これらの課題を解決するため、各基板を貫通する層間配線(ビア)の使用が検討されている。   Conventionally, in such a three-dimensional semiconductor device, wire bonding is used for electrical connection between the substrates. However, in the connection method by wire bonding, the peripheral portion of the substrate that becomes a space for wire bonding needs to be exposed when viewed from the stacking direction, and the area of the upper layer substrate becomes smaller as the number of stacked layers increases. In addition, a signal delay occurs due to the inductance of the wire, which hinders high-speed operation of the integrated circuit. Recently, in order to solve these problems, use of interlayer wiring (via) penetrating each substrate has been studied.

層間配線の形成方法としては、次の方法が提案されている。すなわち、非特許文献1に記載された方法であって、(1)シリコン基板の表面に有底の穴(ホール)を形成し、(2)この穴の内面に絶縁膜を形成し、(3)層間配線となる多結晶シリコンをこの穴に埋め込み、(4)シリコン基板の表面に集積回路を形成し、(5)多結晶シリコンが露出するまでシリコン基板を裏面側より薄膜化し、多結晶シリコンを貫通させる。
M.Kawano et al.,“A 3D Packaging Technology for 4 Gbit Stacked DRAM with 3 Gbps Data Transfer”,International Electron Devices Meeting (IEDM) 2006, program No. 21.5
As a method for forming the interlayer wiring, the following method has been proposed. That is, it is a method described in Non-Patent Document 1, in which (1) a bottomed hole (hole) is formed on the surface of the silicon substrate, (2) an insulating film is formed on the inner surface of this hole, and (3 (4) Polycrystalline silicon used as an interlayer wiring is buried in this hole, (4) An integrated circuit is formed on the surface of the silicon substrate, and (5) The silicon substrate is thinned from the back side until the polycrystalline silicon is exposed. To penetrate.
M. Kawano et al., “A 3D Packaging Technology for 4 Gbit Stacked DRAM with 3 Gbps Data Transfer”, International Electron Devices Meeting (IEDM) 2006, program No. 21.5

層間配線を形成するための前述した方法では、シリコン基板を薄膜化する前に層間配線用の穴や絶縁膜の形成を行うので、ウェハ状のシリコン基板をハンドリングし易くプロセスも容易になる。しかし、この方法では層間配線となる材料をシリコン基板に埋め込んだ状態で集積回路を形成するが、集積回路を形成する際には、半導体に不純物を添加するために高温の熱処理を行う。従って、層間配線材料としては熱処理の際の温度上昇に耐えられる材料を選択する必要があり、銅などの金属ではなく例えば多結晶シリコンが用いられる。しかし、多結晶シリコンは金属と比較して抵抗率が高く、集積回路の高速動作を妨げてしまう。   In the above-described method for forming the interlayer wiring, since the hole for the interlayer wiring and the insulating film are formed before the silicon substrate is thinned, the wafer-like silicon substrate is easily handled and the process is facilitated. However, in this method, an integrated circuit is formed in a state where a material for an interlayer wiring is embedded in a silicon substrate. However, when forming the integrated circuit, a high-temperature heat treatment is performed to add impurities to the semiconductor. Therefore, it is necessary to select a material that can withstand the temperature rise during the heat treatment as the interlayer wiring material, and for example, polycrystalline silicon is used instead of a metal such as copper. However, polycrystalline silicon has a higher resistivity than metal and hinders high-speed operation of integrated circuits.

また、他の方法として、(1)シリコン基板の表面に集積回路を形成し、(2)シリコン基板を裏面側より薄膜化し、(3)裏面側からシリコン基板をエッチングして貫通孔を形成し、(4)該貫通孔の内面に絶縁膜を形成し、(5)層間配線となる金属を該貫通孔に埋め込む、といった方法も考えられる。この方法ではシリコン基板上に集積回路を形成したあとで層間配線材料をシリコン基板に埋め込むので、層間配線材料として銅などの金属を使用でき、層間配線を低抵抗率にすることができる。しかし、シリコン基板を薄膜化してから層間配線用の貫通孔を形成するので、薄膜化されたシリコン基板のチャッキングや搬送が困難となる。薄膜化したガラス等の基板に接着剤で貼り付ける手法もあるが、接着剤の耐熱温度が150℃程度に限られる為、高温を必要とする側壁へのシリコン酸化膜など絶縁膜の形成が困難である。また穴あけ用のドライエッチングを行う際にガラス基板でバイアスパワーの損失が発生し、高速で異方性の高いエッチングを実現することも困難であった。   As another method, (1) an integrated circuit is formed on the surface of the silicon substrate, (2) the silicon substrate is thinned from the back surface side, and (3) a through hole is formed by etching the silicon substrate from the back surface side. (4) An insulating film is formed on the inner surface of the through hole, and (5) a metal to be an interlayer wiring is embedded in the through hole. In this method, after forming an integrated circuit on a silicon substrate, an interlayer wiring material is embedded in the silicon substrate. Therefore, a metal such as copper can be used as the interlayer wiring material, and the interlayer wiring can have a low resistivity. However, since the through hole for the interlayer wiring is formed after the silicon substrate is thinned, it is difficult to chuck and transport the thinned silicon substrate. There is also a method of attaching to a thin glass substrate with an adhesive, but since the heat-resistant temperature of the adhesive is limited to about 150 ° C, it is difficult to form an insulating film such as a silicon oxide film on the sidewall that requires high temperature It is. Further, when performing dry etching for drilling, a loss of bias power occurs in the glass substrate, and it is difficult to realize etching at high speed and high anisotropy.

本発明は、上記した問題点を鑑みてなされたものであり、金属からなる層間配線を容易に形成できる三次元半導体デバイスの製造方法、基板生産物の製造方法、基板生産物、及び三次元半導体デバイスを提供することを目的とする。   The present invention has been made in view of the above-described problems, and a method for manufacturing a three-dimensional semiconductor device, a method for manufacturing a substrate product, a substrate product, and a three-dimensional semiconductor capable of easily forming an interlayer wiring made of metal. The purpose is to provide a device.

上記した課題を解決するために、本発明による三次元半導体デバイスの製造方法は、基板の表面に有底の穴を形成する穴形成工程と、犠牲材料により穴を埋め込む埋込工程と、犠牲材料と接する配線パターンを有する集積回路を基板の表面に形成する集積回路形成工程と、基板の裏面より基板を薄化することにより、穴を貫通させると共に基板の裏面から犠牲材料の一部を露出させる薄化工程と、犠牲材料を除去して金属材料を埋め込むことにより基板を貫通する層間配線を形成する配線形成工程と、基板を他の基板上に積み重ね、集積回路と他の基板上の回路とを層間配線を介して電気的に接続する積層工程とを備えることを特徴とする。   In order to solve the above-described problems, a manufacturing method of a three-dimensional semiconductor device according to the present invention includes a hole forming step of forming a bottomed hole on a surface of a substrate, a filling step of filling a hole with a sacrificial material, and a sacrificial material Forming an integrated circuit having a wiring pattern in contact with the substrate on the surface of the substrate and thinning the substrate from the back surface of the substrate, thereby penetrating the hole and exposing a part of the sacrificial material from the back surface of the substrate. A thinning process, a wiring forming process for forming an interlayer wiring penetrating the substrate by removing a sacrificial material and embedding a metal material; and stacking the substrate on another substrate, and an integrated circuit and a circuit on the other substrate, And a laminating step for electrically connecting the two through an interlayer wiring.

この三次元半導体デバイスの製造方法においては、基板を貫通する層間配線が形成される箇所に犠牲材料を埋め込んだ状態で集積回路を形成する。なお、犠牲材料としては、集積回路を形成する際の熱処理に耐えられる材料であり且つ配線形成工程において選択的に除去可能な材料であれば良い。そして、基板を薄化した後に犠牲材料を除去して金属材料を埋め込み、基板を貫通する層間配線を形成する。すなわち、集積回路を形成したのちに層間配線を形成するので、配線材料として金属を使用でき、層間配線を低抵抗率にすることができる。また、配線材料を埋め込むための穴を薄化工程の前に形成するので、基板のチャッキングや搬送を容易にできる。従って、上記した三次元半導体デバイスの製造方法によれば、金属からなる層間配線を容易に形成できる。   In this method of manufacturing a three-dimensional semiconductor device, an integrated circuit is formed in a state where a sacrificial material is embedded at a location where an interlayer wiring penetrating the substrate is formed. Note that the sacrificial material may be any material that can withstand heat treatment in forming the integrated circuit and can be selectively removed in the wiring formation step. After the substrate is thinned, the sacrificial material is removed and a metal material is embedded to form an interlayer wiring that penetrates the substrate. That is, since the interlayer wiring is formed after the integrated circuit is formed, a metal can be used as the wiring material, and the interlayer wiring can have a low resistivity. In addition, since the hole for embedding the wiring material is formed before the thinning step, the substrate can be easily chucked and transported. Therefore, according to the above-described method for manufacturing a three-dimensional semiconductor device, an interlayer wiring made of metal can be easily formed.

また、三次元半導体デバイスの製造方法は、穴の内面に絶縁膜を形成する絶縁膜形成工程を、穴形成工程と埋込工程との間に更に備えることを特徴としてもよい。この場合、基板がシリコン基板であり、絶縁膜がシリコン酸化膜であることが好ましい。一般的に、基板に形成された微細な穴の内面に絶縁膜(特にシリコン酸化膜)を形成するような場合には、高温で処理するほど絶縁膜が内面に均一に形成され、好ましい。しかし、例えば[背景技術]欄で述べた後者の方法では、基板を薄化してから貫通孔の内面に絶縁膜を形成することとなるが、薄化された基板に絶縁膜を形成する場合には、基板を何らかの支持材に貼り付ける必要がある。そして、基板を支持材に貼り付ける際に樹脂などの接着剤が用いられるが、このような接着剤は一般的に耐熱性が低い。従って、絶縁膜を形成する際に十分に温度を上げることが難しく、微細な穴の内面に絶縁膜を均一に形成することが困難となる。これに対し、上記した製造方法によれば、穴の内面の絶縁膜を薄化工程の前に形成できるので、基板を支持材に接着する必要がなく、絶縁膜を形成する際に十分に温度を上げることができ、この絶縁膜を均一に形成することができる。   The three-dimensional semiconductor device manufacturing method may further include an insulating film forming step for forming an insulating film on the inner surface of the hole between the hole forming step and the embedding step. In this case, it is preferable that the substrate is a silicon substrate and the insulating film is a silicon oxide film. Generally, when an insulating film (especially a silicon oxide film) is formed on the inner surface of a fine hole formed in the substrate, it is preferable that the insulating film is uniformly formed on the inner surface as the temperature is increased. However, in the latter method described in the [Background Art] column, for example, an insulating film is formed on the inner surface of the through hole after the substrate is thinned. When the insulating film is formed on the thinned substrate, however, Requires that the substrate be attached to some support material. And when sticking a board | substrate to a support material, adhesive agents, such as resin, are used, but such an adhesive agent generally has low heat resistance. Therefore, it is difficult to raise the temperature sufficiently when forming the insulating film, and it is difficult to uniformly form the insulating film on the inner surface of the minute hole. On the other hand, according to the manufacturing method described above, since the insulating film on the inner surface of the hole can be formed before the thinning step, there is no need to bond the substrate to the support material, and the temperature is sufficiently high when forming the insulating film. The insulating film can be formed uniformly.

また、三次元半導体デバイスの製造方法は、穴形成工程において形成される穴が、基板の表面から基板の厚さ方向に延びる第1の部分と、第1の部分より内径が大きい第2の部分とを有することを特徴としてもよい。上記した三次元半導体デバイスの製造方法では、基板を裏面から薄化することで穴を貫通させる(薄化工程)。このとき、上述した第1及び第2の部分を穴が有することにより、貫通された穴の裏面側の内径が表面側の内径より大きくなる。すなわち、後の配線形成工程において、基板裏面における層間配線の径が、基板表面における層間配線の径より大きくなる。従って、積層工程において当該基板の裏面を他の基板と接合する際に、当該基板と他の基板との位置合わせの精度を緩和できる。   The three-dimensional semiconductor device manufacturing method includes a first portion in which the hole formed in the hole forming step extends from the surface of the substrate in the thickness direction of the substrate, and a second portion having a larger inner diameter than the first portion. It is good also as having. In the above three-dimensional semiconductor device manufacturing method, the hole is penetrated by thinning the substrate from the back surface (thinning step). At this time, since the hole has the first and second portions described above, the inner diameter on the back surface side of the penetrated hole becomes larger than the inner diameter on the front surface side. That is, in the subsequent wiring formation step, the diameter of the interlayer wiring on the back surface of the substrate becomes larger than the diameter of the interlayer wiring on the surface of the substrate. Therefore, when the back surface of the substrate is bonded to another substrate in the stacking process, the alignment accuracy between the substrate and the other substrate can be relaxed.

また、三次元半導体デバイスの製造方法は、犠牲材料が、多結晶シリコン及びシリコンゲルマニウムのうち少なくとも一方を含むことを特徴としてもよい。これにより、集積回路を形成する際の熱処理に耐え、且つ配線形成工程において選択的に除去可能な材料によって穴を好適に埋め込むことができる。   In the method for manufacturing a three-dimensional semiconductor device, the sacrificial material may include at least one of polycrystalline silicon and silicon germanium. Accordingly, the hole can be suitably filled with a material that can withstand heat treatment in forming the integrated circuit and can be selectively removed in the wiring formation process.

また、本発明による基板生産物の製造方法は、基板の表面に有底の穴を形成する穴形成工程と、犠牲材料により穴を埋め込む埋込工程と、犠牲材料と接する配線パターンを有する集積回路を基板の表面に形成する集積回路形成工程と、基板の裏面より基板を薄化することにより、穴を貫通させると共に基板の裏面から犠牲材料の一部を露出させる薄化工程と、犠牲材料を除去して金属材料を埋め込むことにより基板を貫通する層間配線を形成する配線形成工程とを備えることを特徴とする。   In addition, a method for manufacturing a substrate product according to the present invention includes an integrated circuit having a hole forming step of forming a bottomed hole on the surface of the substrate, a filling step of filling the hole with a sacrificial material, and a wiring pattern in contact with the sacrificial material Forming an integrated circuit on the surface of the substrate, thinning the substrate from the back surface of the substrate, thereby thinning the hole to penetrate and exposing a part of the sacrificial material from the back surface of the substrate, and a sacrificial material And a wiring formation step of forming an interlayer wiring penetrating the substrate by removing and embedding a metal material.

この基板生産物の製造方法においては、基板を貫通する層間配線が形成される箇所に犠牲材料を埋め込んだ状態で集積回路を形成する。そして、基板を薄化した後に犠牲材料を除去して金属材料を埋め込み、基板を貫通する層間配線を形成する。すなわち、集積回路を形成したのちに層間配線を形成するので、配線材料として金属を使用でき、層間配線を低抵抗率にすることができる。また、配線材料を埋め込むための穴を薄化工程の前に形成するので、基板のチャッキングや搬送を容易にできる。従って、上記した基板生産物の製造方法によれば、金属からなる層間配線を容易に形成できる。   In this method of manufacturing a substrate product, an integrated circuit is formed in a state where a sacrificial material is embedded at a location where an interlayer wiring penetrating the substrate is formed. After the substrate is thinned, the sacrificial material is removed and a metal material is embedded to form an interlayer wiring that penetrates the substrate. That is, since the interlayer wiring is formed after the integrated circuit is formed, a metal can be used as the wiring material, and the interlayer wiring can have a low resistivity. In addition, since the hole for embedding the wiring material is formed before the thinning step, the substrate can be easily chucked and transported. Therefore, according to the above-described method for manufacturing a substrate product, an interlayer wiring made of metal can be easily formed.

また、本発明による基板生産物は、基板と、基板の表面に設けられた集積回路と、基板を貫通する層間配線とを備え、層間配線が、基板の表面に有底の穴を形成し、犠牲材料により穴を埋め込み、犠牲材料と接する配線パターンを有する集積回路が基板の表面に形成された後に、基板の裏面より基板を薄化して穴を貫通させると共に基板の裏面から犠牲材料の一部を露出させ、犠牲材料を除去して金属材料を埋め込むことにより形成されたことを特徴とする。   The substrate product according to the present invention includes a substrate, an integrated circuit provided on the surface of the substrate, and an interlayer wiring penetrating the substrate, and the interlayer wiring forms a bottomed hole on the surface of the substrate, After the hole is filled with the sacrificial material and an integrated circuit having a wiring pattern in contact with the sacrificial material is formed on the surface of the substrate, the substrate is thinned from the back surface of the substrate to penetrate the hole, and a part of the sacrificial material from the back surface of the substrate It is characterized by being formed by exposing the substrate, removing the sacrificial material, and embedding a metal material.

この基板生産物においては、集積回路が形成された後に層間配線が形成されるので、配線材料として金属を使用でき、層間配線を低抵抗率にすることができる。また、層間配線を埋め込むための穴が基板の薄化前に形成されるので、基板のチャッキングや搬送を容易にできる。従って、この第1の基板生産物によれば、金属からなる層間配線を容易に形成できる。   In this substrate product, since the interlayer wiring is formed after the integrated circuit is formed, a metal can be used as a wiring material, and the interlayer wiring can have a low resistivity. In addition, since the hole for embedding the interlayer wiring is formed before the substrate is thinned, the substrate can be easily chucked and transported. Therefore, according to the first substrate product, the interlayer wiring made of metal can be easily formed.

また、基板生産物は、犠牲材料が、多結晶シリコン及びシリコンゲルマニウムのうち少なくとも一方を含むことを特徴としてもよい。これにより、集積回路が形成される際の熱処理に耐え、且つ選択的に除去可能な材料によって穴を好適に埋め込むことができる。   The substrate product may be characterized in that the sacrificial material includes at least one of polycrystalline silicon and silicon germanium. This makes it possible to suitably fill the hole with a material that can withstand heat treatment when the integrated circuit is formed and can be selectively removed.

また、基板生産物は、基板の裏面における層間配線の径が基板の表面における層間配線の径より大きいことを特徴としてもよい。このような基板生産物は、基板の表面から基板の厚さ方向に延びる第1の部分と、第1の部分より内径が大きい第2の部分とを有する有底の穴を基板の表面に形成することにより容易に形成される。このような構成を備える第2の基板生産物によれば、当該基板生産物を他の基板と接合する際に、当該基板生産物と他の基板との位置合わせの精度を緩和できる。   The substrate product may be characterized in that the diameter of the interlayer wiring on the back surface of the substrate is larger than the diameter of the interlayer wiring on the surface of the substrate. In such a substrate product, a bottomed hole having a first portion extending from the surface of the substrate in the thickness direction of the substrate and a second portion having an inner diameter larger than the first portion is formed on the surface of the substrate. By doing so, it is easily formed. According to the second substrate product having such a configuration, the accuracy of alignment between the substrate product and the other substrate can be relaxed when the substrate product is bonded to the other substrate.

また、基板生産物は、基板と層間配線との間に絶縁膜を更に備えることを特徴としてもよい。この場合、基板がシリコン基板であり、絶縁膜がシリコン酸化膜であることが好ましい。前述したように、基板に形成された微細な穴の内面に絶縁膜(特にシリコン酸化膜)を形成する場合には、高温で処理するほど絶縁膜が内面に均一に形成され、好ましい。上記した第1または第2の基板生産物においては、基板を薄化する前に絶縁膜を穴の内面に形成することにより、絶縁膜を形成する際に基板を支持材に接着する必要がなく十分に温度を上げることができ、この絶縁膜を均一に形成することができる。   The substrate product may further include an insulating film between the substrate and the interlayer wiring. In this case, it is preferable that the substrate is a silicon substrate and the insulating film is a silicon oxide film. As described above, when an insulating film (especially a silicon oxide film) is formed on the inner surface of a fine hole formed in the substrate, it is preferable that the insulating film is uniformly formed on the inner surface as the temperature is increased. In the first or second substrate product described above, by forming the insulating film on the inner surface of the hole before thinning the substrate, it is not necessary to adhere the substrate to the support material when forming the insulating film. The temperature can be raised sufficiently, and this insulating film can be formed uniformly.

また、本発明による三次元半導体デバイスは、上記したいずれかの基板生産物を他の基板上に積み重ね、集積回路と他の基板上の回路とが層間配線を介して電気的に接続されて成ることを特徴とする。この三次元半導体デバイスによれば、上記したいずれかの基板生産物を備えることによって、金属からなる層間配線を容易に形成できる。   The three-dimensional semiconductor device according to the present invention is formed by stacking any of the above-mentioned substrate products on another substrate, and electrically connecting the integrated circuit and the circuit on the other substrate via an interlayer wiring. It is characterized by that. According to this three-dimensional semiconductor device, an interlayer wiring made of metal can be easily formed by providing any of the above-described substrate products.

本発明による三次元半導体デバイスの製造方法、基板生産物の製造方法、基板生産物、及び三次元半導体デバイスによれば、金属からなる層間配線を容易に形成できる。   According to the method for manufacturing a three-dimensional semiconductor device, the method for manufacturing a substrate product, the substrate product, and the three-dimensional semiconductor device according to the present invention, an interlayer wiring made of metal can be easily formed.

以下、添付図面を参照しながら本発明による三次元半導体デバイスの製造方法、基板生産物の製造方法、基板生産物、及び三次元半導体デバイスの実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, embodiments of a method for manufacturing a three-dimensional semiconductor device, a method for manufacturing a substrate product, a substrate product, and a three-dimensional semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明による三次元半導体デバイスの一実施形態の構成を示す側面断面図である。図1に示す三次元半導体デバイス1は、ビルドアップ基板20と、ビルドアップ基板20上に積み重ねられた複数の基板生産物10とを備えている。なお、このような三次元半導体デバイス1の適用例としては、例えば別々の基板上に形成されたフラッシュメモリやRAMなどの複数種のメモリ回路を基板の厚さ方向に積み上げて一つのチップとして構成したものや、一種類のメモリ回路を基板の厚さ方向に複数積み重ねて大容量メモリチップとしたもの、或いは別々の基板上に形成された演算処理回路とメモリ回路とを基板の厚さ方向に積み重ねて互いを電気的に接続したものなどが挙げられる。具体的にはパソコンやサーバーに用いられるマイクロプロセッサのロジック部分とSRAMのキャッシュメモリとの組み合わせ、グラフィックプロセッサとDRAMの組み合わせ等に適している。   FIG. 1 is a side sectional view showing a configuration of an embodiment of a three-dimensional semiconductor device according to the present invention. A three-dimensional semiconductor device 1 shown in FIG. 1 includes a build-up substrate 20 and a plurality of substrate products 10 stacked on the build-up substrate 20. In addition, as an application example of such a three-dimensional semiconductor device 1, for example, a plurality of types of memory circuits such as flash memory and RAM formed on different substrates are stacked in the thickness direction of the substrate and configured as one chip. Or a large-capacity memory chip by stacking a single type of memory circuit in the thickness direction of the substrate, or an arithmetic processing circuit and a memory circuit formed on different substrates in the thickness direction of the substrate. For example, they are stacked and electrically connected to each other. Specifically, it is suitable for a combination of a logic portion of a microprocessor used in a personal computer or a server and an SRAM cache memory, a combination of a graphic processor and a DRAM, or the like.

図2は、一つの基板生産物10の構成を示す側面断面図である。図2に示すように、基板生産物10は、基板30、集積回路層40、及び層間配線50を備えている。   FIG. 2 is a side sectional view showing the configuration of one substrate product 10. As shown in FIG. 2, the substrate product 10 includes a substrate 30, an integrated circuit layer 40, and interlayer wiring 50.

基板30は、三次元半導体デバイス1の積層方向と交差する表面30a及び裏面30bを有する薄膜状の基板であって、例えばシリコン(Si)からなる。基板30の厚さは例えば3[μm]〜100[μm]である。基板30は、後述する製造過程において厚さ700[μm]程度のシリコンウェハを研削、CMP(Chemical Mechanical Polishing:化学機械研磨)などによって薄膜化して形成される。   The substrate 30 is a thin film substrate having a front surface 30a and a back surface 30b intersecting with the stacking direction of the three-dimensional semiconductor device 1, and is made of, for example, silicon (Si). The thickness of the substrate 30 is, for example, 3 [μm] to 100 [μm]. The substrate 30 is formed by grinding a silicon wafer having a thickness of about 700 [μm] into a thin film by CMP (Chemical Mechanical Polishing) in a manufacturing process described later.

集積回路層40は、トランジスタなどの複数の半導体素子41や、該複数の半導体素子41を相互に或いは他の回路に接続するための配線パターン42が形成される層である。複数の半導体素子41は、基板30の表面30a上に並んで形成され、シリコン酸化膜からなる絶縁層43の下層部に覆われている。配線パターン42は、主に銅(Cu)、アルミニウム(Al)、金(Au)、銀(Ag)といった低抵抗率の金属により構成されている。配線パターン42は、主に絶縁層43の上層部に埋め込まれている。配線パターン42の一部は絶縁層43から露出しており、この露出部分にはバンプ(電極)60が設けられている。バンプ60の構成材料としては、例えば金(Au)や銅(Cu)、すず(Sn)、銀(Ag)、或いはすずと銀の合金、などが好適である。   The integrated circuit layer 40 is a layer in which a plurality of semiconductor elements 41 such as transistors and a wiring pattern 42 for connecting the plurality of semiconductor elements 41 to each other or another circuit are formed. The plurality of semiconductor elements 41 are formed side by side on the surface 30a of the substrate 30, and are covered with a lower layer portion of an insulating layer 43 made of a silicon oxide film. The wiring pattern 42 is mainly composed of a low resistivity metal such as copper (Cu), aluminum (Al), gold (Au), or silver (Ag). The wiring pattern 42 is mainly embedded in the upper layer portion of the insulating layer 43. A part of the wiring pattern 42 is exposed from the insulating layer 43, and bumps (electrodes) 60 are provided on the exposed part. As a constituent material of the bump 60, for example, gold (Au), copper (Cu), tin (Sn), silver (Ag), or an alloy of tin and silver is preferable.

また、配線パターン42の他の一部は、集積回路層40の上層部から基板30に近い下層部へ延びており、層間配線50と電気的に接続されている。なお、配線パターン42のうち集積回路層40の下層部に配置された部分はバリアメタル膜42aを有しており、このバリアメタル膜42aは、配線パターン42を主に構成する銅、アルミニウム、金、銀といった金属と絶縁層43との間に配置され、該金属が絶縁層43内へ拡散することを防ぐ。   The other part of the wiring pattern 42 extends from the upper layer portion of the integrated circuit layer 40 to the lower layer portion close to the substrate 30 and is electrically connected to the interlayer wiring 50. Note that a portion of the wiring pattern 42 disposed in the lower layer portion of the integrated circuit layer 40 has a barrier metal film 42 a, and this barrier metal film 42 a is composed of copper, aluminum, gold, which mainly constitute the wiring pattern 42. The metal is disposed between the metal such as silver and the insulating layer 43 to prevent the metal from diffusing into the insulating layer 43.

層間配線50は、基板30の表面30aと裏面30bとの間を貫通する配線である。本実施形態の層間配線50は、例えば銅、金、アルミニウム、銀、タングステン(W)といった金属からなる主部50a、および主部50aと基板30との間に配置されたバリアメタル膜50bによって構成されている。主部50aは、基板30の厚さ方向に延びており、表面30a側の一端がバリアメタル膜50bを介して配線パターン42と電気的に接続されており、裏面30b側の他端が裏面30bから露出している。また、本実施形態の層間配線50は、基板30の表面30aから基板30の厚さ方向に延びる部分より径が大きい拡径部52を有している。拡径部52は、裏面30bにおける層間配線50の露出部分に相当する。したがって、基板30の裏面30bにおける層間配線50の径は、基板30の表面30aにおける層間配線50の径より大きくなっている。   The interlayer wiring 50 is a wiring penetrating between the front surface 30 a and the back surface 30 b of the substrate 30. The interlayer wiring 50 according to the present embodiment includes a main part 50a made of a metal such as copper, gold, aluminum, silver, and tungsten (W), and a barrier metal film 50b disposed between the main part 50a and the substrate 30. Has been. The main portion 50a extends in the thickness direction of the substrate 30, one end on the front surface 30a side is electrically connected to the wiring pattern 42 via the barrier metal film 50b, and the other end on the back surface 30b side is on the back surface 30b. Is exposed from. In addition, the interlayer wiring 50 of the present embodiment has a diameter-enlarged portion 52 having a diameter larger than that of a portion extending from the surface 30 a of the substrate 30 in the thickness direction of the substrate 30. The enlarged diameter portion 52 corresponds to an exposed portion of the interlayer wiring 50 on the back surface 30b. Therefore, the diameter of the interlayer wiring 50 on the back surface 30 b of the substrate 30 is larger than the diameter of the interlayer wiring 50 on the front surface 30 a of the substrate 30.

また、基板30が導電性を有する場合には、本実施形態のように層間配線50と基板30との間に絶縁膜70が設けられることが好ましい。絶縁膜70は、例えば層間配線50が形成された基板30の穴の内面を酸化することにより形成される。基板30がシリコン基板である場合、絶縁膜70はシリコン酸化膜(SiO)である。また、基板30の裏面30b上にも絶縁膜71が設けられていることが好ましい。絶縁膜71は、例えばシリコン酸化膜(SiO)などの絶縁性材料を用いて形成されるが、絶縁膜70と異なる材料により形成されてもよい。層間配線50は、この絶縁膜71からも露出している。 Further, when the substrate 30 has conductivity, it is preferable to provide an insulating film 70 between the interlayer wiring 50 and the substrate 30 as in the present embodiment. The insulating film 70 is formed, for example, by oxidizing the inner surface of the hole of the substrate 30 on which the interlayer wiring 50 is formed. When the substrate 30 is a silicon substrate, the insulating film 70 is a silicon oxide film (SiO 2 ). In addition, an insulating film 71 is preferably provided also on the back surface 30 b of the substrate 30. The insulating film 71 is formed using an insulating material such as a silicon oxide film (SiO 2 ), but may be formed using a material different from the insulating film 70. The interlayer wiring 50 is also exposed from the insulating film 71.

再び図1を参照する。三次元半導体デバイス1は、上述した構造を備える基板生産物10が厚さ方向に複数積み重ねられて構成されたものである。そして、各基板生産物10の集積回路(半導体素子41)同士は、一方の基板生産物10の裏面30bから露出した層間配線50に対し、他方の基板生産物10に設けられたバンプ60が接合されることによって互いに電気的に接続される。また、最下層の基板生産物10の層間配線50は、ビルドアップ基板20上に設けられたバンプ61を介してビルドアップ基板20の回路(図示せず)と電気的に接続される。なお、図1では半導体素子41や配線パターン42の形状・配置が各基板生産物10において同様に描かれているが、半導体素子41や配線パターン42の形状・配置は各基板生産物10で互いに異なる場合もある。従って、基板30において層間配線50が形成される位置は、各基板生産物10で互いに異なる場合がある。   Refer to FIG. 1 again. The three-dimensional semiconductor device 1 is configured by stacking a plurality of substrate products 10 having the above-described structure in the thickness direction. And the integrated circuit (semiconductor element 41) of each board | substrate product 10 joins the bump 60 provided in the other board | substrate product 10 with respect to the interlayer wiring 50 exposed from the back surface 30b of one board | substrate product 10. Are electrically connected to each other. Further, the interlayer wiring 50 of the lowermost substrate product 10 is electrically connected to a circuit (not shown) of the build-up substrate 20 via bumps 61 provided on the build-up substrate 20. In FIG. 1, the shapes and arrangements of the semiconductor elements 41 and the wiring patterns 42 are similarly depicted in the respective substrate products 10, but the shapes and arrangements of the semiconductor elements 41 and the wiring patterns 42 are mutually different in the respective substrate products 10. It may be different. Therefore, the position where the interlayer wiring 50 is formed on the substrate 30 may be different for each substrate product 10.

続いて、本実施形態による三次元半導体デバイス1の製造方法について、図3〜図25を参照しながら説明する。三次元半導体デバイス1の製造に先立ち、図3に示すシリコン基板(シリコンウェハ)80を用意する。シリコン基板80は、シリコン単結晶からなり、表面80a及び裏面80bを有する厚さ700[μm]程度の板状にスライスされたものである。   Next, the method for manufacturing the three-dimensional semiconductor device 1 according to the present embodiment will be described with reference to FIGS. Prior to manufacturing the three-dimensional semiconductor device 1, a silicon substrate (silicon wafer) 80 shown in FIG. 3 is prepared. The silicon substrate 80 is made of a silicon single crystal and is sliced into a plate having a thickness of about 700 [μm] having a front surface 80a and a back surface 80b.

<穴形成工程>
図4に示すように、シリコン基板80の表面80a上にシリコン酸化膜81を成膜する。シリコン酸化膜81は、後述する層間配線用の穴をエッチングにより形成する際のエッチングマスクとなる膜である。シリコン酸化膜81は、例えばプラズマCVDなどの化学気相成長法により形成される。なお、シリコン基板80をエッチングする際のエッチングマスクとして機能すれば、シリコン酸化膜81に代えて他の材料からなる膜(例えば、シリコン窒化膜など)を成膜してもよい。
<Hole formation process>
As shown in FIG. 4, a silicon oxide film 81 is formed on the surface 80 a of the silicon substrate 80. The silicon oxide film 81 is a film that serves as an etching mask when holes for later-described interlayer wiring are formed by etching. The silicon oxide film 81 is formed by a chemical vapor deposition method such as plasma CVD. Note that a film made of another material (for example, a silicon nitride film) may be formed instead of the silicon oxide film 81 as long as it functions as an etching mask when the silicon substrate 80 is etched.

続いて、図5に示すように、一般的なフォトリソグラフィ技術を用いてシリコン酸化膜81に開口81aを形成する。すなわち、シリコン酸化膜81上にレジスト膜を塗布形成し、フォトマスクを用いてレジスト膜を露光・現像することにより、開口81aに対応する開口をレジスト膜に形成する。こうして形成されたレジストマスクを介してシリコン酸化膜81に対しエッチングを施すことによって、シリコン酸化膜81に開口81aが形成される。このとき、開口81aは、図1及び図2に示した層間配線50の位置に合わせて形成される。この後、レジストマスクを除去する。   Subsequently, as shown in FIG. 5, an opening 81a is formed in the silicon oxide film 81 by using a general photolithography technique. That is, a resist film is applied and formed on the silicon oxide film 81, and the resist film is exposed and developed using a photomask, thereby forming an opening corresponding to the opening 81a in the resist film. By etching the silicon oxide film 81 through the resist mask formed in this way, an opening 81 a is formed in the silicon oxide film 81. At this time, the opening 81a is formed in accordance with the position of the interlayer wiring 50 shown in FIGS. Thereafter, the resist mask is removed.

続いて、図6に示すように、後の工程において層間配線材料が埋め込まれる有底の穴82をシリコン基板80の表面80aに形成する。まず、シリコン基板80に対して、先の工程で形成されたシリコン酸化膜81の開口81aを介して異方性エッチングを施す。異方性エッチングとしては、例えば反応性イオンエッチング(RIE:Reactive Ion Etching)が好適である。このとき、エッチングガスとしては例えばHBrガス及びSFガスの混合ガスを用いるとよい。この異方性エッチングによって、穴82のうちシリコン基板80の表面80aから厚さ方向へ延びる第1の部分82aが形成される。 Subsequently, as shown in FIG. 6, a bottomed hole 82 in which an interlayer wiring material is embedded in a subsequent process is formed in the surface 80 a of the silicon substrate 80. First, anisotropic etching is performed on the silicon substrate 80 through the opening 81a of the silicon oxide film 81 formed in the previous step. As the anisotropic etching, for example, reactive ion etching (RIE) is suitable. At this time, for example, a mixed gas of HBr gas and SF 6 gas may be used as the etching gas. By this anisotropic etching, a first portion 82a extending from the surface 80a of the silicon substrate 80 in the thickness direction in the hole 82 is formed.

一般に、HBrとSFを用いてSiを異方性エッチングすると、エッチング生成物やマスクからの放出ガスの反応により側壁にはシリコン臭酸化膜よりなる保護膜83が形成される。エッチング条件により、保護膜の形成が不十分な場合は、シランなどのSiを含有するガスとNOなど酸素を含むガスを導入して、積極的に保護膜83を形成することも可能である。この時、基板に対するバイアス条件を調整して孔の底部分は露出し側壁のみに保護膜を形成する。保護膜の形成後に、シリコン基板80に対し等方性エッチングを施す。等方性エッチングとしては、例えばプラズマエッチングが好適である。このとき、エッチングガスとしては例えばフッ素を含むガス(SFガス等)を用いるとよい。この等方性エッチングによって、第1の部分82aの底部からシリコン基板80が等方的にエッチングされ、穴82の第2の部分82bが形成される。この第2の部分82bは、穴82において第1の部分82aより内径が大きい部分となり、また、穴82の底部を構成する。その後、シリコン酸化膜81および保護膜83をシリコン基板80から除去する(図7)。なお、シリコン酸化膜81および保護膜83の除去には、例えばNHFをエッチャントとして用いたウェットエッチングが好適である。こうして形成された穴82の寸法は、表面80aからの深さが例えば20[マイクロメートル]であり、第1の部分82aの内径が例えば5[マイクロメートル]であり、第2の部分の内径が最大で20[マイクロメートル]である。 In general, when Si is anisotropically etched using HBr and SF 6 , a protective film 83 made of a silicon odor oxide film is formed on the side wall by the reaction of an etching product or a gas released from the mask. If the formation of the protective film is insufficient due to the etching conditions, it is possible to actively form the protective film 83 by introducing a gas containing Si such as silane and a gas containing oxygen such as N 2 O. is there. At this time, by adjusting the bias condition for the substrate, the bottom portion of the hole is exposed and a protective film is formed only on the side wall. After forming the protective film, isotropic etching is performed on the silicon substrate 80. For example, plasma etching is suitable as the isotropic etching. At this time, for example, a gas containing fluorine (SF 6 gas or the like) may be used as the etching gas. By this isotropic etching, the silicon substrate 80 is isotropically etched from the bottom of the first portion 82a, and the second portion 82b of the hole 82 is formed. The second portion 82 b has a larger inner diameter than the first portion 82 a in the hole 82 and constitutes the bottom of the hole 82. Thereafter, the silicon oxide film 81 and the protective film 83 are removed from the silicon substrate 80 (FIG. 7). For removing the silicon oxide film 81 and the protective film 83, for example, wet etching using NH 4 F as an etchant is suitable. The hole 82 formed in this way has a depth of 20 [micrometers] from the surface 80a, an inner diameter of the first portion 82a of, for example, 5 [micrometers], and an inner diameter of the second portion. The maximum is 20 [micrometers].

<絶縁膜形成工程>
続いて、図8に示すように、シリコン基板80の表面80a、および穴82の内面に絶縁膜(シリコン酸化膜)84を形成する。絶縁膜84は、例えばシリコン基板80を900℃〜1000℃といった高温の環境におき、酸素、もしくは酸素と水素の混合ガスを供給してシリコン基板80の表面80aおよび穴82の内面を熱酸化させるとよい。このとき、上述したような高温で処理するのは、絶縁膜84が微細な穴82の内面に均一に形成されるようにするためである。
<Insulating film formation process>
Subsequently, as shown in FIG. 8, an insulating film (silicon oxide film) 84 is formed on the surface 80 a of the silicon substrate 80 and the inner surface of the hole 82. The insulating film 84 places the silicon substrate 80 in a high temperature environment such as 900 ° C. to 1000 ° C., for example, and supplies oxygen or a mixed gas of oxygen and hydrogen to thermally oxidize the surface 80 a of the silicon substrate 80 and the inner surface of the hole 82. Good. At this time, the reason why the treatment is performed at a high temperature as described above is to make the insulating film 84 uniformly formed on the inner surface of the fine hole 82.

<埋込工程>
続いて、図9に示すように、シリコン基板80の穴82を犠牲材料85により埋め込む。犠牲材料85としては、後述する集積回路形成工程において半導体の熱処理に耐えられる材料であり、且つ、後述する配線形成工程において絶縁膜84に対し選択的に除去可能な材料であれば良い。このような材料としては、例えば多結晶シリコン(ポリシリコン)及びシリコンゲルマニウム(SiGe)のうち少なくとも一方を主に含む材料が好適である。この埋込工程では、例えば犠牲材料85としてシリコンゲルマニウム(SiGe)をCVD法によりシリコン基板80の表面80a上に堆積させつつ、穴82を埋め込む。なお、このとき、犠牲材料85のうち穴82の第2の部分82bに埋め込まれた部分は、犠牲材料85の他の部分より径が大きい拡径部85aとなる。また、穴82(特に第2の部分82b)に埋め込まれた犠牲材料85の内部には、ボイド(空洞)85bが形成される場合があるが、何ら支障はない。
<Embedding process>
Subsequently, as shown in FIG. 9, the hole 82 of the silicon substrate 80 is filled with a sacrificial material 85. The sacrificial material 85 may be a material that can withstand heat treatment of a semiconductor in an integrated circuit formation process described later and can be selectively removed from the insulating film 84 in a wiring formation process described later. As such a material, for example, a material mainly containing at least one of polycrystalline silicon (polysilicon) and silicon germanium (SiGe) is suitable. In this embedding process, for example, silicon germanium (SiGe) is deposited as the sacrificial material 85 on the surface 80a of the silicon substrate 80 by the CVD method, and the hole 82 is embedded. At this time, a portion of the sacrificial material 85 embedded in the second portion 82 b of the hole 82 becomes an enlarged diameter portion 85 a having a larger diameter than the other portion of the sacrificial material 85. A void (cavity) 85b may be formed inside the sacrificial material 85 embedded in the hole 82 (especially the second portion 82b), but there is no problem.

続いて、犠牲材料85のうちシリコン基板80の表面80a上に堆積した部分を除去する。その後、絶縁膜84のうちシリコン基板80の表面80a上に堆積した部分を除去する。これらの部分を除去する方法としては、例えば化学機械研磨(CMP)が好適である。この工程により、図10に示すように、シリコン基板80の表面80aにおいて、穴82の開口から犠牲材料85が露出した状態となる。   Subsequently, a portion of the sacrificial material 85 deposited on the surface 80a of the silicon substrate 80 is removed. Thereafter, the portion of the insulating film 84 deposited on the surface 80a of the silicon substrate 80 is removed. As a method for removing these portions, for example, chemical mechanical polishing (CMP) is suitable. By this step, as shown in FIG. 10, the sacrificial material 85 is exposed from the opening of the hole 82 on the surface 80 a of the silicon substrate 80.

<集積回路形成工程>
続いて、図11に示すように、集積回路を含む集積回路層90をシリコン基板80の表面80a上に形成する。まず、FEOL(Front End of Line)と呼ばれる、トランジスタなどの複数の半導体素子86を形成する工程を中心としたプロセスを実施する。すなわち、半導体素子86が有する各種半導体層(例えば、シリコン基板80の表面80aの所定領域に不純物を添加して形成されたp型半導体層やn型半導体層)、ゲート絶縁膜、各種電極などを形成する。n型半導体層やp型半導体層を形成する際には、フォトレジストを介して不純物イオンを注入したのち、この不純物イオンをシリコン原子と結合させるため加熱処理(アニール)を行うが、このとき、シリコン基板80は例えば800℃〜1000℃といった高温の環境下におかれる。半導体素子86を形成した後、半導体素子86を覆うようにシリコン酸化膜を堆積させることにより絶縁層87の下層部を形成する。
<Integrated circuit formation process>
Subsequently, as shown in FIG. 11, an integrated circuit layer 90 including an integrated circuit is formed on the surface 80 a of the silicon substrate 80. First, a process called a FEOL (Front End of Line), which is centered on a process of forming a plurality of semiconductor elements 86 such as transistors, is performed. That is, various semiconductor layers (for example, a p-type semiconductor layer or an n-type semiconductor layer formed by adding impurities to a predetermined region of the surface 80a of the silicon substrate 80), a gate insulating film, various electrodes, etc. Form. When forming an n-type semiconductor layer or a p-type semiconductor layer, after implanting impurity ions through a photoresist, heat treatment (annealing) is performed to bond the impurity ions to silicon atoms. The silicon substrate 80 is placed in a high temperature environment such as 800 ° C. to 1000 ° C., for example. After forming the semiconductor element 86, a lower layer portion of the insulating layer 87 is formed by depositing a silicon oxide film so as to cover the semiconductor element 86.

続いて、BEOL(Back End of Line)と呼ばれる、トランジスタ形成後の配線形成などを中心としたプロセスを実施する。このプロセスでは、犠牲材料85と接する配線パターン88を形成する。すなわち、先に形成した絶縁層87のうち犠牲材料85を覆う部分に開口を形成し、犠牲材料85の端面を露出させる。そして、該開口の側面および底面にバリアメタル膜88aを形成したのち、該開口を埋め込み且つ所定の半導体素子86の電極と接続する配線部分88bを形成する。その後、必要に応じて配線部分88c及び88dといった配線層を配線部分88bの上に積層しつつ絶縁材料で覆うことにより、絶縁層87に埋め込まれた配線パターン88が形成される。なお、配線部分88b〜88dは、主に銅(Cu)、アルミニウム(Al)、金(Au)、銀(Ag)といった低抵抗率の金属により形成するとよい。以上の工程により、複数の半導体素子86および配線パターン88を含む集積回路が形成される。   Subsequently, a process called BEOL (Back End of Line), centering on wiring formation after transistor formation, is performed. In this process, a wiring pattern 88 in contact with the sacrificial material 85 is formed. That is, an opening is formed in a portion covering the sacrificial material 85 in the insulating layer 87 formed earlier, and the end face of the sacrificial material 85 is exposed. Then, after forming a barrier metal film 88a on the side and bottom surfaces of the opening, a wiring portion 88b that fills the opening and connects to an electrode of a predetermined semiconductor element 86 is formed. Thereafter, a wiring pattern 88 embedded in the insulating layer 87 is formed by covering wiring layers such as the wiring portions 88c and 88d with an insulating material while being laminated on the wiring portion 88b as necessary. The wiring portions 88b to 88d are preferably formed mainly from a low resistivity metal such as copper (Cu), aluminum (Al), gold (Au), or silver (Ag). Through the above steps, an integrated circuit including a plurality of semiconductor elements 86 and wiring patterns 88 is formed.

絶縁層87および配線パターン88を形成したのち、絶縁層87の所定位置に開口を形成して配線パターン88の一部を露出させ、例えば金(Au)や銅(Cu)、すず(Sn)、銀(Ag)、或いはすずと銀の合金を主に含むバンプ89を形成する。   After forming the insulating layer 87 and the wiring pattern 88, an opening is formed at a predetermined position of the insulating layer 87 to expose a part of the wiring pattern 88. For example, gold (Au), copper (Cu), tin (Sn), A bump 89 mainly including silver (Ag) or an alloy of tin and silver is formed.

なお、犠牲材料85が埋め込まれたシリコン基板80の穴82とバンプ89とは、図11に示すようにシリコン基板80の厚さ方向に並んで配置されてもよく、或いは図12に示すように、シリコン基板80の厚さ方向から見て各々異なる位置に配置されてもよい。バンプ89は、当該基板生産物の上に配置される他の基板生産物が有する層間配線の位置に合わせて形成される。   The holes 82 and the bumps 89 of the silicon substrate 80 in which the sacrificial material 85 is embedded may be arranged side by side in the thickness direction of the silicon substrate 80 as shown in FIG. 11, or as shown in FIG. The silicon substrate 80 may be disposed at different positions as viewed from the thickness direction. The bump 89 is formed in accordance with the position of the interlayer wiring of another substrate product arranged on the substrate product.

<薄化工程>
続いて、シリコン基板80の裏面80bよりシリコン基板80を薄化(シニング)する。薄化の前に、図13に示すように、シリコン基板80の表面80a側、すなわち集積回路層90の上面を、接着剤層91を介してガラス製の支持材92に貼り付ける。支持材92としては、平坦な表面92aを有する板状の部材が用いられ、また、接着剤層91を構成する接着剤としては、UV照射や熱処理により剥離可能な材料が好適である。
<Thinning process>
Subsequently, the silicon substrate 80 is thinned (thinned) from the back surface 80 b of the silicon substrate 80. Before the thinning, as shown in FIG. 13, the surface 80 a side of the silicon substrate 80, that is, the upper surface of the integrated circuit layer 90 is attached to a glass support material 92 through an adhesive layer 91. As the support member 92, a plate-like member having a flat surface 92a is used, and as the adhesive constituting the adhesive layer 91, a material that can be peeled off by UV irradiation or heat treatment is suitable.

続いて、シリコン基板80が或る厚さ(犠牲材料85が露出しない程度の厚さ、例えば40[マイクロメートル])になるまで、シリコン基板80の裏面80bをグラインドにより研磨する。次いで、シリコン基板80の裏面80bを化学機械研磨(CMP)により研磨する。この化学機械研磨(CMP)は、図14に示すように、穴82の底部に形成された絶縁膜84が裏面80bに現れた時点で停止するとよい。   Subsequently, the back surface 80b of the silicon substrate 80 is polished by grinding until the silicon substrate 80 has a certain thickness (thickness that does not expose the sacrificial material 85, for example, 40 [micrometers]). Next, the back surface 80b of the silicon substrate 80 is polished by chemical mechanical polishing (CMP). As shown in FIG. 14, this chemical mechanical polishing (CMP) is preferably stopped when the insulating film 84 formed at the bottom of the hole 82 appears on the back surface 80b.

続いて、シリコン基板80の裏面80bに対してプラズマエッチングなどのドライエッチングを行い、更にシリコン基板80を薄化する。このとき、反応ガスとしては例えばSFを用いるとよい。これにより、シリコン酸化膜である絶縁膜84はエッチングされず、シリコン基板80のみ選択的にエッチングされることとなる。このエッチングは、穴82の第2の部分82bの途中(好ましくは、第2の部分82bの内径が最大になる位置)で停止するとよい。この工程によって、図15に示すように、穴82がシリコン基板80を貫通すると共に、シリコン基板80の裏面80bから犠牲材料85の拡径部85aが露出する。 Subsequently, dry etching such as plasma etching is performed on the back surface 80b of the silicon substrate 80, and the silicon substrate 80 is further thinned. At this time, for example, SF 6 may be used as the reactive gas. As a result, the insulating film 84, which is a silicon oxide film, is not etched, and only the silicon substrate 80 is selectively etched. This etching may be stopped in the middle of the second portion 82b of the hole 82 (preferably, the position where the inner diameter of the second portion 82b is maximized). By this step, as shown in FIG. 15, the hole 82 penetrates the silicon substrate 80, and the enlarged diameter portion 85 a of the sacrificial material 85 is exposed from the back surface 80 b of the silicon substrate 80.

<配線形成工程>
続いて、図16に示すように、シリコン基板80の裏面80b上にシリコン酸化膜93を成膜する。シリコン酸化膜93は、後の工程において犠牲材料85をエッチングにより除去する際のエッチングマスクとなる膜である。シリコン酸化膜93は、例えばプラズマCVDなどの化学気相成長法により形成される。なお、犠牲材料85をエッチングする際のエッチングマスクとして機能すれば、シリコン酸化膜93に代えて他の材料からなる膜(例えば、シリコン窒化膜など)を成膜してもよい。
<Wiring formation process>
Subsequently, as shown in FIG. 16, a silicon oxide film 93 is formed on the back surface 80 b of the silicon substrate 80. The silicon oxide film 93 is a film that serves as an etching mask when the sacrificial material 85 is removed by etching in a later step. The silicon oxide film 93 is formed by a chemical vapor deposition method such as plasma CVD. Note that a film made of another material (for example, a silicon nitride film) may be formed instead of the silicon oxide film 93 as long as it functions as an etching mask when the sacrificial material 85 is etched.

続いて、図17に示すように、シリコン酸化膜93に対し化学機械研磨(CMP)を行い、シリコン基板80の裏面80b側の表面を平坦化する。このとき、犠牲材料85の拡径部85aをその途中まで研磨し、犠牲材料85を絶縁膜84から露出させると共に、犠牲材料85の下端面85cを形成する。このとき、下端面85cの径は拡径部85aの径と等しいので、下端面85cの面積は犠牲材料85の上端面85dの面積より大きくなる。   Subsequently, as shown in FIG. 17, chemical mechanical polishing (CMP) is performed on the silicon oxide film 93 to flatten the surface on the back surface 80 b side of the silicon substrate 80. At this time, the enlarged diameter portion 85a of the sacrificial material 85 is polished halfway to expose the sacrificial material 85 from the insulating film 84 and to form a lower end surface 85c of the sacrificial material 85. At this time, since the diameter of the lower end surface 85c is equal to the diameter of the enlarged diameter portion 85a, the area of the lower end surface 85c is larger than the area of the upper end surface 85d of the sacrificial material 85.

続いて、露出した犠牲材料85に対しエッチングを施すことによって、犠牲材料85をシリコン基板80から除去する。このときのエッチングとしては例えばプラズマエッチングが好適である。エッチングガスとしては、例えばフッ素を含むガス(SFガス等)が好適であるが、絶縁膜84及びシリコン酸化膜93はエッチングされずに犠牲材料85のみエッチングされるような選択性のあるエッチングガスであればよい。このエッチングによって、犠牲材料85がシリコン基板80から除去され、図18に示すようにシリコン基板80の表面80aと裏面80bとの間を貫通する貫通穴94が形成される。この貫通穴94は、シリコン基板80の表面80aから厚さ方向へ延びる第1の部分94aと、第1の部分94aより内径が大きくなっておりシリコン基板80の裏面80bに向けて開口した第2の部分94bとを有している。 Subsequently, the sacrificial material 85 is removed from the silicon substrate 80 by etching the exposed sacrificial material 85. As etching at this time, for example, plasma etching is suitable. As the etching gas, for example, a gas containing fluorine (SF 6 gas or the like) is preferable. However, the insulating film 84 and the silicon oxide film 93 are not etched and only the sacrificial material 85 is etched. If it is. By this etching, the sacrificial material 85 is removed from the silicon substrate 80, and a through hole 94 penetrating between the front surface 80a and the back surface 80b of the silicon substrate 80 is formed as shown in FIG. The through hole 94 has a first portion 94a extending in the thickness direction from the front surface 80a of the silicon substrate 80, and a second portion having an inner diameter larger than that of the first portion 94a and opening toward the back surface 80b of the silicon substrate 80. Part 94b.

続いて、図19に示すように、貫通穴94の内面にバリアメタル膜95を形成する。バリアメタル膜95としては例えば窒化チタン(TiN)が好適であり、バリアメタル膜95の形成方法としては例えばCVD法またはPVD法が好適である。バリアメタル膜95の厚さは、例えば300[nm]である。なお、このとき、シリコン酸化膜93の表面や、貫通穴94に臨む配線パターン88の表面にもバリアメタル膜95が成膜される。   Subsequently, as shown in FIG. 19, a barrier metal film 95 is formed on the inner surface of the through hole 94. As the barrier metal film 95, for example, titanium nitride (TiN) is suitable, and as the method for forming the barrier metal film 95, for example, a CVD method or a PVD method is suitable. The thickness of the barrier metal film 95 is, for example, 300 [nm]. At this time, the barrier metal film 95 is also formed on the surface of the silicon oxide film 93 and the surface of the wiring pattern 88 facing the through hole 94.

続いて、図20に示すように、シリコン基板80の裏面80b上に金属膜96を成膜しつつ、該金属膜96を構成する金属材料によって貫通穴94を埋め込む。金属膜96としては例えば銅(Cu)、金(Au)、アルミニウム(Al)、銀(Ag)、或いはタングステン(W)などが好適である。また、これらの金属を堆積させる方法としては、例えば物理蒸着(PVD)法が好適である。具体的には、シリコン基板80を真空または不活性ガスで満たされた容器の中におき、同容器内に置かれた金属蒸着源を加熱して飛散させ、シリコン基板80の裏面80b上に堆積させる。   Subsequently, as illustrated in FIG. 20, the metal film 96 is formed on the back surface 80 b of the silicon substrate 80, and the through hole 94 is embedded with the metal material that forms the metal film 96. As the metal film 96, for example, copper (Cu), gold (Au), aluminum (Al), silver (Ag), tungsten (W), or the like is suitable. As a method for depositing these metals, for example, a physical vapor deposition (PVD) method is suitable. Specifically, the silicon substrate 80 is placed in a container filled with a vacuum or an inert gas, a metal vapor deposition source placed in the container is heated and scattered, and deposited on the back surface 80b of the silicon substrate 80. Let

続いて、シリコン基板80の裏面80b上に形成されたバリアメタル膜95及び金属膜96を化学機械研磨(CMP)により除去する。これにより、図21に示すように、主部97と、主部97およびシリコン基板80の間に配置されたバリアメタル膜95とによって構成された層間配線98が完成する。すなわち、この層間配線98は、シリコン基板80の表面80aと裏面80bとの間を貫通しており、表面80a側の一端が配線パターン88と電気的に接続されており、裏面80b側の他端がシリコン基板80およびシリコン酸化膜93から露出している。また、層間配線98は拡径部99を有しており、拡径部99は、シリコン基板80の表面80aから厚さ方向に延びる部分より径が大きい。この拡径部99は、裏面80bにおける層間配線98の露出部分に相当するので、シリコン基板80の裏面80bにおける層間配線98の径は、シリコン基板80の表面80aにおける層間配線98の径より大きくなっている。こうして、図2に示した構成を備える基板生産物100Aが完成する。   Subsequently, the barrier metal film 95 and the metal film 96 formed on the back surface 80b of the silicon substrate 80 are removed by chemical mechanical polishing (CMP). Thereby, as shown in FIG. 21, an interlayer wiring 98 constituted by the main portion 97 and the barrier metal film 95 disposed between the main portion 97 and the silicon substrate 80 is completed. That is, the interlayer wiring 98 penetrates between the front surface 80a and the back surface 80b of the silicon substrate 80, one end on the front surface 80a side is electrically connected to the wiring pattern 88, and the other end on the back surface 80b side. Are exposed from the silicon substrate 80 and the silicon oxide film 93. Further, the interlayer wiring 98 has an enlarged diameter portion 99, and the enlarged diameter portion 99 has a diameter larger than that of the portion extending from the surface 80a of the silicon substrate 80 in the thickness direction. Since this enlarged diameter portion 99 corresponds to an exposed portion of the interlayer wiring 98 on the back surface 80 b, the diameter of the interlayer wiring 98 on the back surface 80 b of the silicon substrate 80 is larger than the diameter of the interlayer wiring 98 on the front surface 80 a of the silicon substrate 80. ing. Thus, the substrate product 100A having the configuration shown in FIG. 2 is completed.

<積層工程>
続いて、図22に示すように、基板生産物100Aをビルドアップ基板101上に実装する。このとき、ビルドアップ基板101に設けられたバンプ102の位置と基板生産物100Aの層間配線98の位置とが一致するように、ビルドアップ基板101と基板生産物100Aとの相対位置を調整する。そして、加熱等によりバンプ102を溶融させてバンプ102と層間配線98とを接合することにより、基板生産物100Aの集積回路とビルドアップ基板101上の回路とを層間配線98を介して電気的に接続する。その後、基板生産物100Aに接着剤層91を介して接合されていた支持材92を基板生産物100Aから取り外す(図23)。
<Lamination process>
Subsequently, as shown in FIG. 22, the substrate product 100 </ b> A is mounted on the build-up substrate 101. At this time, the relative position between the buildup substrate 101 and the substrate product 100A is adjusted so that the position of the bump 102 provided on the buildup substrate 101 and the position of the interlayer wiring 98 of the substrate product 100A coincide. Then, the bumps 102 are melted by heating or the like to bond the bumps 102 and the interlayer wiring 98, thereby electrically connecting the integrated circuit of the substrate product 100 </ b> A and the circuit on the build-up substrate 101 through the interlayer wiring 98. Connecting. Thereafter, the support material 92 bonded to the substrate product 100A via the adhesive layer 91 is removed from the substrate product 100A (FIG. 23).

そして、図24に示すように、基板生産物100Aと同様の方法により製造された基板生産物100Bを基板生産物100Aの表面側に積み重ねる。このとき、基板生産物100Aに設けられたバンプ89の位置と基板生産物100Bの層間配線98の位置とが一致するように、基板生産物100Aと基板生産物100Bとの相対位置を調整する。そして、加熱等により基板生産物100Aのバンプ89を溶融させて該バンプ89と基板生産物100Bの層間配線98とを接合することにより、基板生産物100A及び100Bそれぞれの集積回路同士を電気的に接続する。その後、基板生産物100Bに接着剤層91を介して接合されていた支持材92を基板生産物100Bから取り外す。このようにして、所定枚数の基板生産物を順に積み重ね、互いに接合する。そして、このように形成された積層生産物をチップ状に切断することによって、図1に示した構成を備える三次元半導体デバイスが得られる。また、順序を逆にして、各基板生産物をチップ状に切断してから順次積層してもかまわない。   Then, as shown in FIG. 24, the substrate product 100B manufactured by the same method as the substrate product 100A is stacked on the surface side of the substrate product 100A. At this time, the relative positions of the substrate product 100A and the substrate product 100B are adjusted so that the positions of the bumps 89 provided on the substrate product 100A coincide with the positions of the interlayer wiring 98 of the substrate product 100B. Then, the bumps 89 of the substrate product 100A are melted by heating or the like, and the bumps 89 and the interlayer wiring 98 of the substrate product 100B are joined to electrically connect the integrated circuits of the substrate products 100A and 100B to each other. Connecting. Thereafter, the support member 92 bonded to the substrate product 100B via the adhesive layer 91 is removed from the substrate product 100B. In this way, a predetermined number of substrate products are sequentially stacked and joined together. And the three-dimensional semiconductor device provided with the structure shown in FIG. 1 is obtained by cut | disconnecting the laminated product formed in this way in chip shape. Further, the order may be reversed, and each substrate product may be cut into chips and then stacked sequentially.

以上に説明した基板生産物、三次元半導体デバイスおよびそれらの製造方法による効果について説明する。本実施形態に係る製造方法においては、シリコン基板80を貫通する層間配線98が形成される箇所に犠牲材料85(図10)を埋め込んだ状態で集積回路層90を形成している。そして、シリコン基板80を薄化(図15)した後に犠牲材料85を除去(図18)して金属材料(金属膜96)を埋め込み、シリコン基板80を貫通する層間配線98を形成している(図21)。このように、集積回路層90を形成したのちに層間配線98を形成するので、層間配線98の構成材料として、集積回路層90の半導体素子86を形成する際の高温に耐え得る材料を用いる必要がない。従って、層間配線98の構成材料として金属を使用でき、層間配線98を低抵抗率にすることができる。また、層間配線98を埋め込むための穴82(図7)を薄化工程の前に形成するので、良好な加工形状のヴィアを反応性イオンエッチングにより高速に形成できる。従って、本実施形態の製造方法、並びに該製造方法により製造される基板生産物および三次元半導体デバイスによれば、金属からなる層間配線98を容易に形成できる。   The effect by the board | substrate product demonstrated above, a three-dimensional semiconductor device, and those manufacturing methods is demonstrated. In the manufacturing method according to the present embodiment, the integrated circuit layer 90 is formed in a state where the sacrificial material 85 (FIG. 10) is embedded in a portion where the interlayer wiring 98 penetrating the silicon substrate 80 is formed. Then, after the silicon substrate 80 is thinned (FIG. 15), the sacrificial material 85 is removed (FIG. 18) and a metal material (metal film 96) is embedded to form an interlayer wiring 98 penetrating the silicon substrate 80 (see FIG. 18). FIG. 21). Thus, since the interlayer wiring 98 is formed after the integrated circuit layer 90 is formed, it is necessary to use a material that can withstand high temperatures when forming the semiconductor element 86 of the integrated circuit layer 90 as the constituent material of the interlayer wiring 98. There is no. Therefore, a metal can be used as a constituent material of the interlayer wiring 98, and the interlayer wiring 98 can have a low resistivity. Further, since the hole 82 (FIG. 7) for embedding the interlayer wiring 98 is formed before the thinning step, a via having a favorable processed shape can be formed at a high speed by reactive ion etching. Therefore, according to the manufacturing method of this embodiment, the substrate product manufactured by the manufacturing method, and the three-dimensional semiconductor device, the interlayer wiring 98 made of metal can be easily formed.

なお、集積回路が形成された複数の基板を積層してから該複数の基板を貫くように層間配線(スルーホール)を形成する方式も知られているが、本実施形態の製造方法によれば、このような方式と比較して層間配線の配置の自由度を格段に向上できる。また、基板を薄化してから層間配線用の貫通孔を形成する方式と比較して、穴82を細く且つ深く形成できる。   A method is also known in which a plurality of substrates on which integrated circuits are formed are stacked and then an interlayer wiring (through hole) is formed so as to penetrate the plurality of substrates. However, according to the manufacturing method of this embodiment, Compared with such a system, the degree of freedom of arrangement of the interlayer wiring can be remarkably improved. Further, the hole 82 can be formed narrower and deeper than the method of forming the through hole for the interlayer wiring after the substrate is thinned.

また、本実施形態のように、穴82の内面に絶縁膜84を形成する絶縁膜形成工程(図8)を、穴形成工程(図4〜図7)と埋込工程(図9,図10)との間に備えることが好ましい。また、この場合、基板80がシリコン基板であり、絶縁膜84がシリコン酸化膜であることが好ましい。一般的に、シリコン基板80に形成された微細な穴82の内面に酸化シリコンの絶縁膜84を形成するような場合には、高温で処理するほど絶縁膜84が内面に均一に形成され、好ましい。しかし、[課題を解決するための手段]欄で述べたように、基板を薄化してから貫通孔の内面に絶縁膜を形成する場合、基板を支持材に貼り付ける際に樹脂などの接着剤が用いられるが、このような接着剤は一般的に耐熱性が低い。従って、絶縁膜を形成する際に十分に温度を上げることが難しく、微細な穴の内面に絶縁膜を均一に形成することが困難となる。これに対し、本実施形態に係る製造方法によれば、穴82の内面の絶縁膜84を薄化工程(図14,図15)の前に形成できるので、シリコン基板80を支持材に接着する必要がなく、絶縁膜84を形成する際に十分に温度を上げることができ、この絶縁膜84を穴82の内面に均一に形成することができる。   Further, as in this embodiment, the insulating film forming step (FIG. 8) for forming the insulating film 84 on the inner surface of the hole 82 is replaced with the hole forming step (FIGS. 4 to 7) and the embedding step (FIGS. 9 and 10). ) Is preferably provided. In this case, the substrate 80 is preferably a silicon substrate and the insulating film 84 is preferably a silicon oxide film. In general, when an insulating film 84 of silicon oxide is formed on the inner surface of a fine hole 82 formed in the silicon substrate 80, the insulating film 84 is more uniformly formed on the inner surface as the temperature is increased. . However, as described in the [Means for Solving the Problems] column, when the insulating film is formed on the inner surface of the through hole after the substrate is thinned, an adhesive such as a resin is used when the substrate is attached to the support material. However, such an adhesive generally has low heat resistance. Therefore, it is difficult to raise the temperature sufficiently when forming the insulating film, and it is difficult to uniformly form the insulating film on the inner surface of the minute hole. On the other hand, according to the manufacturing method according to the present embodiment, the insulating film 84 on the inner surface of the hole 82 can be formed before the thinning step (FIGS. 14 and 15), so that the silicon substrate 80 is bonded to the support material. This is not necessary, and the temperature can be sufficiently increased when forming the insulating film 84, and the insulating film 84 can be uniformly formed on the inner surface of the hole 82.

また、本実施形態のように、穴形成工程(図4〜図7)において形成される穴82は、シリコン基板80の表面80aから厚さ方向に延びる第1の部分82aと、第1の部分82aより内径が大きい第2の部分82bとを有することが好ましい。このような第1の部分82a及び第2の部分82bを穴82が有することにより、薄化工程(図14,図15)後の穴82の裏面80b側の内径が、表面80a側の内径より大きくなる。すなわち、後の配線形成工程(図16〜図21)において、裏面80b側の層間配線98の径が、表面80a側における層間配線98の径より大きくなる。従って、積層工程(図22〜図24)において当該基板生産物の裏面側を他の基板と接合する際に、当該基板生産物と他の基板との位置合わせの精度を緩和できる。   Further, as in this embodiment, the hole 82 formed in the hole forming step (FIGS. 4 to 7) includes a first portion 82a extending in the thickness direction from the surface 80a of the silicon substrate 80, and a first portion. It is preferable to have the 2nd part 82b whose internal diameter is larger than 82a. Since the hole 82 has the first portion 82a and the second portion 82b, the inner diameter on the back surface 80b side of the hole 82 after the thinning step (FIGS. 14 and 15) is larger than the inner diameter on the surface 80a side. growing. That is, in the subsequent wiring formation process (FIGS. 16 to 21), the diameter of the interlayer wiring 98 on the back surface 80b side is larger than the diameter of the interlayer wiring 98 on the front surface 80a side. Therefore, when the back side of the substrate product is bonded to another substrate in the stacking step (FIGS. 22 to 24), the accuracy of alignment between the substrate product and the other substrate can be relaxed.

また、本実施形態のように、犠牲材料85は、多結晶シリコン及びシリコンゲルマニウムのうち少なくとも一方を含むことが好ましい。これにより、集積回路を形成する際の熱処理に耐え、且つ配線形成工程(図16〜図21)において選択的に除去可能な材料によって穴82を好適に埋め込むことができる。   In addition, as in the present embodiment, the sacrificial material 85 preferably includes at least one of polycrystalline silicon and silicon germanium. Thus, the hole 82 can be suitably filled with a material that can withstand heat treatment when forming the integrated circuit and can be selectively removed in the wiring formation step (FIGS. 16 to 21).

本発明による三次元半導体デバイスの製造方法、基板生産物の製造方法、基板生産物、及び三次元半導体デバイスは、上記した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記した実施形態では犠牲材料の例として多結晶シリコン及びシリコンゲルマニウムを例示したが、犠牲材料としては、半導体素子を形成する際の高温でもガスが発生せず、シリコン酸化膜とのエッチング選択性があれば他の材料でもよい。このような他の材料の例としては、カーボンやタングステンを挙げることができる。また、シリコンゲルマニウムは、単結晶構造に限らず、アモルファス構造であっても良い。   The three-dimensional semiconductor device manufacturing method, the substrate product manufacturing method, the substrate product, and the three-dimensional semiconductor device according to the present invention are not limited to the above-described embodiments, and various other modifications are possible. For example, in the above-described embodiment, polycrystalline silicon and silicon germanium are exemplified as examples of the sacrificial material. However, as the sacrificial material, gas is not generated even at a high temperature when forming a semiconductor element, and etching with a silicon oxide film is selected. Other materials may be used as long as there is a property. Examples of such other materials include carbon and tungsten. Silicon germanium is not limited to a single crystal structure, and may have an amorphous structure.

本発明による三次元半導体デバイスの一実施形態の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of one Embodiment of the three-dimensional semiconductor device by this invention. 基板生産物の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of a board | substrate product. 三次元半導体デバイスの製造方法において用いられるシリコン基板を示す図である。It is a figure which shows the silicon substrate used in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における穴形成工程を示す図である。It is a figure which shows the hole formation process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における穴形成工程を示す図である。It is a figure which shows the hole formation process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における穴形成工程を示す図である。It is a figure which shows the hole formation process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における穴形成工程を示す図である。It is a figure which shows the hole formation process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における絶縁膜形成工程を示す図である。It is a figure which shows the insulating film formation process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における埋込工程を示す図である。It is a figure which shows the embedding process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における埋込工程を示す図である。It is a figure which shows the embedding process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における集積回路形成工程を示す図である。It is a figure which shows the integrated circuit formation process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における集積回路形成工程を示す図である。It is a figure which shows the integrated circuit formation process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における薄化工程を示す図である。It is a figure which shows the thinning process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における薄化工程を示す図である。It is a figure which shows the thinning process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における薄化工程を示す図である。It is a figure which shows the thinning process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における配線形成工程を示す図である。It is a figure which shows the wiring formation process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における配線形成工程を示す図である。It is a figure which shows the wiring formation process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における配線形成工程を示す図である。It is a figure which shows the wiring formation process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における配線形成工程を示す図である。It is a figure which shows the wiring formation process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における配線形成工程を示す図である。It is a figure which shows the wiring formation process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における配線形成工程を示す図である。It is a figure which shows the wiring formation process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における積層工程を示す図である。It is a figure which shows the lamination process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における積層工程を示す図である。It is a figure which shows the lamination process in the manufacturing method of a three-dimensional semiconductor device. 三次元半導体デバイスの製造方法における積層工程を示す図である。It is a figure which shows the lamination process in the manufacturing method of a three-dimensional semiconductor device.

符号の説明Explanation of symbols

1…三次元半導体デバイス、10,100A,100B…基板生産物、20,101…ビルドアップ基板、30…基板、40,90…集積回路層、41,86…半導体素子、42,88…配線パターン、42a,50b,88a,95…バリアメタル膜、43,87…絶縁層、50,98…層間配線、52…拡径部、60,61,89,102…バンプ、70,71,84…絶縁膜、80…シリコン基板、81,93…シリコン酸化膜、82…穴、82a…第1の部分、82b…第2の部分、83…保護膜、85…犠牲材料、91…接着剤層、92…支持材、94…貫通穴、96…金属膜。   DESCRIPTION OF SYMBOLS 1 ... Three-dimensional semiconductor device 10, 100A, 100B ... Substrate product, 20, 101 ... Build-up substrate, 30 ... Substrate, 40, 90 ... Integrated circuit layer, 41, 86 ... Semiconductor element, 42, 88 ... Wiring pattern , 42a, 50b, 88a, 95 ... barrier metal film, 43, 87 ... insulating layer, 50, 98 ... interlayer wiring, 52 ... enlarged diameter part, 60, 61, 89, 102 ... bump, 70, 71, 84 ... insulating 80, silicon substrate, 81, 93 ... silicon oxide film, 82 ... hole, 82a ... first part, 82b ... second part, 83 ... protective film, 85 ... sacrificial material, 91 ... adhesive layer, 92 ... support material, 94 ... through hole, 96 ... metal film.

Claims (12)

基板の表面に有底の穴を形成する穴形成工程と、
犠牲材料により前記穴を埋め込む埋込工程と、
前記犠牲材料と接する配線パターンを有する集積回路を前記基板の表面に形成する集積回路形成工程と、
前記基板の裏面より前記基板を薄化することにより、前記穴を貫通させると共に前記基板の裏面から前記犠牲材料の一部を露出させる薄化工程と、
前記犠牲材料を除去して金属材料を埋め込むことにより前記基板を貫通する層間配線を形成する配線形成工程と、
前記基板を他の基板上に積み重ね、前記集積回路と前記他の基板上の回路とを前記層間配線を介して電気的に接続する積層工程と
を備えることを特徴とする、三次元半導体デバイスの製造方法。
A hole forming step of forming a bottomed hole on the surface of the substrate;
Embedding the hole with a sacrificial material;
Forming an integrated circuit having a wiring pattern in contact with the sacrificial material on the surface of the substrate; and
A thinning step of thinning the substrate from the back surface of the substrate to penetrate the hole and to expose a part of the sacrificial material from the back surface of the substrate;
A wiring forming step of forming an interlayer wiring penetrating the substrate by removing the sacrificial material and embedding a metal material;
A stacking step of stacking the substrate on another substrate, and electrically connecting the integrated circuit and the circuit on the other substrate via the interlayer wiring. Production method.
前記穴の内面に絶縁膜を形成する絶縁膜形成工程を、前記穴形成工程と前記埋込工程との間に更に備えることを特徴とする、請求項1に記載の三次元半導体デバイスの製造方法。   The method for manufacturing a three-dimensional semiconductor device according to claim 1, further comprising an insulating film forming step of forming an insulating film on an inner surface of the hole between the hole forming step and the embedding step. . 前記基板がシリコン基板であり、前記絶縁膜がシリコン酸化膜であることを特徴とする、請求項2に記載の三次元半導体デバイスの製造方法。   3. The method for manufacturing a three-dimensional semiconductor device according to claim 2, wherein the substrate is a silicon substrate, and the insulating film is a silicon oxide film. 前記穴形成工程において形成される前記穴は、前記基板の表面から前記基板の厚さ方向に延びる第1の部分と、前記第1の部分より内径が大きい第2の部分とを有することを特徴とする、請求項1〜3のいずれか一項に記載の三次元半導体デバイスの製造方法。   The hole formed in the hole forming step has a first portion extending in a thickness direction of the substrate from the surface of the substrate, and a second portion having an inner diameter larger than that of the first portion. The manufacturing method of the three-dimensional semiconductor device as described in any one of Claims 1-3. 前記犠牲材料は、多結晶シリコン及びシリコンゲルマニウムのうち少なくとも一方を含むことを特徴とする、請求項1〜4のいずれか一項に記載の三次元半導体デバイスの製造方法。   The method of manufacturing a three-dimensional semiconductor device according to any one of claims 1 to 4, wherein the sacrificial material includes at least one of polycrystalline silicon and silicon germanium. 基板の表面に有底の穴を形成する穴形成工程と、
犠牲材料により前記穴を埋め込む埋込工程と、
前記犠牲材料と接する配線パターンを有する集積回路を前記基板の表面に形成する集積回路形成工程と、
前記基板の裏面より前記基板を薄化することにより、前記穴を貫通させると共に前記基板の裏面から前記犠牲材料の一部を露出させる薄化工程と、
前記犠牲材料を除去して金属材料を埋め込むことにより前記基板を貫通する層間配線を形成する配線形成工程と
を備えることを特徴とする、基板生産物の製造方法。
A hole forming step of forming a bottomed hole on the surface of the substrate;
Embedding the hole with a sacrificial material;
Forming an integrated circuit having a wiring pattern in contact with the sacrificial material on the surface of the substrate; and
A thinning step of thinning the substrate from the back surface of the substrate to penetrate the hole and to expose a part of the sacrificial material from the back surface of the substrate;
And a wiring forming step of forming an interlayer wiring penetrating the substrate by removing the sacrificial material and embedding a metal material.
基板と、
前記基板の表面に設けられた集積回路と、
前記基板を貫通する層間配線と
を備え、
前記層間配線は、前記基板の表面に有底の穴を形成し、犠牲材料により前記穴を埋め込み、前記犠牲材料と接する配線パターンを有する前記集積回路が前記基板の表面に形成された後に、前記基板の裏面より前記基板を薄化して前記穴を貫通させると共に前記基板の裏面から前記犠牲材料の一部を露出させ、前記犠牲材料を除去して金属材料を埋め込むことにより形成されたことを特徴とする、基板生産物。
A substrate,
An integrated circuit provided on the surface of the substrate;
An interlayer wiring penetrating the substrate,
The interlayer wiring forms a bottomed hole on the surface of the substrate, fills the hole with a sacrificial material, and after the integrated circuit having a wiring pattern in contact with the sacrificial material is formed on the surface of the substrate, The substrate is formed by thinning the substrate from the back surface of the substrate to penetrate the hole, exposing a part of the sacrificial material from the back surface of the substrate, removing the sacrificial material, and embedding a metal material. And substrate products.
前記犠牲材料は、多結晶シリコン及びシリコンゲルマニウムのうち少なくとも一方を含むことを特徴とする、請求項7に記載の基板生産物。   The substrate product according to claim 7, wherein the sacrificial material includes at least one of polycrystalline silicon and silicon germanium. 前記基板の裏面における前記層間配線の径が前記基板の表面における前記層間配線の径より大きいことを特徴とする、請求項7または8に記載の基板生産物。   9. The substrate product according to claim 7, wherein a diameter of the interlayer wiring on the back surface of the substrate is larger than a diameter of the interlayer wiring on the surface of the substrate. 前記基板と前記層間配線との間に絶縁膜を更に備えることを特徴とする、請求項7〜9のいずれか一項に記載の基板生産物。   The substrate product according to claim 7, further comprising an insulating film between the substrate and the interlayer wiring. 前記基板がシリコン基板であり、前記絶縁膜がシリコン酸化膜であることを特徴とする、請求項10に記載の基板生産物。   The substrate product according to claim 10, wherein the substrate is a silicon substrate and the insulating film is a silicon oxide film. 請求項7〜11のいずれか一項に記載の基板生産物を他の基板上に積み重ね、前記集積回路と前記他の基板上の回路とが前記層間配線を介して電気的に接続されて成ることを特徴とする、三次元半導体デバイス。   The substrate product according to any one of claims 7 to 11 is stacked on another substrate, and the integrated circuit and the circuit on the other substrate are electrically connected via the interlayer wiring. A three-dimensional semiconductor device characterized by that.
JP2007108312A 2007-04-17 2007-04-17 Three-dimensional semiconductor device manufacturing method, substrate product manufacturing method, substrate product, and three-dimensional semiconductor device Expired - Fee Related JP5355863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108312A JP5355863B2 (en) 2007-04-17 2007-04-17 Three-dimensional semiconductor device manufacturing method, substrate product manufacturing method, substrate product, and three-dimensional semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108312A JP5355863B2 (en) 2007-04-17 2007-04-17 Three-dimensional semiconductor device manufacturing method, substrate product manufacturing method, substrate product, and three-dimensional semiconductor device

Publications (2)

Publication Number Publication Date
JP2008270354A true JP2008270354A (en) 2008-11-06
JP5355863B2 JP5355863B2 (en) 2013-11-27

Family

ID=40049502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108312A Expired - Fee Related JP5355863B2 (en) 2007-04-17 2007-04-17 Three-dimensional semiconductor device manufacturing method, substrate product manufacturing method, substrate product, and three-dimensional semiconductor device

Country Status (1)

Country Link
JP (1) JP5355863B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102686018A (en) * 2011-03-17 2012-09-19 精工爱普生株式会社 Substrate,infrared sensor and through electrode forming method
CN104854694A (en) * 2012-10-15 2015-08-19 美光科技公司 Devices, systems, and methods related to forming through-substrate vias with sacrificial plugs
JP2015201493A (en) * 2014-04-04 2015-11-12 キヤノン株式会社 Semiconductor device and manufacturing method of the same
US10229948B2 (en) 2012-09-28 2019-03-12 Canon Kabushiki Kaisha Semiconductor apparatus
CN111192823A (en) * 2018-11-14 2020-05-22 东京毅力科创株式会社 Method for manufacturing device
CN112510031A (en) * 2019-04-30 2021-03-16 长江存储科技有限责任公司 Bonded semiconductor device with processor and NAND flash memory and method of forming the same
JP2022528592A (en) * 2019-04-15 2022-06-15 長江存儲科技有限責任公司 A bonded semiconductor device with a processor and dynamic random access memory and how to form it
US11694993B2 (en) 2019-04-15 2023-07-04 Yangtze Memory Technologies Co., Ltd. Unified semiconductor devices having processor and heterogeneous memories and methods for forming the same
US11749641B2 (en) 2019-04-15 2023-09-05 Yangtze Memory Technologies Co., Ltd. Unified semiconductor devices having processor and heterogeneous memories and methods for forming the same
US11864367B2 (en) 2019-04-30 2024-01-02 Yangtze Memory Technologies Co., Ltd. Bonded semiconductor devices having processor and NAND flash memory and methods for forming the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047845A (en) * 1990-04-25 1992-01-13 Mitsubishi Electric Corp Manufacture of semiconductor equipment
JPH10223833A (en) * 1996-12-02 1998-08-21 Toshiba Corp Multi-chip semiconductor device chip for multi-chip semiconductor device and its formation
JP2004128063A (en) * 2002-09-30 2004-04-22 Toshiba Corp Semiconductor device and its manufacturing method
WO2006019156A1 (en) * 2004-08-20 2006-02-23 Zycube Co., Ltd. Method for manufacturing semiconductor device having three-dimensional multilayer structure
JP2006060067A (en) * 2004-08-20 2006-03-02 Rohm Co Ltd Method for manufacturing semiconductor chip, semiconductor chip, semiconductor device, and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047845A (en) * 1990-04-25 1992-01-13 Mitsubishi Electric Corp Manufacture of semiconductor equipment
JPH10223833A (en) * 1996-12-02 1998-08-21 Toshiba Corp Multi-chip semiconductor device chip for multi-chip semiconductor device and its formation
JP2004128063A (en) * 2002-09-30 2004-04-22 Toshiba Corp Semiconductor device and its manufacturing method
WO2006019156A1 (en) * 2004-08-20 2006-02-23 Zycube Co., Ltd. Method for manufacturing semiconductor device having three-dimensional multilayer structure
JP2006060067A (en) * 2004-08-20 2006-03-02 Rohm Co Ltd Method for manufacturing semiconductor chip, semiconductor chip, semiconductor device, and method for manufacturing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102686018A (en) * 2011-03-17 2012-09-19 精工爱普生株式会社 Substrate,infrared sensor and through electrode forming method
JP2012195514A (en) * 2011-03-17 2012-10-11 Seiko Epson Corp Substrate with element, infrared sensor, and through electrode formation method
US9070637B2 (en) 2011-03-17 2015-06-30 Seiko Epson Corporation Device-mounted substrate, infrared light sensor and through electrode forming method
EP2500935A3 (en) * 2011-03-17 2016-10-12 Seiko Epson Corporation Stackable chip with through electrodes, manufacturing method thereof, and infrared sensor
US10229948B2 (en) 2012-09-28 2019-03-12 Canon Kabushiki Kaisha Semiconductor apparatus
CN104854694A (en) * 2012-10-15 2015-08-19 美光科技公司 Devices, systems, and methods related to forming through-substrate vias with sacrificial plugs
US9449906B2 (en) 2012-10-15 2016-09-20 Micron Technology, Inc. Devices, systems, and methods related to forming through-substrate vias with sacrificial plugs
JP2015201493A (en) * 2014-04-04 2015-11-12 キヤノン株式会社 Semiconductor device and manufacturing method of the same
CN111192823A (en) * 2018-11-14 2020-05-22 东京毅力科创株式会社 Method for manufacturing device
JP2022528592A (en) * 2019-04-15 2022-06-15 長江存儲科技有限責任公司 A bonded semiconductor device with a processor and dynamic random access memory and how to form it
US11694993B2 (en) 2019-04-15 2023-07-04 Yangtze Memory Technologies Co., Ltd. Unified semiconductor devices having processor and heterogeneous memories and methods for forming the same
US11749641B2 (en) 2019-04-15 2023-09-05 Yangtze Memory Technologies Co., Ltd. Unified semiconductor devices having processor and heterogeneous memories and methods for forming the same
JP7487213B2 (en) 2019-04-15 2024-05-20 長江存儲科技有限責任公司 Junction semiconductor device having a processor and dynamic random access memory and method of forming same
US12002788B2 (en) 2019-04-15 2024-06-04 Yangtze Memory Technologies Co., Ltd. Bonded semiconductor devices having processor and dynamic random-access memory and methods for forming the same
CN112510031A (en) * 2019-04-30 2021-03-16 长江存储科技有限责任公司 Bonded semiconductor device with processor and NAND flash memory and method of forming the same
US11864367B2 (en) 2019-04-30 2024-01-02 Yangtze Memory Technologies Co., Ltd. Bonded semiconductor devices having processor and NAND flash memory and methods for forming the same

Also Published As

Publication number Publication date
JP5355863B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5355863B2 (en) Three-dimensional semiconductor device manufacturing method, substrate product manufacturing method, substrate product, and three-dimensional semiconductor device
US10777454B2 (en) 3D integration method using SOI substrates and structures produced thereby
US10553562B2 (en) Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods
US10163864B1 (en) Vertically stacked wafers and methods of forming same
US8159060B2 (en) Hybrid bonding interface for 3-dimensional chip integration
CN105489512B (en) Interim semiconductor structure bonding method and related bonding semiconductor structure
US8283207B2 (en) Methods for forming through-substrate conductor filled vias, and electronic assemblies formed using such methods
TW202201631A (en) Semiconductor package, device and method
TW201023331A (en) Semiconductor device and method for forming the same
TW201222773A (en) Integrated circuit device and method of forming the same
TWI509713B (en) Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods
JP2010157741A (en) Through silicon via with scalloped sidewall
US20170271207A9 (en) Novel 3D Integration Method Using SOI Substrates And Structures Produced Thereby
TW201308556A (en) 3-D integration using multi stage vias
WO2010035375A1 (en) Semiconductor device and method for manufacturing the same
TW201240018A (en) Package interconnects
WO2024021356A1 (en) Tsv electrical connection structure having high aspect ratio and manufacturing method therefor
JP5672503B2 (en) Semiconductor devices with carbon-based materials for through-hole vias
CN220553432U (en) Device package
CN107293484A (en) One kind switching board fabrication method
KR100962229B1 (en) Semiconductor device and method for fabricating the same
Blasa et al. High density backside tungsten TSV for 3D stacked ICs
TW202416449A (en) Semiconductor device, semiconductor package structure and method of forming a semiconductor device
TW202333333A (en) Semiconductor die, semiconductor device and method for forming a semiconductor die
CN117457627A (en) Semiconductor packaging structure, semiconductor device and forming method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100419

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130118

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130123

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130220

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130225

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130319

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees