JP4696152B2 - Semiconductor device manufacturing method and semiconductor device - Google Patents

Semiconductor device manufacturing method and semiconductor device Download PDF

Info

Publication number
JP4696152B2
JP4696152B2 JP2008287478A JP2008287478A JP4696152B2 JP 4696152 B2 JP4696152 B2 JP 4696152B2 JP 2008287478 A JP2008287478 A JP 2008287478A JP 2008287478 A JP2008287478 A JP 2008287478A JP 4696152 B2 JP4696152 B2 JP 4696152B2
Authority
JP
Japan
Prior art keywords
wafer
film
semiconductor device
bump electrode
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008287478A
Other languages
Japanese (ja)
Other versions
JP2010114350A (en
Inventor
悟一 横山
尚 石田
守男 中村
宣明 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Hitachi Ltd
Original Assignee
Honda Motor Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008287478A priority Critical patent/JP4696152B2/en
Publication of JP2010114350A publication Critical patent/JP2010114350A/en
Application granted granted Critical
Publication of JP4696152B2 publication Critical patent/JP4696152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • H01L2224/13009Bump connector integrally formed with a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1751Function
    • H01L2224/17515Bump connectors having different functions
    • H01L2224/17517Bump connectors having different functions including bump connectors providing primarily mechanical support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • H01L2225/06544Design considerations for via connections, e.g. geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of improving a manufacturing yield of a semiconductor device of a three-dimensional structure having a penetrating electrode. <P>SOLUTION: By forming a support part with a spacer 49 and a second electrode 50a laminated therein in a region without having a first bump electrode 50 formed therein between a surface protective film 48 on a principal surface of a wafer W2 and a back surface of a wafer 3, the flexure of the wafer W3 is prevented to keep the distance between the surface protective film 48 on the principal surface of the wafer W2 and the back surface of the wafer W3 uniform. Accordingly, generation of an unfilled part of an adhesive 51 between the surface protective film 48 on the principal surface of the wafer W2 and the back surface of the wafer W3 is prevented. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、半導体装置の製造方法および半導体装置に関し、特に3次元構造の半導体装置の製造方法および半導体装置に適用して有効な技術に関するものである。   The present invention relates to a method for manufacturing a semiconductor device and a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having a three-dimensional structure and a technique effective when applied to the semiconductor device.

3次元構造の半導体装置は、半導体活性層を多層に積み重ねた構造に3次元的に半導体素子を集積することにより、2次元構造の半導体装置が直面する種々の障壁、例えば微細化におけるリソグラフィ技術の限界、配線の微細化や配線長増大による配線抵抗の増大や寄生効果の増大、またそれに伴う動作速度の飽和傾向、素子寸法の微細化による高電界効果等を回避し、集積度の向上を維持する有力な構造として注目されている。   A three-dimensional semiconductor device integrates semiconductor elements three-dimensionally in a structure in which semiconductor active layers are stacked in multiple layers, thereby providing various barriers that the two-dimensional semiconductor device faces, such as lithography technology in miniaturization. Increases in wiring resistance and parasitic effect due to limitations, wiring miniaturization and wiring length increase, and the accompanying tendency to saturate operating speed and high electric field effect due to miniaturization of device dimensions, etc., and maintain high integration It is attracting attention as a powerful structure.

3次元構造の半導体装置については、例えば特開平11−261000号公報(特許文献1)または特開2002−334967号公報(特許文献2)に記載があり、半導体素子が形成された半導体基板を貼り合せることにより3次元構造の半導体装置を製造する方法が開示されている。また、これらの文献には、所望の半導体基板の主裏面間を貫通する溝内に垂直相互接続体または埋込接続電極と称する貫通電極を形成し、半導体基板の主裏面間を導通可能なようにする構成が開示されている。   A semiconductor device having a three-dimensional structure is described in, for example, Japanese Patent Application Laid-Open No. 11-261000 (Patent Document 1) or Japanese Patent Application Laid-Open No. 2002-334967 (Patent Document 2), and a semiconductor substrate on which a semiconductor element is formed is attached. A method of manufacturing a semiconductor device having a three-dimensional structure by combining them is disclosed. Also, in these documents, a through electrode called a vertical interconnector or a buried connection electrode is formed in a groove penetrating between the main back surfaces of a desired semiconductor substrate so that the main back surfaces of the semiconductor substrate can be electrically connected. The structure to make is disclosed.

また、特開2006−165025号公報(特許文献3)または特開2003−17558号公報(特許文献4)には、半導体基板中に貫通電極を備えた半導体装置および貫通電極の形成方法が開示されている。   Japanese Unexamined Patent Application Publication No. 2006-165025 (Patent Document 3) or Japanese Unexamined Patent Application Publication No. 2003-17558 (Patent Document 4) discloses a semiconductor device including a through electrode in a semiconductor substrate and a method of forming the through electrode. ing.

また、特開2007−281393号公報(特許文献5)には、導電性材料からなる突起電極と、突起電極よりも大きな高さをもつダミーの突起部とを基板上に有しており、突起部を利用して間隙を決定し、突起部の内側領域において電子部品の表面に付着された電気絶縁材によって所定の間隙を正確に保持する半導体装置が開示されている。
特開平11−261000号公報 特開2002−334967号公報 特開2006−165025号公報 特開2003−17558号公報 特開2007−281393号公報
Japanese Patent Application Laid-Open No. 2007-281393 (Patent Document 5) has a protruding electrode made of a conductive material and a dummy protruding portion having a height larger than the protruding electrode on the substrate. A semiconductor device is disclosed in which a gap is determined using a portion, and a predetermined gap is accurately held by an electrical insulating material attached to the surface of an electronic component in an inner region of the protrusion.
JP 11-261000 A JP 2002-334967 A JP 2006-165025 A JP 2003-17558 A JP 2007-281393 A

複数枚のチップが積層されて構成される3次元構造の半導体装置では、上に位置するチップとこれに対向して下に位置するチップとの間において互いの信号を伝達する手段の一つとして貫通電極が用いられている。また、上に位置するチップとこれに対向して下に位置するチップとの間隔は、例えば5〜30μm程度であり、その間には、両チップを貼り合わせる接着剤として機能する樹脂が充填されている。   In a semiconductor device having a three-dimensional structure formed by stacking a plurality of chips, as one of means for transmitting a mutual signal between an upper chip and a lower chip facing the chip. A through electrode is used. Moreover, the space | interval of the chip | tip located on the upper side and the chip | tip located on the lower side is this, for example, about 5-30 micrometers, The resin which functions as the adhesive agent which bonds both chip | tips in between is filled. Yes.

しかしながら、貫通電極を有する3次元構造の半導体装置については、その製造過程において、以下に説明する種々の技術的課題が存在する。   However, a three-dimensional semiconductor device having a through electrode has various technical problems described below in the manufacturing process.

上記貫通電極は半導体装置の回路構成に依存して局在することから、多数の貫通電極が配置された領域と、貫通電極が配置されない領域とが存在する。貫通電極が配置された領域では、上に位置するウエハとこれに対向して下に位置するウエハとの間隔は貫通電極の長さで決まる。しかし、貫通電極が配置されていない領域では、上に位置するウエハの厚さが、例えば30μm程度と薄いため、上に位置するウエハがたわむことによって、上に位置するウエハとこれに対向して下に位置するウエハとの間隔が、貫通電極が配置された領域の上に位置するウエハとこれに対向して下に位置するウエハとの間隔よりも20%程度狭くなる。このため、上に位置するウエハとこれに対向して下に位置するウエハとの間隔にばらつきが生じてしまう。   Since the through electrode is localized depending on the circuit configuration of the semiconductor device, there are a region where a large number of through electrodes are arranged and a region where no through electrode is arranged. In the region where the through electrode is disposed, the distance between the upper wafer and the lower wafer facing the wafer is determined by the length of the through electrode. However, in the region where the through electrode is not disposed, the thickness of the upper wafer is as thin as about 30 μm, for example, so that the upper wafer bends to oppose the upper wafer. The distance between the wafer positioned below and the wafer positioned above the area where the through electrode is disposed is approximately 20% smaller than the distance between the wafer positioned below the wafer. For this reason, the gap between the upper wafer and the lower wafer facing the wafer is varied.

上に位置するウエハとこれに対向して下に位置するウエハとの間隔が狭いところでは樹脂が注入されにくくなり、上に位置するウエハとこれに対向して下に位置するウエハとの間に樹脂が充填されない箇所が形成されてしまう。複数枚のウエハを積層して貼り合わせた後に、積層した複数枚のウエハは、例えばダイシングにより個々の積層した複数枚のチップに個片化されて半導体装置が形成されるが、その時、樹脂が充填されない箇所では、上に位置するチップとこれに対向して下に位置するチップとが分離して、半導体装置が破壊するという問題が発生する。   Resin is less likely to be injected where the distance between the upper wafer and the lower wafer is small, and the resin is less likely to be injected between the upper wafer and the lower wafer. Locations that are not filled with resin are formed. After laminating and laminating a plurality of wafers, the laminated wafers are separated into individual laminated chips by dicing, for example, to form a semiconductor device. In the unfilled portion, there is a problem that the chip located above and the chip located below opposite thereto are separated, and the semiconductor device is destroyed.

本発明の目的は、貫通電極を有する3次元構造の半導体装置の製造歩留まりを向上させることのできる技術を提供することにある。   An object of the present invention is to provide a technique capable of improving the manufacturing yield of a three-dimensional semiconductor device having a through electrode.

本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち、代表的なものの一実施の形態を簡単に説明すれば、次のとおりである。   Of the inventions disclosed in this application, an embodiment of a representative one will be briefly described as follows.

この実施の形態は、複数枚の半導体ウエハを貼り合わせ、各々の半導体ウエハの半導体チップに形成された集積回路同士を互いに電気的に接続することにより所望の集積回路を形成する半導体装置の製造方法である。まず、第2ウエハの主面上に最上層配線を覆う表面保護膜を形成した後、表面保護膜を加工して最上層配線の一部を露出させる。続いて、第2ウエハの主面上に絶縁膜を形成した後、この絶縁膜を加工して最上層配線が露出していない領域の表面保護膜上に絶縁膜からなるスペーサを形成する。続いて、同一工程で第2ウエハの主面上の露出した最上層配線上に第1バンプ電極を、スペーサ上に第2バンプ電極を形成する。その後、第2ウエハの主面上に形成された第1バンプ電極に、第1ウエハの裏面から突出する貫通電極を物理的に接触させ、さらに第1ウエハの裏面と第2ウエハの主面上の表面保護膜との間に樹脂を充填するものである。   In this embodiment, a plurality of semiconductor wafers are bonded together, and the integrated circuits formed on the semiconductor chips of each semiconductor wafer are electrically connected to each other to form a desired integrated circuit. It is. First, after forming a surface protective film covering the uppermost layer wiring on the main surface of the second wafer, the surface protective film is processed to expose a part of the uppermost layer wiring. Subsequently, after forming an insulating film on the main surface of the second wafer, the insulating film is processed to form a spacer made of an insulating film on the surface protective film in a region where the uppermost wiring is not exposed. Subsequently, in the same process, a first bump electrode is formed on the exposed uppermost layer wiring on the main surface of the second wafer, and a second bump electrode is formed on the spacer. Thereafter, a through electrode protruding from the back surface of the first wafer is brought into physical contact with the first bump electrode formed on the main surface of the second wafer, and the back surface of the first wafer and the main surface of the second wafer are further contacted. The resin is filled between the surface protective film.

また、この実施の形態は、複数枚の半導体ウエハを貼り合わせ、各々の半導体ウエハの半導体チップに形成された集積回路同士を互いに電気的に接続することにより所望の集積回路を形成する半導体装置の製造方法である。まず、第2ウエハの主面上に最上層配線を覆う表面保護膜を形成した後、表面保護膜を加工して第1バンプ電極が形成される領域の表面保護膜の厚さを第1バンプ電極が形成されない領域の表面保護膜の厚さよりも薄くし、さらに表面保護膜を加工して第1バンプ電極が形成される領域の最上層配線の一部を露出させる。続いて、同一工程で第2ウエハの主面上の露出した最上層配線上に第1バンプ電極を最上層配線が露出していない表面保護膜上に第2バンプ電極を形成する。その後、第2ウエハの主面上に形成された第1バンプ電極に、第1ウエハの裏面から突出する貫通電極を物理的に接触させ、さらに第1ウエハの裏面と第2ウエハの主面上の表面保護膜との間に樹脂を充填するものである。   Further, this embodiment is a semiconductor device that forms a desired integrated circuit by bonding a plurality of semiconductor wafers and electrically connecting the integrated circuits formed on the semiconductor chips of each semiconductor wafer to each other. It is a manufacturing method. First, after forming a surface protective film covering the uppermost layer wiring on the main surface of the second wafer, the surface protective film is processed to determine the thickness of the surface protective film in a region where the first bump electrode is formed. The thickness of the surface protective film in the region where the electrode is not formed is made thinner, and the surface protective film is further processed to expose a part of the uppermost layer wiring in the region where the first bump electrode is formed. Subsequently, in the same process, a first bump electrode is formed on the exposed uppermost layer wiring on the main surface of the second wafer, and a second bump electrode is formed on the surface protection film where the uppermost layer wiring is not exposed. Thereafter, a through electrode protruding from the back surface of the first wafer is brought into physical contact with the first bump electrode formed on the main surface of the second wafer, and the back surface of the first wafer and the main surface of the second wafer are further contacted. The resin is filled between the surface protective film.

また、この実施の形態は、複数枚の半導体チップが貼り合わされ、各々の半導体チップに形成された集積回路同士が互いに電気的に接続されてなる所望の集積回路を備える半導体装置である。この半導体装置は、主面上に形成された複数の第1集積回路と、裏面から突出する貫通電極とを含む第1チップと、主面上に形成された複数の第2集積回路と、複数の第2集積回路のいずれかに電気的に接続されて主面上に形成された複数層の配線と、最上層配線の一部を露出して主面上に形成された表面保護膜と、表面保護膜上に形成されたスペーサと、表面保護膜から露出する最上層配線と電気的に接続して形成された第1バンプ電極と、スペーサ上に形成された第2バンプ電極とを含む第2チップとを有し、第1チップの裏面から突出する貫通電極が第2チップの主面上の第1バンプ電極と物理的に接触しており、第1チップの裏面と第2チップの主面上の表面保護膜との間に樹脂が充填されているものである。   Further, this embodiment is a semiconductor device including a desired integrated circuit in which a plurality of semiconductor chips are bonded together and integrated circuits formed on each semiconductor chip are electrically connected to each other. The semiconductor device includes: a first chip including a plurality of first integrated circuits formed on the main surface; a through electrode protruding from the back surface; a plurality of second integrated circuits formed on the main surface; A plurality of wirings electrically connected to one of the second integrated circuits and formed on the main surface, a surface protection film formed on the main surface by exposing a part of the uppermost wiring, A spacer including a spacer formed on the surface protective film, a first bump electrode formed in electrical connection with the uppermost wiring exposed from the surface protective film, and a second bump electrode formed on the spacer. The through electrode protruding from the back surface of the first chip is in physical contact with the first bump electrode on the main surface of the second chip, and the back surface of the first chip and the main surface of the second chip are A resin is filled between the surface protective film on the surface.

また、この実施の形態は、複数枚の半導体チップが貼り合わされ、各々の半導体チップに形成された集積回路同士が互いに電気的に接続されてなる所望の集積回路を備える半導体装置である。この半導体装置は、主面上に形成された複数の第1集積回路と、裏面から突出する貫通電極とを含む第1チップと、主面上に形成された複数の第2集積回路と、複数の第2集積回路のいずれかに電気的に接続されて主面上に形成された複数層の配線と、最上層配線の一部を露出して主面上に形成された表面保護膜と、表面保護膜から露出する最上層配線と電気的に接続して形成された第1バンプ電極と、表面保護膜上に形成された第2バンプ電極とを含む第2チップとを有し、第1バンプ電極が形成された領域の表面保護膜の厚さは、第2バンプ電極が形成される領域の表面保護膜の厚さよりも薄く、第1チップの裏面から突出する貫通電極が第2チップの主面上の第1バンプ電極と物理的に接触しており、第1チップの裏面と第2チップの主面上の表面保護膜との間に樹脂が充填されているものである。   Further, this embodiment is a semiconductor device including a desired integrated circuit in which a plurality of semiconductor chips are bonded together and integrated circuits formed on each semiconductor chip are electrically connected to each other. The semiconductor device includes: a first chip including a plurality of first integrated circuits formed on the main surface; a through electrode protruding from the back surface; a plurality of second integrated circuits formed on the main surface; A plurality of wirings electrically connected to one of the second integrated circuits and formed on the main surface, a surface protection film formed on the main surface by exposing a part of the uppermost wiring, A first chip having a first bump electrode formed in electrical connection with the uppermost wiring exposed from the surface protective film and a second bump electrode formed on the surface protective film; The thickness of the surface protective film in the region where the bump electrode is formed is thinner than the thickness of the surface protective film in the region where the second bump electrode is formed, and the through electrode protruding from the back surface of the first chip is the second chip. It is in physical contact with the first bump electrode on the main surface, and the back surface of the first chip and the second chip In which resin is filled between the surface protective film on the surface.

本願において開示される発明のうち、代表的なものの一実施の形態によって得られる効果を簡単に説明すれば以下のとおりである。   Among the inventions disclosed in the present application, effects obtained by one embodiment of a representative one will be briefly described as follows.

上に位置するウエハ(第1ウエハ)とこれに対向して下に位置するウエハ(第2ウエハ)との間隔をウエハ面内で均一に保つことができるので、上に位置するウエハとこれに対向して下に位置するウエハとの間に接着剤である樹脂を余すところなく充填することができる。これにより、積層した複数枚のウエハを積層した複数枚のチップに個片化して半導体装置を形成しても、積層されたチップの分離を防ぐことができるので、貫通電極を有する3次元構造の半導体装置の製造歩留まりを向上させることができる。   Since the distance between the upper wafer (first wafer) and the lower wafer (second wafer) opposed to the upper wafer can be kept uniform within the wafer surface, the upper wafer and the wafer It is possible to fill the resin as an adhesive without leaving a space between the wafer and the wafer positioned oppositely. As a result, even if a plurality of stacked wafers are separated into a plurality of stacked chips to form a semiconductor device, separation of the stacked chips can be prevented. The manufacturing yield of the semiconductor device can be improved.

以下の実施の形態において、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。   In the following embodiments, when necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other, and one is the other. There are some or all of the modifications, details, supplementary explanations, and the like.

また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。   Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number. Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.

また、以下の実施の形態で用いる図面においては、平面図であっても図面を見易くするためにハッチングを付す場合もある。また、以下の実施の形態を説明するための全図において、同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Further, in the drawings used in the following embodiments, hatching may be added to make the drawings easy to see even if they are plan views. In all the drawings for explaining the following embodiments, components having the same function are denoted by the same reference numerals in principle, and repeated description thereof is omitted. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
本実施の形態1の半導体装置は、互いに異なる集積回路が形成された3枚の半導体チップ(以下、単にチップという)C1,C2,C3を積層して貼り合わせた3次元構造を有している。図1は、この半導体装置を配線基板1に実装してモールド樹脂2で封止したパッケージの一例を示す断面図である。
(Embodiment 1)
The semiconductor device according to the first embodiment has a three-dimensional structure in which three semiconductor chips (hereinafter simply referred to as chips) C1, C2, and C3 on which different integrated circuits are formed are laminated and bonded together. . FIG. 1 is a cross-sectional view showing an example of a package in which this semiconductor device is mounted on a wiring board 1 and sealed with a mold resin 2.

配線基板1に実装された3枚のチップC1,C2,C3のうち、最下層のチップC1は、接着剤3を介して配線基板1に接着されている。また、中間層のチップC2は、接着剤3を介してチップC1に接着されており、最上層のチップC3は、接着剤3を介してチップC2に接着されている。後に詳しく説明するが、最下層のチップC1に形成された集積回路と中間層のチップC2に形成された集積回路は、チップC2に形成された複数の貫通電極4を介して電気的に接続され、中間層のチップC2に形成された集積回路と最上層のチップC3に形成された集積回路は、チップC3に形成された複数の貫通電極4を介して電気的に接続されている。すなわち、本実施の形態1の半導体装置は、チップC1,C2,C3に形成された集積回路を貫通電極4を介して互いに接続することによって、所望のシステムを実現している。   Of the three chips C1, C2, and C3 mounted on the wiring board 1, the lowermost chip C1 is bonded to the wiring board 1 via the adhesive 3. The intermediate layer chip C2 is bonded to the chip C1 via the adhesive 3, and the uppermost layer chip C3 is bonded to the chip C2 via the adhesive 3. As will be described in detail later, the integrated circuit formed on the lowermost chip C1 and the integrated circuit formed on the middle chip C2 are electrically connected via a plurality of through electrodes 4 formed on the chip C2. The integrated circuit formed on the intermediate layer chip C2 and the integrated circuit formed on the uppermost layer chip C3 are electrically connected via a plurality of through electrodes 4 formed on the chip C3. That is, the semiconductor device according to the first embodiment realizes a desired system by connecting the integrated circuits formed on the chips C1, C2, and C3 to each other through the through electrode 4.

上記チップC1,C2,C3と配線基板1は、最上層のチップC3に形成された複数のボンディングパッド5と配線基板1上に形成された複数の電極6との間にボンディングされた複数本の金(Au)ワイヤ7を介して電気的に接続されている。電極6は、配線基板1内の銅(Cu)配線8を介して、配線基板1の裏面の半田バンプ9に電気的に接続されている。半田バンプ9は、図1に示すパッケージをマザーボードなどに実装する際の外部接続端子を構成している。   The chips C1, C2, C3 and the wiring board 1 are bonded to each other between a plurality of bonding pads 5 formed on the uppermost chip C3 and a plurality of electrodes 6 formed on the wiring board 1. They are electrically connected via gold (Au) wires 7. The electrodes 6 are electrically connected to solder bumps 9 on the back surface of the wiring board 1 through copper (Cu) wirings 8 in the wiring board 1. The solder bumps 9 constitute external connection terminals when the package shown in FIG. 1 is mounted on a mother board or the like.

図2は、本実施の形態1の半導体装置の製造工程を示すフロー図である。この半導体装置の製造工程は、半導体ウエハ(以下、単にウエハという)W1,W2,W3に互いに異なる集積回路を形成し、ウエハW2,W3に導電部を形成する工程と、ウエハW1,W2にバンプ電極を形成する工程と、ウエハW3の裏面を研磨して導電部を露出させることによって貫通電極4を形成する工程と、ウエハW2,W3を貼り合わせ、ウエハW3に備わる貫通電極4とウエハW2に備わるバンプ電極とを介して集積回路同士を電気的に接続する工程と、ウエハW2,W3間に接着剤を注入する工程と、ウエハW2の裏面を研磨して導電部を露出させることによって貫通電極4を形成する工程と、ウエハW1,(W2+W3)を貼り合わせ、ウエハW2に備わる貫通電極4とウエハW1に備わるバンプ電極とを介して集積回路同士を電気的に接続する工程と、ウエハW1,(W2+W3)間に接着剤を注入する工程と、ウエハW1,W2,W3をダイシングすることによって、3次元構造のチップC1,C2,C3を形成する工程と、チップC1,C2,C3をパッケージング(基板実装、ワイヤボンディング、樹脂封止)する工程とに大別される。   FIG. 2 is a flowchart showing manufacturing steps of the semiconductor device according to the first embodiment. In this semiconductor device manufacturing process, different integrated circuits are formed on semiconductor wafers (hereinafter simply referred to as wafers) W1, W2, and W3, conductive portions are formed on wafers W2 and W3, and bumps are formed on wafers W1 and W2. A step of forming an electrode, a step of forming the through electrode 4 by polishing the back surface of the wafer W3 to expose the conductive portion, and bonding the wafers W2 and W3 to the through electrode 4 and the wafer W2 provided on the wafer W3. A step of electrically connecting the integrated circuits through the bump electrodes provided; a step of injecting an adhesive between the wafers W2 and W3; and a through electrode by polishing the back surface of the wafer W2 to expose the conductive portion. 4 and the wafer W1, (W2 + W3) are bonded together, and the integrated circuit is formed through the through electrode 4 provided on the wafer W2 and the bump electrode provided on the wafer W1. Forming a three-dimensional structure chip C1, C2, C3 by electrically connecting the wafers, injecting an adhesive between the wafers W1, (W2 + W3), and dicing the wafers W1, W2, W3. And a process of packaging the chips C1, C2, and C3 (board mounting, wire bonding, and resin sealing).

以下、3枚のウエハW1,W2,W3を用いた半導体装置の製造方法を工程順に説明する。   A method for manufacturing a semiconductor device using the three wafers W1, W2, and W3 will be described below in the order of steps.

まず、図3〜図21を用いて、ウエハに集積回路と導電部とを形成する工程およびウエハにバンプ電極を形成する工程について説明する。ここでの説明では、貼り合わせた時に中間に位置するウエハW2を用いる。   First, a process for forming an integrated circuit and a conductive portion on a wafer and a process for forming a bump electrode on the wafer will be described with reference to FIGS. In this description, the wafer W2 located in the middle when bonded is used.

図3に示すように、単結晶シリコンからなる厚さ780μm程度のウエハW2を用意する。そして、このウエハW2を熱処理してその主面(集積回路を形成する面)に厚さ10nm程度の薄い酸化シリコン膜20を形成し、続いて酸化シリコン膜20上にCVD(Chemical Vapor Deposition)法で窒化シリコン膜21を堆積した後、フォトレジスト膜(図示せず)をマスクにしたドライエッチングで素子分離溝形成領域の窒化シリコン膜21と酸化シリコン膜20とを除去する。ウエハW2と窒化シリコン膜21との間に形成する酸化シリコン膜20は、ウエハW2と窒化シリコン膜21との界面に生じる応力を緩和し、この応力に起因してウエハW2の表面に転位などの欠陥が発生するのを防ぐためのバッファ層である。   As shown in FIG. 3, a wafer W2 made of single crystal silicon and having a thickness of about 780 μm is prepared. Then, the wafer W2 is heat-treated to form a thin silicon oxide film 20 having a thickness of about 10 nm on its main surface (surface on which an integrated circuit is formed), and then a CVD (Chemical Vapor Deposition) method is performed on the silicon oxide film 20. After the silicon nitride film 21 is deposited, the silicon nitride film 21 and the silicon oxide film 20 in the element isolation trench formation region are removed by dry etching using a photoresist film (not shown) as a mask. The silicon oxide film 20 formed between the wafer W2 and the silicon nitride film 21 relieves stress generated at the interface between the wafer W2 and the silicon nitride film 21, and causes dislocation or the like on the surface of the wafer W2 due to this stress. This is a buffer layer for preventing the occurrence of defects.

次に、図4に示すように、窒化シリコン膜21をマスクにしたドライエッチングにより、素子分離溝形成領域のウエハW2に深さ350nm程度の素子分離溝22を形成し、後に貫通電極4を形成する領域の近傍のウエハW2に深さ350nm程度の溝23を形成する。溝23の平面形状は、例えば図5に示すような四角枠状とする。   Next, as shown in FIG. 4, the element isolation trench 22 having a depth of about 350 nm is formed in the wafer W2 in the element isolation trench formation region by dry etching using the silicon nitride film 21 as a mask, and the through electrode 4 is formed later. A groove 23 having a depth of about 350 nm is formed in the wafer W2 in the vicinity of the region to be processed. The planar shape of the groove 23 is, for example, a square frame shape as shown in FIG.

次に、図6に示すように、ウエハW2を熱処理することによって、素子分離溝22および溝23の内壁に酸化シリコン膜24aを形成した後、ウエハW2の主面上にCVD法で酸化シリコン膜24を堆積し、続いて素子分離溝22および溝23のそれぞれの外部の酸化シリコン膜24をCMP(Chemical Mechanical Polishing)法で研磨、除去することによって、素子分離溝22の内部および溝23の内部に酸化シリコン膜24を残す。   Next, as shown in FIG. 6, the wafer W2 is heat-treated to form a silicon oxide film 24a on the inner walls of the element isolation trench 22 and the trench 23, and then a silicon oxide film is formed on the main surface of the wafer W2 by a CVD method. 24, and then the silicon oxide film 24 outside the element isolation trench 22 and the trench 23 is polished and removed by a CMP (Chemical Mechanical Polishing) method, whereby the inside of the element isolation trench 22 and the inside of the trench 23 are removed. The silicon oxide film 24 is left.

次に、窒化シリコン膜21をエッチングして除去した後、図7に示すように、ウエハW2の主面上にCVD法で窒化シリコン膜25を堆積する。続いて、フォトレジスト膜(図示せず)をマスクにしたドライエッチングで溝23の上部の窒化シリコン膜25、溝23の内部の酸化シリコン膜24および溝23の下方のウエハW2を順次エッチングすることにより、溝23の内側に、例えば深さ40μm程度の絶縁溝26Aを形成する。図8に示すように、絶縁溝26Aは、溝23に沿って形成し、その幅を溝23の幅よりも狭くする。絶縁溝26Aの幅は、例えば2μm程度である。   Next, after removing the silicon nitride film 21 by etching, as shown in FIG. 7, a silicon nitride film 25 is deposited on the main surface of the wafer W2 by the CVD method. Subsequently, the silicon nitride film 25 above the groove 23, the silicon oxide film 24 inside the groove 23, and the wafer W2 below the groove 23 are sequentially etched by dry etching using a photoresist film (not shown) as a mask. Thus, an insulating groove 26A having a depth of, for example, about 40 μm is formed inside the groove 23. As shown in FIG. 8, the insulating groove 26 </ b> A is formed along the groove 23, and the width thereof is narrower than the width of the groove 23. The width of the insulating groove 26A is, for example, about 2 μm.

次に、図9に示すように、ウエハW2を1000℃程度で熱処理することによって、絶縁溝26Aの内壁に酸化シリコン膜27を形成する。続いて、図10に示すように、ウエハW2の主面上にCVD法で多結晶シリコン膜28を堆積した後、絶縁溝26Aの外部の多結晶シリコン膜28をエッチバックで除去することにより、絶縁溝26Aの内部に多結晶シリコン膜28を残す。このとき、絶縁溝26Aの内部の多結晶シリコン膜28は、その表面の高さをウエハW2の表面よりも低くする。   Next, as shown in FIG. 9, the silicon oxide film 27 is formed on the inner wall of the insulating groove 26A by heat-treating the wafer W2 at about 1000.degree. Subsequently, as shown in FIG. 10, after the polycrystalline silicon film 28 is deposited on the main surface of the wafer W2 by the CVD method, the polycrystalline silicon film 28 outside the insulating trench 26A is removed by etch back, The polycrystalline silicon film 28 is left inside the insulating groove 26A. At this time, the surface of the polycrystalline silicon film 28 inside the insulating groove 26A is made lower than the surface of the wafer W2.

次に、ウエハW2の主面上にCVD法で酸化シリコン膜を堆積した後、絶縁溝26Aの外部の酸化シリコン膜をCMP法で研磨、除去することにより、図11に示すように、絶縁溝26Aの内部の多結晶シリコン膜28上に酸化シリコン膜からなるキャップ絶縁膜29を形成する。ここまでの工程により、多結晶シリコン膜28の周囲を酸化シリコン膜27とキャップ絶縁膜29とで囲んだ絶縁部26Cが完成する。絶縁部26Cは、後の工程でウエハW2の主面に形成する集積回路素子と導電部(貫通電極4)とを電気的に分離するために形成する。また、絶縁溝26Aの内壁に酸化シリコン膜27を形成する際には、ウエハW2を1000℃程度で熱処理するので、絶縁部26Cは、集積回路素子よりも先に形成しておくことが望ましい。   Next, after a silicon oxide film is deposited on the main surface of the wafer W2 by the CVD method, the silicon oxide film outside the insulating groove 26A is polished and removed by the CMP method, so that the insulating groove is formed as shown in FIG. A cap insulating film 29 made of a silicon oxide film is formed on the polycrystalline silicon film 28 inside 26A. Through the steps so far, the insulating portion 26C in which the periphery of the polycrystalline silicon film 28 is surrounded by the silicon oxide film 27 and the cap insulating film 29 is completed. The insulating part 26C is formed in order to electrically isolate the integrated circuit element and the conductive part (through electrode 4) to be formed on the main surface of the wafer W2 in a later step. Further, when the silicon oxide film 27 is formed on the inner wall of the insulating groove 26A, the wafer W2 is heat-treated at about 1000 ° C. Therefore, it is desirable that the insulating portion 26C be formed before the integrated circuit element.

次に、窒化シリコン膜25をエッチングして除去した後、図12に示すように、ウエハW2の素子形成領域にn型不純物とp型不純物とをイオン注入することによって、n型ウエル30とp型ウエル31とを形成する。   Next, after the silicon nitride film 25 is removed by etching, n-type impurities and p-type impurities are ion-implanted into the element formation region of the wafer W2, as shown in FIG. A mold well 31 is formed.

次に、ウエハW2の表面をウエットエッチングして酸化シリコン膜20を除去し、続いてウエハW2を熱処理してその表面にゲート絶縁膜32を形成した後、図13に示すように、周知のMIS(Metal Insulator Semiconductor)トランジスタ形成プロセスに従ってp型ウエル31にnチャネル型MISトランジスタQnを形成し、n型ウエル30にpチャネル型MISトランジスタQpを形成する。   Next, the surface of the wafer W2 is wet-etched to remove the silicon oxide film 20, and then the wafer W2 is heat-treated to form a gate insulating film 32 on the surface. Then, as shown in FIG. (Metal Insulator Semiconductor) An n-channel MIS transistor Qn is formed in the p-type well 31 and a p-channel MIS transistor Qp is formed in the n-type well 30 in accordance with a transistor formation process.

nチャネル型MISトランジスタQnは、主としてゲート絶縁膜32、ゲート電極33およびn型半導体領域(ソース、ドレイン)34で構成され、pチャネル型MISトランジスタQpは、主としてゲート絶縁膜32、ゲート電極33およびp型半導体領域(ソース、ドレイン)35で構成される。nチャネル型MISトランジスタQnのゲート電極33は、例えばゲート絶縁膜32上にCVD法でn型多結晶シリコン膜を堆積した後、フォトレジスト膜(図示せず)をマスクにしたドライエッチングでn型多結晶シリコン膜をパターニングすることによって形成する。同様に、pチャネル型MISトランジスタQpのゲート電極33は、例えばゲート絶縁膜32上にCVD法でp型多結晶シリコン膜を堆積した後、フォトレジスト膜(図示せず)をマスクにしたドライエッチングでp型多結晶シリコン膜をパターニングすることによって形成する。n型半導体領域(ソース、ドレイン)34は、p型ウエル31にn型不純物(例えばリン(P))をイオン注入して形成し、p型半導体領域(ソース、ドレイン)35は、n型ウエル30にp型不純物(例えばホウ素(B))をイオン注入して形成する。   The n-channel type MIS transistor Qn mainly includes a gate insulating film 32, a gate electrode 33, and an n-type semiconductor region (source, drain) 34, and the p-channel type MIS transistor Qp mainly includes a gate insulating film 32, a gate electrode 33, and A p-type semiconductor region (source / drain) 35 is formed. The gate electrode 33 of the n-channel type MIS transistor Qn is formed by, for example, depositing an n-type polycrystalline silicon film on the gate insulating film 32 by a CVD method and then performing n-type dry etching using a photoresist film (not shown) as a mask. The polycrystalline silicon film is formed by patterning. Similarly, the gate electrode 33 of the p-channel type MIS transistor Qp is formed by, for example, depositing a p-type polycrystalline silicon film on the gate insulating film 32 by the CVD method and then dry etching using a photoresist film (not shown) as a mask. The p-type polycrystalline silicon film is formed by patterning. The n-type semiconductor region (source / drain) 34 is formed by ion-implanting an n-type impurity (for example, phosphorus (P)) into the p-type well 31, and the p-type semiconductor region (source / drain) 35 is formed by an n-type well. 30 is formed by ion implantation of a p-type impurity (for example, boron (B)).

次に、図14に示すように、ウエハW2の主面上にCVD法で酸化シリコン膜36を堆積し、続いて酸化シリコン膜36をCMP法で研磨してその表面を平坦化した後、フォトレジスト膜(図示せず)をマスクにして酸化シリコン膜36とその下部のウエハW2とをドライエッチングすることにより、絶縁部26Cから離間してその内側に、絶縁部26Cに取り囲まれるように導電溝4Aを形成する。導電溝4Aの内部には、後の工程で貫通電極4が形成される。ウエハW2の主面から導電溝4Aの底部までの深さは、絶縁溝26Aのそれとほぼ同じ(40μm程度)である。   Next, as shown in FIG. 14, a silicon oxide film 36 is deposited on the main surface of the wafer W2 by the CVD method, and then the silicon oxide film 36 is polished by the CMP method to flatten the surface, Using the resist film (not shown) as a mask, the silicon oxide film 36 and the wafer W2 below the silicon oxide film 36 are dry-etched so that the conductive groove is separated from the insulating portion 26C and surrounded by the insulating portion 26C. 4A is formed. The through electrode 4 is formed in the conductive groove 4A in a later step. The depth from the main surface of wafer W2 to the bottom of conductive groove 4A is substantially the same as that of insulating groove 26A (about 40 μm).

図15に示すように、導電溝4Aの平面形状は長方形であり、その長辺は、例えば5.6μm程度、短辺は、例えば1.7μm程度である。この場合、導電溝4Aの短辺方向におけるアスペクト比は20以上となる。導電溝4Aは、ウエハW2から得られるチップ(C2)1個当たり数千個ずつ形成される。また、特に限定はされないが、本実施の形態1では、このような長方形の導電溝4Aを1個の絶縁部26Cの内側に2個ずつ並べて配置し、これら2個の導電溝4Aを同一の集積回路に接続する構成を採用している。   As shown in FIG. 15, the planar shape of the conductive groove 4 </ b> A is a rectangle, and its long side is about 5.6 μm, for example, and its short side is about 1.7 μm, for example. In this case, the aspect ratio in the short side direction of the conductive groove 4A is 20 or more. Thousands of conductive grooves 4A are formed for each chip (C2) obtained from wafer W2. Further, although not particularly limited, in Embodiment 1, two such rectangular conductive grooves 4A are arranged side by side inside one insulating portion 26C, and these two conductive grooves 4A are arranged in the same manner. A configuration for connecting to an integrated circuit is employed.

次に、図16に示すように、ウエハW2の主面上にスパッタリング法で厚さ100nm程度の窒化チタン(TiN)膜40を堆積する。窒化チタン膜40は酸化シリコン膜36と導電膜との接着性を向上させる機能がある。続いて、導電溝4Aの内部を含むウエハW2の主面上にCVD法で厚さ20〜30nm程度の窒化チタン膜42を堆積する。窒化チタン膜42は、次の工程で堆積するタングステン(W)膜とウエハW2(シリコン(Si))との反応を防ぐバリア層として機能する。次に、窒化チタン膜42上にCVD法でタングステン膜43を堆積して、導電溝4Aの内部にタングステン膜43を埋め込む。その後、エッチバック法またはCMP法で導電溝4Aの外側のタングステン膜43および窒化チタン膜42を除去して、図17に示すように、導電溝4Aの内部にタングステンを主成分とする導電膜(窒化チタン膜42およびタングステン膜43)が充填された導電部4Cを形成する。   Next, as shown in FIG. 16, a titanium nitride (TiN) film 40 having a thickness of about 100 nm is deposited on the main surface of the wafer W2 by sputtering. The titanium nitride film 40 has a function of improving the adhesion between the silicon oxide film 36 and the conductive film. Subsequently, a titanium nitride film 42 having a thickness of about 20 to 30 nm is deposited by CVD on the main surface of the wafer W2 including the inside of the conductive groove 4A. The titanium nitride film 42 functions as a barrier layer that prevents the reaction between the tungsten (W) film deposited in the next step and the wafer W2 (silicon (Si)). Next, a tungsten film 43 is deposited on the titanium nitride film 42 by a CVD method, and the tungsten film 43 is embedded in the conductive groove 4A. After that, the tungsten film 43 and the titanium nitride film 42 outside the conductive groove 4A are removed by an etch back method or a CMP method, and as shown in FIG. A conductive portion 4C filled with the titanium nitride film 42 and the tungsten film 43) is formed.

次に、図18に示すように、酸化シリコン膜36上にCVD法で酸化シリコン膜37を形成した後、酸化シリコン膜37上にnチャネル型MISトランジスタQnとpチャネル型MISトランジスタQpとを接続する第1層アルミニウム(Al)配線38を形成する。また同時に、導電溝4Aの内部のタングステン膜43とMISトランジスタの一部(例えばpチャネル型MISトランジスタQp)とを接続する第1層アルミニウム配線39を形成する。第1層アルミニウム配線38、39を形成するには、酸化シリコン膜37上にスパッタリング法でアルミニウム合金膜を堆積した後、フォトレジスト膜(図示せず)をマスクにしたドライエッチング法でアルミニウム合金膜をパターニングする。   Next, as shown in FIG. 18, after a silicon oxide film 37 is formed on the silicon oxide film 36 by a CVD method, an n-channel MIS transistor Qn and a p-channel MIS transistor Qp are connected to the silicon oxide film 37. First layer aluminum (Al) wiring 38 is formed. At the same time, a first layer aluminum wiring 39 that connects the tungsten film 43 in the conductive groove 4A and a part of the MIS transistor (for example, the p-channel type MIS transistor Qp) is formed. In order to form the first layer aluminum wirings 38 and 39, an aluminum alloy film is deposited on the silicon oxide film 37 by a sputtering method, and then an aluminum alloy film is formed by a dry etching method using a photoresist film (not shown) as a mask. Is patterned.

次に、図19に示すように、第1層アルミニウム配線38、39の上層に酸化シリコン膜からなる第1層間絶縁膜44、第2層アルミニウム配線45、酸化シリコン膜からなる第2層間絶縁膜46、第3層アルミニウム配線47、酸化シリコン膜と窒化シリコン膜との積層膜からなる表面保護膜48を順次形成する。続いて、フォトレジスト膜(図示せず)をマスクにしたドライエッチング法で表面保護膜48パターニングして、第3層アルミニウム配線47の一部を露出させる。   Next, as shown in FIG. 19, a first interlayer insulating film 44 made of a silicon oxide film, a second layer aluminum wiring 45, and a second interlayer insulating film made of a silicon oxide film are formed on the first layer aluminum wirings 38 and 39. 46, a third-layer aluminum wiring 47, and a surface protective film 48 made of a laminated film of a silicon oxide film and a silicon nitride film are formed in sequence. Subsequently, the surface protective film 48 is patterned by a dry etching method using a photoresist film (not shown) as a mask to expose a part of the third layer aluminum wiring 47.

次に、図20に示すように、ウエハW2の主面上に有機絶縁膜、例えばポリイミド樹脂膜を塗布した後、有機絶縁膜をパターニングして、第3層アルミニウム配線47が露出していない表面保護膜48上に有機絶縁膜からなるスペーサ49を形成する。スペーサ49は、ウエハW2の主面上の表面保護膜48と後の製造工程でウエハW2の主面上に積層されるウエハW3の裏面との間隔とがウエハ面内で均一となるように上記間隔を調整するために設けられる。すなわち、このスペーサ49の厚さは、ウエハW2の主面上の表面保護膜48と後の製造工程でウエハW2の主面上に積層されるウエハW3の裏面との間隔、ウエハ3の裏面から突出する貫通電極4の長さ、および後の製造工程で第3層アルミニウム配線47に接続して形成される第1バンプ電極の厚さなどによって決めることができる。   Next, as shown in FIG. 20, after applying an organic insulating film such as a polyimide resin film on the main surface of the wafer W2, the organic insulating film is patterned to expose the third layer aluminum wiring 47. A spacer 49 made of an organic insulating film is formed on the protective film 48. The spacer 49 is arranged so that the distance between the surface protective film 48 on the main surface of the wafer W2 and the back surface of the wafer W3 stacked on the main surface of the wafer W2 in a subsequent manufacturing process is uniform within the wafer surface. Provided to adjust the spacing. That is, the thickness of the spacer 49 is determined from the distance between the surface protective film 48 on the main surface of the wafer W2 and the back surface of the wafer W3 stacked on the main surface of the wafer W2 in a later manufacturing process, from the back surface of the wafer 3. It can be determined by the length of the protruding through electrode 4 and the thickness of the first bump electrode formed by connecting to the third layer aluminum wiring 47 in a later manufacturing process.

次に、図21に示すように、露出した第3層アルミニウム配線47に接続する第1バンプ電極50を形成する。第1バンプ電極50は、例えばマスク蒸着法で形成され、主にインジウム半田等の低硬度の材料、あるいは温度などの条件により低硬度となりうる金属または合金膜によって構成されて下層の配線と電気的に接続されている。同時に、スペーサ49上にも第2バンプ電極50aを形成する。この第2バンプ電極50aは、ウエハW2に形成された素子とは電気的に接続されておらず、素子の動作には何ら寄与しない。   Next, as shown in FIG. 21, a first bump electrode 50 connected to the exposed third layer aluminum wiring 47 is formed. The first bump electrode 50 is formed by, for example, a mask vapor deposition method, and is mainly composed of a low-hardness material such as indium solder, or a metal or alloy film that can be low-hardness depending on conditions such as temperature. It is connected to the. At the same time, the second bump electrode 50 a is also formed on the spacer 49. The second bump electrode 50a is not electrically connected to the element formed on the wafer W2, and does not contribute to the operation of the element.

次に、図22〜図26を用いて、ウエハW3の裏面を研磨する工程、ウエハW2,W3を貼り合わせる工程、ウエハW2,W3間に接着剤を注入する工程およびウエハW2の裏面を研磨する工程について説明する。   Next, using FIG. 22 to FIG. 26, the step of polishing the back surface of the wafer W3, the step of bonding the wafers W2, W3, the step of injecting an adhesive between the wafers W2, W3, and the back surface of the wafer W2 are polished. The process will be described.

上記と同様の方法で集積回路および導電部4C等が形成されたウエハW3を準備する。但し、ウエハW3は最上層に位置することから、第1バンプ電極50は形成されていない。   A wafer W3 on which the integrated circuit, the conductive portion 4C and the like are formed is prepared by the same method as described above. However, since the wafer W3 is located in the uppermost layer, the first bump electrode 50 is not formed.

次に、図22に示すように、ウエハW3の裏面を、例えばCMP法などにより研磨して所定の厚さまで薄く加工する。研磨を実施したこの段階では、導電溝4Aおよび絶縁溝26AはウエハW3の裏面には露出させない。これは、研磨により導電溝4Aの内部に充填した導電膜(窒化チタン膜42およびタングステン膜43)が破壊されるのを防ぐためと、ウエハW3に物理的なダメージ層が残留しないように、後の製造工程で非物理的な方法によりウエハW3を薄く加工する余裕を残すためである。   Next, as shown in FIG. 22, the back surface of the wafer W3 is polished to a predetermined thickness by polishing, for example, by a CMP method. At this stage of polishing, the conductive grooves 4A and the insulating grooves 26A are not exposed on the back surface of the wafer W3. This is to prevent the conductive film (titanium nitride film 42 and tungsten film 43) filled in the conductive groove 4A from being destroyed by polishing and to prevent a physical damage layer from remaining on the wafer W3. This is to leave a margin for thinly processing the wafer W3 by a non-physical method in the manufacturing process.

次に、図23に示すように、ウエハW3の裏面を、例えばフッ酸と硝酸との混合溶液、またはそれに類するシリコンエッチング溶液を用いたウエットエッチング法により、エッチングする。ウエットエッチング法に代えてドライエッチング法によりウエハW3の裏面を選択的にエッチングしてもよい。これにより、ウエハW3の厚さを、例えば30μm程度とし、ウエハW3の裏面から導電部4Cを突出させて貫通電極4を形成し、絶縁部26Cを突出させて貫通分離部26を形成する。   Next, as shown in FIG. 23, the back surface of the wafer W3 is etched by a wet etching method using, for example, a mixed solution of hydrofluoric acid and nitric acid or a similar silicon etching solution. Instead of the wet etching method, the back surface of the wafer W3 may be selectively etched by a dry etching method. Thereby, the thickness of the wafer W3 is set to, for example, about 30 μm, the conductive portion 4C is projected from the back surface of the wafer W3 to form the through electrode 4, and the insulating portion 26C is projected to form the through separation portion 26.

次に、図24に示すように、ウエハW2とウエハW3とを接近させて、ウエハW3に形成された貫通電極4とウエハW2に形成された第1バンプ電極50とを物理的に接触させる。この際、第1バンプ電極50に貫通電極4を刺すことにより、ウエハW2に形成された素子とウエハW3形成された素子との電気的接続を確保する。また、ウエハW2の主面上の表面保護膜48とウエハW3の裏面との間で、貫通電極4が形成されていない領域には、スペーサ49上に第2バンプ電極50aが積層された支持部が形成されている。スペーサ49と第2バンプ電極50aとを積層した厚さが、ウエハW2の主面上の表面保護膜48とウエハW3の裏面との間隔とほぼ同じになるようにスペーサ49の厚さは設定されているので、貫通電極4が形成されていない領域であってもウエハW3がたわむことがなく、ウエハW2の主面上の表面保護膜48とウエハW3の裏面との間隔をウエハ面内で均一に保つことができる。   Next, as shown in FIG. 24, the wafer W2 and the wafer W3 are brought close to each other, and the through electrode 4 formed on the wafer W3 and the first bump electrode 50 formed on the wafer W2 are brought into physical contact. At this time, the through electrode 4 is inserted into the first bump electrode 50 to ensure electrical connection between the element formed on the wafer W2 and the element formed on the wafer W3. Further, in the region where the through electrode 4 is not formed between the surface protective film 48 on the main surface of the wafer W2 and the back surface of the wafer W3, a support portion in which the second bump electrode 50a is laminated on the spacer 49. Is formed. The thickness of the spacer 49 is set so that the thickness of the lamination of the spacer 49 and the second bump electrode 50a is substantially the same as the distance between the surface protective film 48 on the main surface of the wafer W2 and the back surface of the wafer W3. Therefore, even in the region where the through electrode 4 is not formed, the wafer W3 does not bend, and the distance between the surface protective film 48 on the main surface of the wafer W2 and the back surface of the wafer W3 is uniform within the wafer surface. Can be kept in.

次に、図25に示すように、ウエハW2の主面上の表面保護膜48とウエハW3の裏面との間に、充填材としての機能も有する接着剤51を充填し、ウエハW2とウエハW3とを固定する。ウエハW2の主面上の表面保護膜48とウエハW3の裏面との間隔がウエハ面内で均一であることから、ウエハW2の主面上の表面保護膜48とウエハW3の裏面との間に接着剤51が入りやすく、接着剤51の未充填箇所の形成を防ぐことができるので、物理的な強度を確保することができる。接着剤51には絶縁性を持つ樹脂、例えばエポキシ樹脂などの熱硬化樹脂などを用いることができるが、これと同等の接着性、強度および絶縁性を有する材料であれば材質は問わない。   Next, as shown in FIG. 25, an adhesive 51 that also functions as a filler is filled between the surface protective film 48 on the main surface of the wafer W2 and the back surface of the wafer W3, and the wafer W2 and the wafer W3 are filled. And fix. Since the distance between the surface protective film 48 on the main surface of the wafer W2 and the back surface of the wafer W3 is uniform within the wafer surface, the space between the surface protective film 48 on the main surface of the wafer W2 and the back surface of the wafer W3 is between. Since the adhesive 51 can easily enter and formation of an unfilled portion of the adhesive 51 can be prevented, physical strength can be ensured. As the adhesive 51, an insulating resin, for example, a thermosetting resin such as an epoxy resin, can be used, but any material may be used as long as it has a similar adhesiveness, strength, and insulating property.

次に、図26に示すように、ウエハW2の裏面を前述したウエハW3と同様にして研磨することにより、ウエハW2の厚さを、例えば30μm程度とし、ウエハW2の裏面から導電部4Cを突出させて貫通電極4を形成し、絶縁部26Cを突出させて貫通分離部26を形成する。   Next, as shown in FIG. 26, the back surface of the wafer W2 is polished in the same manner as the wafer W3 described above, so that the thickness of the wafer W2 is about 30 μm, for example, and the conductive portion 4C protrudes from the back surface of the wafer W2. Thus, the through electrode 4 is formed, and the insulating portion 26C is protruded to form the through separation portion 26.

次に、図27を用いて、ウエハW1とウエハW2,W3を貼り合わせる工程およびウエハW1,W2間に接着剤を注入する工程について説明する。   Next, with reference to FIG. 27, a process of bonding the wafer W1 and the wafers W2 and W3 and a process of injecting an adhesive between the wafers W1 and W2 will be described.

上記と同様の方法で集積回路および第1バンプ電極50が形成されたウエハW1を準備する。ウエハW1は最下層に位置することから、導電部4Cは形成されていない。   A wafer W1 on which the integrated circuit and the first bump electrode 50 are formed is prepared by the same method as described above. Since the wafer W1 is located in the lowermost layer, the conductive portion 4C is not formed.

さらに、図27に示すように、上記と同様の方法でウエハW1の主面上に、すでに積層して貼り合わせてあるウエハW2,W3を接近させて、ウエハW2に形成された貫通電極4とウエハW1に形成された第1バンプ電極50とを物理的に接触させる。続いて、ウエハ1の主面上の表面保護膜48とウエハW2の裏面との間に充填材としての機能も有する接着剤51を充填し、ウエハW1とウエハW2,W3とを固定する。その後、これらのウエハW1,W2,W3をダイシングして3次元構造のチップC1,C2,C3に個片化し、これを配線基板1に実装してモールド樹脂2で封止することにより、前記図1に示すパッケージが完成する。   Further, as shown in FIG. 27, the wafers W2 and W3 already stacked and bonded together are brought close to the main surface of the wafer W1 by the same method as described above, and the through electrodes 4 formed on the wafer W2 The first bump electrode 50 formed on the wafer W1 is physically brought into contact. Subsequently, an adhesive 51 having a function as a filler is filled between the surface protective film 48 on the main surface of the wafer 1 and the back surface of the wafer W2, and the wafer W1 and the wafers W2 and W3 are fixed. Thereafter, these wafers W1, W2, and W3 are diced into individual chips C1, C2, and C3 having a three-dimensional structure, which are mounted on the wiring board 1 and sealed with the mold resin 2. The package shown in 1 is completed.

なお、本実施の形態1では、1つのスペーサ49上に1つの第2バンプ電極50aを形成したが、これに限定されるものではなく、例えば1つのスペーサ49上に複数の第2バンプ電極50aを形成してもよく、または2つ以上のスペーサ49に跨って1つの第2バンプ電極50aを形成してもよい。   In the first embodiment, one second bump electrode 50a is formed on one spacer 49. However, the present invention is not limited to this. For example, a plurality of second bump electrodes 50a are formed on one spacer 49. May be formed, or one second bump electrode 50 a may be formed across two or more spacers 49.

このように、ウエハW1の主面上の表面保護膜48とウエハW2の裏面との間で、ウエハW1の第3層アルミニウム配線47に接続する第1バンプ電極50が形成されていない領域に、スペーサ49と第2バンプ電極50aとを積層した支持部を形成することにより、ウエハW2のたわみを防いで、ウエハW1の主面上の表面保護膜48とウエハW2の裏面との間隔をウエハ面内で均一に保つことができる。同様にして、ウエハW2の主面上の表面保護膜48とウエハW3の裏面との間隔をウエハ面内で均一に保つことができる。これによって、ウエハW1の主面上の表面保護膜48とウエハW2の裏面との間またはウエハW2の主面上の表面保護膜48とウエハW3の裏面との間に接着剤51を余すところなく充填できるので、ウエハW1,W2,W3を積層して貼り合わせた後に、積層したウエハW1,W2,W3を積層したチップC1,C2,C3に個片化して半導体装置を形成しても、積層したチップC1,C2,C3の分離を防ぐことができる。   Thus, in the region where the first bump electrode 50 connected to the third layer aluminum wiring 47 of the wafer W1 is not formed between the surface protective film 48 on the main surface of the wafer W1 and the back surface of the wafer W2. By forming a support portion in which the spacer 49 and the second bump electrode 50a are stacked, the wafer W2 is prevented from being bent, and the distance between the surface protective film 48 on the main surface of the wafer W1 and the back surface of the wafer W2 is set to the wafer surface. Can be kept uniform within. Similarly, the distance between the surface protective film 48 on the main surface of the wafer W2 and the back surface of the wafer W3 can be kept uniform within the wafer surface. Thereby, the adhesive 51 is not left between the surface protective film 48 on the main surface of the wafer W1 and the back surface of the wafer W2 or between the surface protective film 48 on the main surface of the wafer W2 and the back surface of the wafer W3. Even if the wafers W1, W2, and W3 are stacked and bonded together, the stacked wafers W1, W2, and W3 are separated into individual chips C1, C2, and C3 to form a semiconductor device. Separation of the chips C1, C2, and C3 can be prevented.

(実施の形態2)
本発明の実施の形態2による半導体装置を示す半導体ウエハの要部断面図を図28に示す。
(Embodiment 2)
FIG. 28 is a cross-sectional view of the main part of a semiconductor wafer showing the semiconductor device according to the second embodiment of the present invention.

前述した実施の形態1では、例えばウエハW1(下に位置するウエハ)とウエハW2(上に位置するウエハ)とを積層して貼り合わせた場合、ウエハW1の主面上の表面保護膜48とウエハW2の裏面との間で、ウエハW1の第3層アルミニウム配線47に接続する第1バンプ電極50が形成されていない領域に、スペーサ49と第2バンプ電極50aとを積層した支持部を形成することにより、ウエハW1の主面上の表面保護膜48とウエハW2の裏面との間隔をウエハ面内で均一に保っている。   In the first embodiment described above, for example, when the wafer W1 (wafer located below) and the wafer W2 (wafer located above) are laminated and bonded together, the surface protective film 48 on the main surface of the wafer W1 A support portion in which the spacer 49 and the second bump electrode 50a are stacked is formed in a region where the first bump electrode 50 connected to the third layer aluminum wiring 47 of the wafer W1 is not formed between the back surface of the wafer W2. Thus, the distance between the surface protective film 48 on the main surface of the wafer W1 and the back surface of the wafer W2 is kept uniform within the wafer surface.

しかしながら、本実施の形態2では、ウエハW1とウエハW2とを積層して貼り合わせた場合、ウエハW1の第3層アルミニウム配線47に接続する第1バンプ電極50が形成されていない領域に、ウエハW1の第3層アルミニウム配線47に接続する第1バンプ電極50が形成されている領域よりも厚い表面保護膜48をウエハW1に形成し、さらにウエハW1の第3層アルミニウム配線47に接続する第1バンプ電極50が形成されていない領域の表面保護膜48上に第2バンプ電極50aを形成する。これによって、ウエハW2の裏面から貫通電極4が突出していない領域に、相対的に厚い表面保護膜48と第2バンプ電極50aとを積層した支持部を形成することができるので、ウエハW1の主面上の表面保護膜48とウエハW2の裏面との間隔をウエハ面内で均一に保つことができる。また、本実施の形態2では、前述した実施の形態1で用いたスペーサ49を形成する必要がないので、前述した実施の形態1よりも製造コストを低減することができる。   However, in the second embodiment, when the wafer W1 and the wafer W2 are laminated and bonded together, the wafer is formed in a region where the first bump electrode 50 connected to the third layer aluminum wiring 47 of the wafer W1 is not formed. A surface protective film 48 thicker than the region where the first bump electrode 50 connected to the third layer aluminum wiring 47 of W1 is formed is formed on the wafer W1, and further connected to the third layer aluminum wiring 47 of the wafer W1. A second bump electrode 50a is formed on the surface protection film 48 in a region where the first bump electrode 50 is not formed. As a result, a support portion in which the relatively thick surface protection film 48 and the second bump electrode 50a are laminated can be formed in a region where the through electrode 4 does not protrude from the back surface of the wafer W2. The distance between the surface protective film 48 on the surface and the back surface of the wafer W2 can be kept uniform within the wafer surface. In the second embodiment, since it is not necessary to form the spacer 49 used in the first embodiment, the manufacturing cost can be reduced as compared with the first embodiment.

膜厚が厚い領域と膜厚が薄い領域とを有する上記表面保護膜48は、例えば第3層アルミニウム配線47が形成されたウエハW1の主面上にCVD法で表面保護膜48を形成し、第1バンプ電極50が形成される領域の表面保護膜48を薄く加工した後、第1バンプ電極50が形成される領域の第3層アルミニウム配線47が露出するように表面保護膜48を加工することにより形成することができる。あるいは、第1バンプ電極50が形成される領域の第3層アルミニウム配線47が露出するように、表面保護膜48を加工した後、第1バンプ電極50が形成される領域の表面保護膜48を薄く加工してもよい。   The surface protective film 48 having a thick film region and a thin film film region is formed, for example, by forming the surface protective film 48 on the main surface of the wafer W1 on which the third layer aluminum wiring 47 is formed by the CVD method, After the surface protection film 48 in the region where the first bump electrode 50 is formed is thinly processed, the surface protection film 48 is processed so that the third layer aluminum wiring 47 in the region where the first bump electrode 50 is formed is exposed. Can be formed. Alternatively, after the surface protective film 48 is processed so that the third layer aluminum wiring 47 in the region where the first bump electrode 50 is formed is exposed, the surface protective film 48 in the region where the first bump electrode 50 is formed is formed. It may be processed thinly.

(実施の形態3)
本発明の実施の形態3による半導体装置を示す半導体ウエハの要部断面図を図29に示す。ここでは、積層して貼り合わせたウエハW1とウエハW2とを用いて説明する。
(Embodiment 3)
FIG. 29 is a cross-sectional view of the principal part of the semiconductor wafer showing the semiconductor device according to the third embodiment of the present invention. Here, description will be made using the wafer W1 and the wafer W2 which are laminated and bonded together.

前述した実施の形態1では、貫通電極4から離間した位置に貫通電極4を取り囲むように、貫通分離部26を形成している。   In the first embodiment described above, the through separation portion 26 is formed so as to surround the through electrode 4 at a position separated from the through electrode 4.

しかしながら、本実施の形態3では、貫通分離部26の内部に多結晶シリコン膜28を貫通してタングステンを主成分とする導電膜からなる貫通電極4が形成されている。貫通分離部26は、貫通孔26aの側面を覆うように形成された酸化シリコン膜27と、この酸化シリコン膜27の側面を覆うように形成された多結晶シリコン膜28と、この多結晶シリコン膜28の上面を覆うように形成されたキャップ絶縁膜29とを有している。貫通電極4は、導電溝4Aの内側に形成された窒化チタン膜42およびタングステン膜43とを有している。貫通分離部26の内部に貫通電極4を形成することにより、貫通分離部26を用いてウエハW2と貫通電極4との電気的な絶縁を行うことができ、かつ、貫通電極4を構成する導電膜からの汚染の拡散を抑えて素子の電気的特性の劣化を防止することができる。   However, in the third embodiment, the through electrode 4 made of a conductive film containing tungsten as a main component is formed inside the through isolation portion 26 so as to penetrate the polycrystalline silicon film 28. The through isolation part 26 includes a silicon oxide film 27 formed so as to cover the side surface of the through hole 26a, a polycrystalline silicon film 28 formed so as to cover the side surface of the silicon oxide film 27, and the polycrystalline silicon film. And a cap insulating film 29 formed so as to cover the upper surface of 28. The through electrode 4 has a titanium nitride film 42 and a tungsten film 43 formed inside the conductive groove 4A. By forming the penetration electrode 4 inside the penetration separation part 26, the wafer W 2 and the penetration electrode 4 can be electrically insulated using the penetration separation part 26, and the conductive material constituting the penetration electrode 4 can be obtained. It is possible to prevent the deterioration of the electrical characteristics of the device by suppressing the diffusion of contamination from the film.

このように貫通分離部26の内部に貫通電極4が形成された構造であっても、前述した実施の形態1と同様に、ウエハW1の主面上の表面保護膜48とウエハW2の裏面との間で、貫通電極4が形成されていない領域に、スペーサ49と第2バンプ電極50aとが積層された支持部を形成することにより、ウエハW2のたわみを防いで、ウエハW1の主面上の表面保護膜48とウエハW2の裏面との間隔をウエハ面内で均一に保つことができる。   Thus, even in the structure in which the through electrode 4 is formed inside the through separation portion 26, the surface protective film 48 on the main surface of the wafer W1, the back surface of the wafer W2, and the like, as in the first embodiment described above. In the region where the through electrode 4 is not formed, a support portion in which the spacer 49 and the second bump electrode 50a are stacked is formed, thereby preventing the wafer W2 from being bent and on the main surface of the wafer W1. The distance between the surface protective film 48 and the back surface of the wafer W2 can be kept uniform within the wafer surface.

貫通分離部26の内部に形成される貫通電極4は、例えば以下に説明する製造方法により形成することができる。   The through electrode 4 formed inside the through separation part 26 can be formed by, for example, a manufacturing method described below.

まず、図30に示すように、ウエハW2の主面に素子分離溝22および溝23を形成した後、素子分離溝22および溝23の内部に酸化シリコン膜24を埋め込む。   First, as shown in FIG. 30, element isolation grooves 22 and grooves 23 are formed in the main surface of the wafer W <b> 2, and then a silicon oxide film 24 is embedded in the element isolation grooves 22 and the grooves 23.

次に、図31に示すように、ウエハW2の主面上に絶縁膜、例えば窒化シリコン膜25をCVD法で堆積した後、レジストパターン(図示は省略)をマスクとして、そこから露出する窒化シリコン膜25、酸化シリコン膜24およびウエハW2を順にエッチング除去することにより、ウエハW2の主面に絶縁溝26Aを形成する。この絶縁溝26Aは、前述した貫通孔26aを形成することになる溝であり、ウエハW2の主面からウエハW2の厚さ方向の途中の位置であって溝23の深さよりも深い位置まで延びるように形成されている。   Next, as shown in FIG. 31, after depositing an insulating film such as a silicon nitride film 25 on the main surface of the wafer W2 by the CVD method, the silicon nitride exposed from the resist pattern (not shown) is used as a mask. The film 25, the silicon oxide film 24, and the wafer W2 are removed by etching in order to form an insulating groove 26A on the main surface of the wafer W2. The insulating groove 26A is a groove that forms the above-described through hole 26a, and extends from the main surface of the wafer W2 to a position midway in the thickness direction of the wafer W2 and deeper than the depth of the groove 23. It is formed as follows.

続いて、ウエハW2に対して熱酸化処理を施すことにより、絶縁溝26Aの内壁(側面および底面)のウエハW2の露出面に絶縁膜、例えば酸化シリコン膜27を形成する。この絶縁膜は、熱酸化処理により形成された酸化シリコン膜27に限定されるものではなく、例えばCVD法で形成される酸化シリコン、窒化シリコン、酸窒化シリコンなどを絶縁膜に用いることもできる。   Subsequently, a thermal oxidation process is performed on the wafer W2, thereby forming an insulating film such as a silicon oxide film 27 on the exposed surface of the wafer W2 on the inner wall (side surface and bottom surface) of the insulating groove 26A. This insulating film is not limited to the silicon oxide film 27 formed by the thermal oxidation process, and for example, silicon oxide, silicon nitride, silicon oxynitride or the like formed by a CVD method can be used as the insulating film.

続いて、ウエハW2の主面上に、絶縁溝26Aが充填されるように埋込膜、例えば多結晶シリコン膜28をCVD法で堆積する。続いて、多結晶シリコン膜28を異方性のドライエッチング法によってエッチバックすることにより、絶縁溝26Aの外部の余分な多結晶シリコン膜28を除去し、絶縁溝26A内のみに多結晶シリコン膜28を残すようにする。   Subsequently, an embedded film, for example, a polycrystalline silicon film 28 is deposited on the main surface of the wafer W2 by a CVD method so as to fill the insulating groove 26A. Subsequently, the polycrystalline silicon film 28 is etched back by an anisotropic dry etching method to remove the extra polycrystalline silicon film 28 outside the insulating groove 26A, and the polycrystalline silicon film only in the insulating groove 26A. Leave 28.

続いて、ウエハW2の主面上に、多結晶シリコン膜28の上部の窪みが埋め込まれるように、例えば酸化シリコンからなるキャップ絶縁膜29をCVD法で堆積する。続いて、キャップ絶縁膜29をCMP法で研磨することにより、多結晶シリコン膜28の上部の窪みの外部の余分なキャップ絶縁膜29を除去し、多結晶シリコン膜28の上部の窪み内のみにキャップ絶縁膜29を残すようにする。このようにして多結晶シリコン膜28の上面をキャップ絶縁膜29により覆う。その後、窒化シリコン膜25をウエットエッチング法によって除去する。   Subsequently, a cap insulating film 29 made of, for example, silicon oxide is deposited on the main surface of the wafer W2 by a CVD method so that the depression above the polycrystalline silicon film 28 is buried. Subsequently, the cap insulating film 29 is polished by the CMP method to remove the extra cap insulating film 29 outside the depression above the polycrystalline silicon film 28, and only in the depression above the polycrystalline silicon film 28. The cap insulating film 29 is left. In this way, the upper surface of the polycrystalline silicon film 28 is covered with the cap insulating film 29. Thereafter, the silicon nitride film 25 is removed by wet etching.

次に、図32に示すように、ウエハW2の主面の素子形成領域に集積回路素子を形成する。集積回路を構成する集積回路素子の例としては、MISトランジスタ、バイポーラトランジスタやダイオード等のような能動素子がある。また、上記集積回路素子の他の例としては、抵抗、キャパシタおよびインダクタ等のような受動素子がある。ここでは、素子として、nチャネル型MISトランジスタが例示されており、前述した実施の形態1に例示したnチャネル型MISトランジスタQnと同様の製造方法により形成することができる。   Next, as shown in FIG. 32, integrated circuit elements are formed in the element formation region of the main surface of the wafer W2. Examples of integrated circuit elements that constitute the integrated circuit include active elements such as MIS transistors, bipolar transistors, and diodes. Other examples of the integrated circuit element include passive elements such as resistors, capacitors and inductors. Here, an n-channel MIS transistor is illustrated as an element, and can be formed by the same manufacturing method as the n-channel MIS transistor Qn illustrated in the first embodiment.

次に、図33に示すように、ウエハW2の主面上に酸化シリコン膜36をCVD法で堆積した後、レジストパターン(図示は省略)をマスクとして、そこから露出する酸化シリコン膜36、キャップ絶縁膜29および多結晶シリコン膜28を順にエッチング除去する。これにより、ウエハW2の主面に導電溝4Aを形成する。この導電溝4Aは、ウエハW2の主面の酸化シリコン膜36の上面からウエハW2の厚さ方向に、絶縁溝26A内の底面の酸化シリコン膜27まで延びるように形成されている。   Next, as shown in FIG. 33, after the silicon oxide film 36 is deposited on the main surface of the wafer W2 by the CVD method, the resist pattern (not shown) is used as a mask to expose the silicon oxide film 36 and the cap. The insulating film 29 and the polycrystalline silicon film 28 are removed by etching in order. Thereby, the conductive grooves 4A are formed on the main surface of the wafer W2. The conductive groove 4A is formed to extend from the upper surface of the silicon oxide film 36 on the main surface of the wafer W2 to the silicon oxide film 27 on the bottom surface in the insulating groove 26A in the thickness direction of the wafer W2.

続いて、ウエハW2の主面上に窒化チタン膜42をスパッタリング法で堆積した後、タングステン膜43をCVD法で堆積し、窒化チタン膜42およびタングステン膜43により導電溝4Aを埋め込む。続いて、タングステン膜43および窒化チタン膜42をCMP法で研磨することにより、導電溝4Aの外部の余分なタングステン膜43および窒化チタン膜42を除去し、導電溝4A内のみにタングステン膜43および窒化チタン膜42を残すようにする。このようにして導電溝4A内にタングステン膜43および窒化チタン膜42が埋め込まれて導電部4Cを形成する。導電部4Cは貫通電極4を形成する部分であり、この導電部4Cの構成はウエハW2の主裏面間を貫通していないことを除いて貫通電極4と同じである。   Subsequently, after a titanium nitride film 42 is deposited on the main surface of the wafer W <b> 2 by a sputtering method, a tungsten film 43 is deposited by a CVD method, and the conductive groove 4 </ b> A is filled with the titanium nitride film 42 and the tungsten film 43. Subsequently, the tungsten film 43 and the titanium nitride film 42 are polished by the CMP method to remove the extra tungsten film 43 and the titanium nitride film 42 outside the conductive groove 4A, and the tungsten film 43 and the titanium nitride film 42 only in the conductive groove 4A. The titanium nitride film 42 is left. In this manner, the tungsten film 43 and the titanium nitride film 42 are buried in the conductive groove 4A to form the conductive portion 4C. The conductive portion 4C is a portion that forms the through electrode 4, and the configuration of the conductive portion 4C is the same as the through electrode 4 except that it does not penetrate between the main back surfaces of the wafer W2.

次に、図34に示すように、配線層を形成する。ここでは、配線層として、3層配線構成の配線層が例示されており、前述した実施の形態1に例示した配線層と同様の製造方法により形成することができる。さらに、前述した実施の形態1と同様にして、表面保護膜48上にスペーサ49を形成し、続いて露出した第3層アルミニウム配線47に接続する第1バンプ電極50を形成し、スペーサ49上に第2バンプ電極50aを形成する。   Next, as shown in FIG. 34, a wiring layer is formed. Here, a wiring layer having a three-layer wiring configuration is illustrated as the wiring layer, and can be formed by the same manufacturing method as the wiring layer illustrated in the first embodiment. Further, in the same manner as in the first embodiment described above, a spacer 49 is formed on the surface protective film 48, and then a first bump electrode 50 connected to the exposed third layer aluminum wiring 47 is formed. Then, the second bump electrode 50a is formed.

次に、図35に示すように、ウエハW2の裏面を、例えばCMP法で研磨して所定の厚さまで薄く加工した後、ウエハW2の裏面を、例えばフッ酸と硝酸との混合溶液、またはそれに類するシリコンエッチング溶液を用いたウエットエッチング法により、エッチングする。ウエットエッチング法に代えてドライエッチング法によりウエハW2の裏面を選択的にエッチングしてもよい。エッチングを実施したこの段階では、酸化シリコン膜27は露出しているが、導電部4Cは酸化シリコン膜27により覆われている。続いて、露出した酸化シリコン膜27をエッチング法により除去する。これにより、貫通孔26aの側面を覆う酸化シリコン膜27、多結晶シリコン膜28およびキャップ絶縁膜29からなる貫通分離部26が形成され、さらにその内部に形成されて裏面から突出する貫通電極4を形成する。   Next, as shown in FIG. 35, the back surface of the wafer W2 is polished by, for example, a CMP method and thinned to a predetermined thickness, and then the back surface of the wafer W2 is mixed with, for example, a mixed solution of hydrofluoric acid and nitric acid, or Etching is performed by a wet etching method using a similar silicon etching solution. Instead of the wet etching method, the back surface of the wafer W2 may be selectively etched by a dry etching method. At this stage of etching, the silicon oxide film 27 is exposed, but the conductive portion 4C is covered with the silicon oxide film 27. Subsequently, the exposed silicon oxide film 27 is removed by an etching method. As a result, a through-separation portion 26 made of the silicon oxide film 27, the polycrystalline silicon film 28, and the cap insulating film 29 covering the side surface of the through-hole 26a is formed, and the through-electrode 4 that is formed inside and protrudes from the back surface is formed. Form.

なお、本実施の形態3は、前述した実施の形態1で説明したスペーサ49と第2バンプ電極50aとを積層した支持部を有する半導体装置に適用した場合について説明したが、前述した実施の形態2で説明した相対的に厚く形成された表面保護膜48上に第2バンプ電極50aを積層した支持部を有する半導体装置にも適用できることは言うまでもない。   In the third embodiment, the case where the present invention is applied to the semiconductor device having the support portion in which the spacer 49 and the second bump electrode 50a described in the first embodiment are stacked has been described. Needless to say, the present invention can also be applied to a semiconductor device having a support portion in which the second bump electrode 50a is laminated on the surface protection film 48 formed relatively thick as described in 2.

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.

本発明は、複数枚のチップを積層して貼り合わせた3次元構造の半導体装置に適用することができる。   The present invention can be applied to a semiconductor device having a three-dimensional structure in which a plurality of chips are stacked and bonded together.

本発明の実施の形態1による半導体装置を配線基板に実装して樹脂封止したパッケージの一例を示す断面図である。It is sectional drawing which shows an example of the package which mounted the semiconductor device by Embodiment 1 of this invention on the wiring board, and was resin-sealed. 本発明の実施の形態1による半導体装置の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the semiconductor device by Embodiment 1 of this invention. 本発明の実施の形態1による半導体装置の製造工程を示す半導体ウエハの要部断面図である。It is principal part sectional drawing of the semiconductor wafer which shows the manufacturing process of the semiconductor device by Embodiment 1 of this invention. 図3に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 4 is a fragmentary cross-sectional view of the semiconductor wafer showing a manufacturing step of the semiconductor device following that of FIG. 3; 溝の平面形状を示す半導体ウエハの要部平面図である。It is a principal part top view of the semiconductor wafer which shows the planar shape of a groove | channel. 図4に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 5 is a fragmentary cross-sectional view of the semiconductor wafer showing a manufacturing step of the semiconductor device following that of FIG. 4; 図6に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 7 is a fragmentary cross-sectional view of the semiconductor wafer showing a manufacturing step of the semiconductor device following that of FIG. 6; 絶縁溝の平面形状を示す半導体ウエハの要部平面図である。It is a principal part top view of the semiconductor wafer which shows the planar shape of an insulation groove | channel. 図7に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 8 is a fragmentary cross-sectional view of the semiconductor wafer showing a manufacturing step of the semiconductor device following that of FIG. 7; 図9に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 10 is a fragmentary cross-sectional view of the semiconductor wafer showing a manufacturing step of the semiconductor device following that of FIG. 9; 図10に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 11 is a fragmentary cross-sectional view of the semiconductor wafer showing a manufacturing step of the semiconductor device following that of FIG. 10; 図11に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 12 is a fragmentary cross-sectional view of the semiconductor wafer showing the manufacturing step of the semiconductor device following that of FIG. 11; 図12に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 13 is a fragmentary cross-sectional view of the semiconductor wafer showing a manufacturing step of the semiconductor device following that of FIG. 12; 図13に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 14 is a fragmentary cross-sectional view of the semiconductor wafer showing a manufacturing step of the semiconductor device following that of FIG. 13; 導電溝の平面形状を示す半導体ウエハの要部平面図である。It is a principal part top view of the semiconductor wafer which shows the planar shape of a conductive groove. 図14に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 15 is a fragmentary cross-sectional view of the semiconductor wafer showing a manufacturing step of the semiconductor device following that of FIG. 14; 図16に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 17 is a main part cross-sectional view of the semiconductor wafer showing the manufacturing process of the semiconductor device following FIG. 16; 図17に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 18 is a fragmentary cross-sectional view of the semiconductor wafer showing a manufacturing step of the semiconductor device following that of FIG. 17; 図18に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 19 is a fragmentary cross-sectional view of the semiconductor wafer showing the manufacturing step of the semiconductor device following that of FIG. 18; 図19に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 20 is a fragmentary cross-sectional view of the semiconductor wafer showing a manufacturing step of the semiconductor device following that of FIG. 19; 図20に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 21 is a fragmentary cross-sectional view of the semiconductor wafer showing the manufacturing step of the semiconductor device following that of FIG. 20; 図21に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 22 is a fragmentary cross-sectional view of the semiconductor wafer showing the manufacturing step of the semiconductor device following that of FIG. 21; 図22に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 23 is a fragmentary cross-sectional view of the semiconductor wafer showing the manufacturing process of the semiconductor device following FIG. 22; 図23に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 24 is a fragmentary cross-sectional view of the semiconductor wafer showing the manufacturing step of the semiconductor device following that of FIG. 23; 図24に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 25 is a fragmentary cross-sectional view of the semiconductor wafer showing a manufacturing step of the semiconductor device following that of FIG. 24; 図25に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 26 is a fragmentary cross-sectional view of the semiconductor wafer showing a manufacturing step of the semiconductor device following that of FIG. 25; 図26に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 27 is a fragmentary cross-sectional view of the semiconductor wafer showing the manufacturing process of the semiconductor device following FIG. 26; 本発明の実施の形態2による半導体装置を示す半導体ウエハの要部断面図である。It is principal part sectional drawing of the semiconductor wafer which shows the semiconductor device by Embodiment 2 of this invention. 本発明の実施の形態3による半導体装置を示す半導体ウエハの要部断面図である。It is principal part sectional drawing of the semiconductor wafer which shows the semiconductor device by Embodiment 3 of this invention. 本発明の実施の形態3による半導体装置の製造工程を示す半導体ウエハの要部断面図である。It is principal part sectional drawing of the semiconductor wafer which shows the manufacturing process of the semiconductor device by Embodiment 3 of this invention. 図30に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 31 is a main part cross-sectional view of the semiconductor wafer, showing the manufacturing process of the semiconductor device following FIG. 30; 図31に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 32 is a main part cross-sectional view of the semiconductor wafer showing the manufacturing process of the semiconductor device following FIG. 31; 図32に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 33 is a main part cross-sectional view of the semiconductor wafer showing the manufacturing process of the semiconductor device following FIG. 32; 図33に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 34 is a main part cross-sectional view of the semiconductor wafer, showing the manufacturing process of the semiconductor device following FIG. 33; 図34に続く半導体装置の製造工程を示す半導体ウエハの要部断面図である。FIG. 35 is an essential part cross-sectional view of the semiconductor wafer showing the manufacturing process of the semiconductor device following FIG. 34;

符号の説明Explanation of symbols

1 配線基板
2 モールド樹脂
3 接着剤
4 貫通電極
4A 導電溝
4C 導電部
5 ボンディングパッド
6 電極
7 ワイヤ
8 配線
9 半田バンプ
20 酸化シリコン膜
21 窒化シリコン膜
22 素子分離溝
23 溝
24,24a 酸化シリコン膜
25 窒化シリコン膜
26 貫通分離部
26A 絶縁溝
26C 絶縁部
26a 貫通孔
27 酸化シリコン膜
28 多結晶シリコン膜
29 キャップ絶縁膜
30 n型ウエル
31 p型ウエル
32 ゲート絶縁膜
33 ゲート電極
34 n型半導体領域(ソース、ドレイン)
35 p型半導体領域(ソース、ドレイン)
36,37 酸化シリコン膜
38,39 第1層アルミニウム配線
40 窒化チタン膜
42 窒化チタン膜
43 タングステン膜
44 第1層間絶縁膜
45 第2層アルミニウム配線
46 第2層間絶縁膜
47 第3層アルミニウム配線
48 表面保護膜
49 スペーサ
50 第1バンプ電極
50a 第2バンプ電極
51 接着剤
C1,C2,C3 半導体チップ
Qn nチャネル型MISトランジスタ
Qp pチャネル型MISトランジスタ
W1,W2,W3 半導体ウエハ
DESCRIPTION OF SYMBOLS 1 Wiring board 2 Mold resin 3 Adhesive 4 Through electrode 4A Conductive groove 4C Conductive part 5 Bonding pad 6 Electrode 7 Wire 8 Wiring 9 Solder bump 20 Silicon oxide film 21 Silicon nitride film 22 Element isolation groove 23 Groove 24, 24a Silicon oxide film 25 Silicon nitride film 26 Through separation part 26A Insulating groove 26C Insulating part 26a Through hole 27 Silicon oxide film 28 Polycrystalline silicon film 29 Cap insulating film 30 n-type well 31 p-type well 32 gate insulating film 33 gate electrode 34 n-type semiconductor region (Source, drain)
35 p-type semiconductor region (source, drain)
36, 37 Silicon oxide films 38, 39 First layer aluminum wiring 40 Titanium nitride film 42 Titanium nitride film 43 Tungsten film 44 First interlayer insulating film 45 Second layer aluminum wiring 46 Second interlayer insulating film 47 Third layer aluminum wiring 48 Surface protective film 49 Spacer 50 First bump electrode 50a Second bump electrode 51 Adhesive C1, C2, C3 Semiconductor chip Qn n-channel type MIS transistor Qp p-channel type MIS transistors W1, W2, W3 Semiconductor wafer

Claims (10)

第1面上に集積回路が形成され、前記第1面と反対側の第2面から突出する貫通電極が形成された第1ウエハと、第1面上に集積回路が形成され、最上層配線に電気的に接続して第1バンプ電極が形成された第2ウエハとを積層して貼り合わせる工程を有する半導体装置の製造方法であって、
(a)前記第2ウエハの前記第1面上に前記最上層配線を覆う表面保護膜を形成する工程と、
(b)前記表面保護膜を加工して前記最上層配線の一部を露出させる工程と、
(c)前記(b)工程の後、前記第2ウエハの前記第1面上に絶縁膜を形成する工程と、
(d)前記第2ウエハの前記第1面上に形成された前記第1バンプ電極に、前記第1ウエハの前記第2面から突出する前記貫通電極を物理的に接触させる工程と、
(e)前記第1ウエハの前記第2面と前記第2ウエハの前記第1面上の前記表面保護膜との間に樹脂を充填する工程とからなるプロセスにおいて、
(f)前記(c)工程の前記絶縁膜を加工して前記最上層配線が露出していない領域の前記表面保護膜上に前記絶縁膜からなるスペーサを形成する工程と、
(g)前記(f)工程の後、同一工程で前記第2ウエハの前記第1面上の露出した前記最上層配線上に前記第1バンプ電極を形成し、前記スペーサ上に第2バンプ電極を形成する工程とを含むことを特徴とする半導体装置の製造方法。
An integrated circuit is formed on the first surface, a first wafer on which a through electrode protruding from the second surface opposite to the first surface is formed, an integrated circuit is formed on the first surface, and an uppermost layer wiring A method of manufacturing a semiconductor device comprising a step of laminating and bonding a second wafer having a first bump electrode formed thereon and electrically connected to
(A) forming a surface protective film covering the uppermost layer wiring on the first surface of the second wafer;
(B) processing the surface protective film to expose a part of the uppermost layer wiring;
(C) after the step (b), forming an insulating film on the first surface of the second wafer;
(D) physically bringing the through electrode protruding from the second surface of the first wafer into contact with the first bump electrode formed on the first surface of the second wafer;
(E) In a process comprising a step of filling a resin between the second surface of the first wafer and the surface protective film on the first surface of the second wafer,
(F) processing the insulating film in the step (c) to form a spacer made of the insulating film on the surface protective film in a region where the uppermost layer wiring is not exposed;
(G) After the step (f), the first bump electrode is formed on the exposed uppermost layer wiring on the first surface of the second wafer in the same step, and the second bump electrode is formed on the spacer. Forming a semiconductor device. A method for manufacturing a semiconductor device, comprising:
請求項1記載の半導体装置の製造方法において、前記絶縁膜はポリイミド樹脂膜であることを特徴とする半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the insulating film is a polyimide resin film. 請求項1記載の半導体装置の製造方法において、1つの前記スペーサ上に1つまたは2つ以上の前記第2バンプ電極を形成することを特徴とする半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein one or more second bump electrodes are formed on one spacer. 請求項1記載の半導体装置の製造方法において、2つ以上の前記スペーサ上に1つの前記第2バンプ電極を形成することを特徴とする半導体装置の製造方法。   2. The method for manufacturing a semiconductor device according to claim 1, wherein one second bump electrode is formed on two or more of the spacers. 請求項1記載の半導体装置の製造方法において、前記スペーサと前記第2バンプ電極とを積層した厚さは、前記第1ウエハの前記第2面と前記第2ウエハの前記第1面上の前記表面保護膜との間隔とほぼ同じであることを特徴とする半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the thickness of the spacer and the second bump electrode laminated is set to the second surface of the first wafer and the first surface of the second wafer. A method for manufacturing a semiconductor device, characterized by being substantially the same as a distance from a surface protective film. 第1面上に集積回路が形成され、前記第1面と反対側の第2面から突出する貫通電極が形成された第1ウエハと、第1面上に集積回路が形成され、最上層配線に電気的に接続して第1バンプ電極が形成された第2ウエハとを積層して貼り合わせる工程を有する半導体装置の製造方法であって、
(a)前記第2ウエハの前記第1面上に前記最上層配線を覆う表面保護膜を形成する工程と、
(b)前記表面保護膜を加工して前記第1バンプ電極が形成される領域の前記最上層配線の一部を露出させる工程と、
(c)前記第2ウエハの前記第1面上に形成された前記第1バンプ電極に、前記第1ウエハの前記第2面から突出する前記貫通電極を物理的に接触させる工程と、
(d)前記第1ウエハの前記第2面と前記第2ウエハの前記第1面上の前記表面保護膜との間に樹脂を充填する工程とからなるプロセスにおいて、
(e)前記(a)工程の前記表面保護膜を加工して前記第1バンプ電極が形成される領域の前記表面保護膜の厚さを前記第1バンプ電極が形成されない領域の前記表面保護膜の厚さよりも薄くする工程と、
(f)同一工程で前記第2ウエハの前記第1面上の露出した前記最上層配線上に前記第1バンプ電極を形成し、前記最上層配線が露出していない領域の前記表面保護膜上に第2バンプ電極を形成する工程とを含むことを特徴とする半導体装置の製造方法。
An integrated circuit is formed on the first surface, a first wafer on which a through electrode protruding from the second surface opposite to the first surface is formed, an integrated circuit is formed on the first surface, and an uppermost layer wiring A method of manufacturing a semiconductor device comprising a step of laminating and bonding a second wafer having a first bump electrode formed thereon and electrically connected to
(A) forming a surface protective film covering the uppermost layer wiring on the first surface of the second wafer;
(B) processing the surface protective film to expose a part of the uppermost layer wiring in a region where the first bump electrode is formed;
(C) physically bringing the through electrode protruding from the second surface of the first wafer into contact with the first bump electrode formed on the first surface of the second wafer;
(D) in a process comprising a step of filling a resin between the second surface of the first wafer and the surface protective film on the first surface of the second wafer;
(E) The surface protective film in the region where the first bump electrode is not formed by processing the surface protective film in the step (a) to determine the thickness of the surface protective film in the region where the first bump electrode is formed. The process of making it thinner than the thickness of
(F) forming the first bump electrode on the exposed uppermost layer wiring on the first surface of the second wafer in the same step, and on the surface protection film in a region where the uppermost layer wiring is not exposed; Forming a second bump electrode. The method for manufacturing a semiconductor device, comprising:
請求項1または6記載の半導体装置の製造方法において、前記第1ウエハの前記第2面と前記第2ウエハの前記第1面上の前記表面保護膜との間隔は5〜30μmであることを特徴とする半導体装置の製造方法。   7. The method of manufacturing a semiconductor device according to claim 1, wherein a distance between the second surface of the first wafer and the surface protective film on the first surface of the second wafer is 5 to 30 [mu] m. A method of manufacturing a semiconductor device. 請求項1または6記載の半導体装置の製造方法において、前記表面保護膜は、酸化シリコン膜、窒化シリコン膜、または酸化シリコン膜上に窒化シリコン膜を形成した積層膜からなることを特徴とする半導体装置の製造方法。   7. The semiconductor device manufacturing method according to claim 1, wherein the surface protection film is formed of a silicon oxide film, a silicon nitride film, or a laminated film in which a silicon nitride film is formed on the silicon oxide film. Device manufacturing method. 第1面上に形成された複数の第1集積回路と、前記第1面と反対側の第2面から突出する貫通電極とを含む第1チップと、
第1面上に形成された複数の第2集積回路と、前記複数の第2集積回路のいずれかに電気的に接続されて前記第1面上に形成された複数層の配線と、最上層配線の一部を露出して前記第1面上に形成された表面保護膜と、前記表面保護膜上に形成され、絶縁膜よりなるスペーサと、前記表面保護膜から露出する前記最上層配線と電気的に接続して形成された第1バンプ電極と、前記スペーサ上に形成された第2バンプ電極とを含む第2チップとを有し、
前記第1チップの前記第2面から突出する前記貫通電極の先端部分が、前記第2チップの前記第1面上の前記第1バンプ電極の表面より内部に突き刺さるように、物理的に接触しており、前記第1チップの前記第2面と前記第2チップの前記第1面上の前記表面保護膜との間に樹脂が充填されていることを特徴とする半導体装置。
A first chip including a plurality of first integrated circuits formed on the first surface and a through electrode protruding from the second surface opposite to the first surface;
A plurality of second integrated circuits formed on the first surface, a plurality of wirings formed on the first surface by being electrically connected to any of the plurality of second integrated circuits, and an uppermost layer A surface protection film formed on the first surface by exposing a part of the wiring; a spacer formed on the surface protection film , made of an insulating film; and the uppermost layer wiring exposed from the surface protection film; A second chip including a first bump electrode formed by electrical connection and a second bump electrode formed on the spacer;
The tip portion of the through electrode protruding from the second surface of the first chip is in physical contact so as to pierce from the surface of the first bump electrode on the first surface of the second chip. And a resin is filled between the second surface of the first chip and the surface protective film on the first surface of the second chip.
第1面上に形成された複数の第1集積回路と、前記第1面と反対側の第2面から突出する貫通電極とを含む第1チップと、
第1面上に形成された複数の第2集積回路と、前記複数の第2集積回路のいずれかに電気的に接続されて前記第1面上に形成された複数層の配線と、最上層配線の一部を露出して前記第1面上に形成された表面保護膜と、前記表面保護膜から露出する前記最上層配線と電気的に接続して形成された第1バンプ電極と、前記表面保護膜上に形成された第2バンプ電極とを含む第2チップとを有し、
前記第1バンプ電極が形成された領域の前記表面保護膜の厚さは、前記第2バンプ電極が形成された領域の前記表面保護膜の厚さよりも薄く、
前記第1チップの前記第2面から突出する前記貫通電極が前記第2チップの前記第1バンプ電極と物理的に接触しており、前記第1チップの前記第2面と前記第2チップの前記第1面上の前記表面保護膜との間に樹脂が充填されていることを特徴とする半導体装置。
A first chip including a plurality of first integrated circuits formed on the first surface and a through electrode protruding from the second surface opposite to the first surface;
A plurality of second integrated circuits formed on the first surface, a plurality of wirings formed on the first surface by being electrically connected to any of the plurality of second integrated circuits, and an uppermost layer A surface protection film formed on the first surface by exposing a part of the wiring; a first bump electrode formed by being electrically connected to the uppermost layer wiring exposed from the surface protection film; A second chip including a second bump electrode formed on the surface protective film,
The thickness of the surface protective film in the region where the first bump electrode is formed is thinner than the thickness of the surface protective film in the region where the second bump electrode is formed,
The through electrode protruding from the second surface of the first chip is in physical contact with the first bump electrode of the second chip, and the second surface of the first chip and the second chip A semiconductor device, wherein a resin is filled between the first surface and the surface protective film.
JP2008287478A 2008-11-10 2008-11-10 Semiconductor device manufacturing method and semiconductor device Expired - Fee Related JP4696152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008287478A JP4696152B2 (en) 2008-11-10 2008-11-10 Semiconductor device manufacturing method and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008287478A JP4696152B2 (en) 2008-11-10 2008-11-10 Semiconductor device manufacturing method and semiconductor device

Publications (2)

Publication Number Publication Date
JP2010114350A JP2010114350A (en) 2010-05-20
JP4696152B2 true JP4696152B2 (en) 2011-06-08

Family

ID=42302674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008287478A Expired - Fee Related JP4696152B2 (en) 2008-11-10 2008-11-10 Semiconductor device manufacturing method and semiconductor device

Country Status (1)

Country Link
JP (1) JP4696152B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9123700B2 (en) * 2012-01-06 2015-09-01 Micron Technology, Inc. Integrated circuit constructions having through substrate vias and methods of forming integrated circuit constructions having through substrate vias
JP2013211474A (en) 2012-03-30 2013-10-10 Olympus Corp Substrate and semiconductor device
JP6012262B2 (en) 2012-05-31 2016-10-25 キヤノン株式会社 Manufacturing method of semiconductor device
JP6128787B2 (en) 2012-09-28 2017-05-17 キヤノン株式会社 Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223833A (en) * 1996-12-02 1998-08-21 Toshiba Corp Multi-chip semiconductor device chip for multi-chip semiconductor device and its formation
JP2004281880A (en) * 2003-03-18 2004-10-07 Seiko Epson Corp Method for manufacturing semiconductor device, semiconductor device and electronic apparatus
JP2006019455A (en) * 2004-06-30 2006-01-19 Nec Electronics Corp Semiconductor device and manufacturing method thereof
JP2009049349A (en) * 2007-08-16 2009-03-05 Hynix Semiconductor Inc Through-electrode for semiconductor package and semiconductor package having the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521806B2 (en) * 2005-06-14 2009-04-21 John Trezza Chip spanning connection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223833A (en) * 1996-12-02 1998-08-21 Toshiba Corp Multi-chip semiconductor device chip for multi-chip semiconductor device and its formation
JP2004281880A (en) * 2003-03-18 2004-10-07 Seiko Epson Corp Method for manufacturing semiconductor device, semiconductor device and electronic apparatus
JP2006019455A (en) * 2004-06-30 2006-01-19 Nec Electronics Corp Semiconductor device and manufacturing method thereof
JP2009049349A (en) * 2007-08-16 2009-03-05 Hynix Semiconductor Inc Through-electrode for semiconductor package and semiconductor package having the same

Also Published As

Publication number Publication date
JP2010114350A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP4916444B2 (en) Manufacturing method of semiconductor device
US7906363B2 (en) Method of fabricating semiconductor device having three-dimensional stacked structure
JP5048230B2 (en) Semiconductor device and manufacturing method thereof
US7951649B2 (en) Process for the collective fabrication of 3D electronic modules
JP5183708B2 (en) Semiconductor device and manufacturing method thereof
US9177893B2 (en) Semiconductor component with a front side and a back side metallization layer and manufacturing method thereof
US7535062B2 (en) Semiconductor device having SOI structure
US20060223199A1 (en) Semiconductor device and manufacturing method thereof
KR102541564B1 (en) Semiconductor package
JP4828537B2 (en) Semiconductor device
JP2009181981A (en) Manufacturing process of semiconductor device, and the semiconductor device
KR20130053338A (en) Integrated circuit device having through silicon via structure
JP2011071441A (en) Method of manufacturing semiconductor device, semiconductor device and wafer lamination structure
JP6511695B2 (en) Semiconductor device and method of manufacturing the same
JP4945545B2 (en) Manufacturing method of semiconductor device
JP4851163B2 (en) Manufacturing method of semiconductor device
JP4696152B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2009099841A (en) Semiconductor device and method for manufacturing same
JP4837939B2 (en) Semiconductor device and manufacturing method of semiconductor device
TW200937574A (en) Semiconductor device and method for manufacturing same
CN108807197B (en) Chip package with sidewall metallization
JP2007073826A (en) Three-dimensional semiconductor integrated circuit device, its manufacturing method, packaged three-dimensional semiconductor integrated circuit device using it, and its mounting method
TWI857265B (en) A semiconductor device and process for making same
US20230245992A1 (en) Integrated circuit chip package that does not utilize a leadframe
JP2009212438A (en) Semiconductor device, and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees