JPH1010307A - Production of optical diffraction gating and optical head device formed by using the same - Google Patents

Production of optical diffraction gating and optical head device formed by using the same

Info

Publication number
JPH1010307A
JPH1010307A JP8157222A JP15722296A JPH1010307A JP H1010307 A JPH1010307 A JP H1010307A JP 8157222 A JP8157222 A JP 8157222A JP 15722296 A JP15722296 A JP 15722296A JP H1010307 A JPH1010307 A JP H1010307A
Authority
JP
Japan
Prior art keywords
photoresist
substrate
diffraction grating
optical
optical diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8157222A
Other languages
Japanese (ja)
Other versions
JP3994450B2 (en
Inventor
Hiromasa Sato
弘昌 佐藤
Yuzuru Tanabe
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP15722296A priority Critical patent/JP3994450B2/en
Publication of JPH1010307A publication Critical patent/JPH1010307A/en
Application granted granted Critical
Publication of JP3994450B2 publication Critical patent/JP3994450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily produce the optical diffraction gratings having high utilization efficiency of one beam of diffracted light by diagonally exposing a photoresist and asymmetrically forming the flanks in the short side direction of the gratings of the photoresist made to remain by developing this photoresist, then subjecting the photoresist to dry etching. SOLUTION: The photoresist 3 is formed on the surface of the substrate 1 itself or on the surface of the substrate 1 provided with transparent material films 2, 4. This photoresist 3 is diagonally exposed and developed, by which the flanks in the short side direction of the gratings of the remaining photoresist 3 are formed asymmetrical. The photoresist is then dry-etched, by which the flanks in the short side direction of the gratings of the projecting parts made to remain by etching are made asymmetrical. The right and left flanks of the projection in the short side direction of the the stripes of the gratings of the transparent materials 2, 4 have different tilt angles and turn symmetrical with a center line. The optical diffraction gratings having such shapes vary in +1st order and -1st order in the light quantity of the diffracted light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CD(コンパクト
・ディスク)、CD−ROM、ビデオディスク等の光デ
ィスク及び光磁気ディスク等の光学記録媒体に光学的情
報を書き込んだり、光学的情報を読み取るための光ヘッ
ド装置に好適な光学回折格子の製造方法及びそれを用い
た光ヘッド装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for writing optical information on an optical recording medium such as a CD (compact disk), CD-ROM, video disk and the like and a magneto-optical disk and reading optical information. The present invention relates to a method for manufacturing an optical diffraction grating suitable for an optical head device and an optical head device using the same.

【0002】[0002]

【従来の技術】従来、光ディスク及び光磁気ディスク等
の光学記録媒体に光学的情報を書き込んだり、光学的情
報を読み取る光ヘッド装置としては、光学記録媒体の記
録面から反射された信号光を検出部へ導光(ビームスプ
リット)する光学部品としてプリズム式ビームスプリッ
タを用いたものと、回折格子又はホログラム素子を用い
たものとが知られていた。
2. Description of the Related Art Conventionally, an optical head device for writing optical information on an optical recording medium such as an optical disk and a magneto-optical disk and reading the optical information detects a signal light reflected from a recording surface of the optical recording medium. As an optical component for guiding (beam splitting) light to a portion, a device using a prism type beam splitter and a device using a diffraction grating or a hologram element have been known.

【0003】この光ヘッド装置用の回折格子又はホログ
ラム素子は、ガラスやプラスチック基板上に、矩形の断
面を有する矩形格子(レリーフ型)をドライエッチイン
グ法又は射出成形法よって形成し、これによって光を回
折しビームスプリット機能を付与していた。
A diffraction grating or hologram element for an optical head device is formed by forming a rectangular grating (relief type) having a rectangular cross section on a glass or plastic substrate by a dry etching method or an injection molding method. To provide a beam splitting function.

【0004】また、この光の利用効率が10%程度の等
方性回折格子よりも光の利用効率を上げようとした場
合、偏光を利用することが考えられる。偏光を利用しよ
うとすると、プリズム式ビームスプリッタにλ/4板を
組み合わせて、往路(光源から光学記録媒体へ向かう方
向)及び復路(光学記録媒体から光検出器へ向かう方
向)の効率を上げて往復効率を上げる方法があった。
In order to increase the light use efficiency over an isotropic diffraction grating having a light use efficiency of about 10%, it is conceivable to use polarized light. In order to use polarized light, a prism type beam splitter is combined with a λ / 4 plate to increase the efficiency of the forward path (the direction from the light source to the optical recording medium) and the return path (the direction from the optical recording medium to the photodetector). There was a way to increase the reciprocating efficiency.

【0005】しかし、プリズム式偏光ビームスプリッタ
は高価であり、他の方式が模索されていた。一つの方式
としてLiNbO3 等の複屈折結晶の平板を用い、表面
に異方性回折格子を形成し偏光選択性をもたす方法が知
られている。しかし、複屈折結晶自体が製造が困難であ
り高価であり、民生分野への適用は困難であった。
However, the prism type polarizing beam splitter is expensive, and other methods have been sought. As one method, a method of using a flat plate of birefringent crystal such as LiNbO 3 and forming an anisotropic diffraction grating on the surface to have polarization selectivity is known. However, the birefringent crystal itself is difficult and expensive to manufacture, and it has been difficult to apply it to the consumer field.

【0006】等方性回折格子は、前述のように、利用効
率が往路で50%程度、復路で20%程度であるため、
往復での利用効率が10%程度しか得られなかった。
As described above, the isotropic diffraction grating has a utilization efficiency of about 50% on the outward path and about 20% on the return path.
Only about 10% of the round trip usage efficiency was obtained.

【0007】さらに、これらのものは単に効率が低いだ
けでなく、格子が左右対称形状を持つ回折格子であるた
め、+1光の回折効率と−1次光の回折効率がほぼ等し
かった。光検出器が複数設けられて両方で検出する場合
には、両方の回折効率がほぼ等しいことは有利である
が、1個の光検出器の場合には必ずしも有利ではない。
[0007] Further, since these are not only low in efficiency but also a diffraction grating having a symmetrical grating, the diffraction efficiency of +1 light and the diffraction efficiency of -1 order light are almost equal. When a plurality of photodetectors are provided and detection is performed by both, it is advantageous that both diffraction efficiencies are substantially equal, but it is not necessarily advantageous in the case of one photodetector.

【0008】すなわち、光ヘッドの小型化のために光検
出器を1個とすることが提案されており、この場合には
2方向に同じ程度の光量で光が回折されることは、光の
利用効率からみて有利ではない。2方向に回折された光
のうち、光検出器を設けた側に回折する光の光量を増加
させることが有利となる。このため、一方の回折光を他
方よりも多くすることが望まれていた。
That is, it has been proposed to use a single photodetector in order to reduce the size of the optical head. In this case, the fact that light is diffracted by the same amount of light in two directions means that the light It is not advantageous from the viewpoint of utilization efficiency. Of the light diffracted in two directions, it is advantageous to increase the amount of light diffracted toward the side where the photodetector is provided. For this reason, it has been desired to increase one diffracted light more than the other.

【0009】[0009]

【発明が解決しようとする課題】このためには、回折格
子の凹凸の短手方向が左右非対称な回折格子を使用する
必要がある。しかし、この非対称な回折格子はもともと
かなり微細なピッチの回折格子ということもあり、きわ
めて製造が難しいものであった。このため、生産性が高
い非対称な回折格子の製造方法が望まれていた。
For this purpose, it is necessary to use a diffraction grating in which the lateral direction of the unevenness of the diffraction grating is left-right asymmetric. However, this asymmetrical diffraction grating was originally a diffraction grating having a considerably fine pitch, and was extremely difficult to manufacture. For this reason, a method of manufacturing an asymmetrical diffraction grating with high productivity has been desired.

【0010】本発明は、このような課題を解消し、複数
の回折光のうち、1つの回折光の利用効率の高い光学回
折格子を容易に製造する製造方法の提供を目的とする。
An object of the present invention is to solve such a problem and to provide a manufacturing method for easily manufacturing an optical diffraction grating having high utilization efficiency of one of a plurality of diffracted lights.

【0011】[0011]

【課題を解決するための手段】本発明は、基板の表面に
格子状の凸部が形成された光学回折格子の製造方法にお
いて、基板の表面にフォトレジストを形成し、このフォ
トレジストを斜め露光し、現像することにより残存した
フォトレジストの格子の短手方向の側面が非対称になる
ようにし、次いでドライエッチングすることにより、エ
ッチングにより残存した凸部の格子の短手方向の側面が
非対称になるようにしたことを特徴とする光学回折格子
の製造方法を提供する。
According to the present invention, there is provided a method of manufacturing an optical diffraction grating in which a lattice-like convex portion is formed on a surface of a substrate, wherein a photoresist is formed on the surface of the substrate, and the photoresist is obliquely exposed. Then, development is performed so that the lateral side surfaces of the remaining photoresist lattice are asymmetrical, and then dry etching is performed, so that the lateral side surfaces of the lattice of the protrusions remaining by etching are asymmetrical. There is provided a method for manufacturing an optical diffraction grating characterized by the above.

【0012】また、基板として透明材料膜を設けた基板
を用い、エッチングにより残存した透明材料膜の凸部の
格子の短手方向の側面が非対称になるようにしたことを
特徴とする上記光学回折格子の製造方法、及び、凸部の
側面が非対称になるよう形成された基板を第1の基板と
し、この第1の基板と第2の基板との間に光学的異方性
材料を充填したことを特徴とする上記光学回折格子の製
造方法を提供する。
[0012] Further, the above-mentioned optical diffraction method is characterized in that a substrate provided with a transparent material film is used as the substrate, and the lateral sides of the lattice of the projections of the transparent material film remaining by etching are asymmetric. A method for manufacturing a lattice, and a substrate formed so that the side surfaces of a convex portion are asymmetrical is used as a first substrate, and an optically anisotropic material is filled between the first substrate and the second substrate. A method for manufacturing the optical diffraction grating is provided.

【0013】また、それらの製造方法により製造された
光学回折格子を用いたことを特徴とする光ヘッド装置、
及び、光源から出射した光が光学回折格子、位相差板、
対物レンズを順に通過して光学記録媒体に照射され、そ
の反射光が対物レンズ、位相差板、光学回折格子を順に
通過し、この反射光が光学回折格子で回折されて光源と
は異なる位置にある光検出器に到達するようにされてい
ることを特徴とする上記光ヘッド装置を提供する。
Further, an optical head device using an optical diffraction grating manufactured by any of these manufacturing methods,
And, the light emitted from the light source is an optical diffraction grating, a retardation plate,
The reflected light passes through the objective lens, the phase difference plate, and the optical diffraction grating in order, and is reflected by the optical diffraction grating. The optical head device is provided so as to reach a photodetector.

【0014】本発明で製造される光学回折格子は、光源
からの光をこの光学回折格子を通して光学記録媒体上に
照射することにより、情報の書き込み及び/又は情報の
読み取りを行う光ヘッド装置に好適に用いられる。
The optical diffraction grating manufactured by the present invention is suitable for an optical head device for writing and / or reading information by irradiating light from a light source onto an optical recording medium through the optical diffraction grating. Used for

【0015】本発明では、レジストパターンをフォトマ
スクで露光するときに、斜め方向から露光することによ
って、透明基板の表面に左右非対称な格子状(ストライ
プ状)の凸部を形成する。さらに、このようにして形成
された凸部を有する基板を用いて2枚の基板間に光学異
方性を有する液晶を充填して使用する。これにより、片
側回折効率の高い光学回折格子を容易に製造できる。
In the present invention, when the resist pattern is exposed with a photomask, the resist pattern is exposed in an oblique direction to form a grid-shaped (striped) convex portion which is asymmetrical on the surface of the transparent substrate. Further, a liquid crystal having optical anisotropy is filled between two substrates by using the substrate having the convex portions formed in this manner. Thus, an optical diffraction grating having high one-sided diffraction efficiency can be easily manufactured.

【0016】本発明では、基板自体を直接エッチングし
て凸部を形成して用いてもよいが、エッチングの深さ、
分布、終点検出の点からみて、基板表面に透明材料膜を
形成して用いることが好ましい。
In the present invention, the substrate itself may be directly etched to form a projection, but the etching depth,
From the viewpoint of distribution and end point detection, it is preferable to use a transparent material film formed on the substrate surface.

【0017】[0017]

【発明の実施の形態】本発明では、基板自体の表面又は
透明材料膜を設けた基板の表面にフォトレジストを形成
し、このフォトレジストを斜め露光し、現像することに
より残存したフォトレジストの格子の短手方向の側面が
非対称になるようにし、次いでドライエッチングするこ
とにより、エッチングにより残存した凸部の格子の短手
方向の側面が非対称になるようにする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a photoresist is formed on the surface of a substrate itself or on the surface of a substrate provided with a transparent material film, and the photoresist is obliquely exposed and developed to form a grid of the remaining photoresist. Is made to be asymmetrical, and then dry-etched so that the lateral side of the lattice of the protrusions left by the etching becomes asymmetrical.

【0018】図2は、従来の光学回折格子の製造する主
要工程を示す。(A)はフォレジストを露光現像した状
態を示す断面図であり、(B)はそれを用いて透明材料
膜をドライエッチングした状態を示す断面図である。1
1は基板、12は透明材料膜、13はフォトレジスト、
14はエッチング後の透明材料膜を示す。
FIG. 2 shows main steps of manufacturing a conventional optical diffraction grating. (A) is a sectional view showing a state where the photoresist is exposed and developed, and (B) is a sectional view showing a state where the transparent material film is dry-etched using the same. 1
1 is a substrate, 12 is a transparent material film, 13 is a photoresist,
Reference numeral 14 denotes a transparent material film after etching.

【0019】このように通常の露光、現像、エッチング
を行うと、透明材料膜は格子のストライプの短手方向
(図の左右方向)の凸部の左右の側面はほぼ同じ傾斜角
となり、左右が対称になる。このような形状の光学回折
格子は、回折光の光量が+1次と−1次とでほぼ等しく
なる。これは左右に複数の光検出器を設けて光学記録媒
体からの反射光を検出する場合には好適である。
When ordinary exposure, development, and etching are performed as described above, the transparent material film has substantially the same inclination angle on the left and right sides of the short-side (left-right direction in the figure) convex portion of the lattice stripe. Become symmetric. In the optical diffraction grating having such a shape, the amount of diffracted light is substantially equal between the + 1st order and the -1st order. This is suitable when a plurality of light detectors are provided on the left and right to detect reflected light from an optical recording medium.

【0020】しかし、一方にしか光検出器を設けない場
合には、光検出器を設ける側にのみ多くの光が回折する
方が有利である。また、両方に光検出器を設けるが、そ
の目的が異なり、一方の光検出器への光量の方が多く要
求される場合も同様である。このため、本発明の製造方
法で製造された光学回折格子を用いる光ヘッド装置では
光検出器が1個のみのものに限定されない。
However, when only one of the photodetectors is provided, it is advantageous to diffract more light only on the side where the photodetector is provided. Although a photodetector is provided for both of them, the purpose is different, and the same applies to a case where a larger amount of light is required for one of the photodetectors. For this reason, the optical head device using the optical diffraction grating manufactured by the manufacturing method of the present invention is not limited to a single optical detector.

【0021】図1は、本発明の光学回折格子の製造する
主要工程を示し、基板表面に透明材料膜を形成した例を
示す。(A)はフォトレジストを露光現像した状態を示
す断面図であり、(B)はそれを用いて透明材料膜をド
ライエッチングした状態を示す断面図である。1は基
板、2は透明材料膜、3はフォトレジスト、4はエッチ
ング後の透明材料膜を示す。
FIG. 1 shows the main steps of manufacturing the optical diffraction grating of the present invention, and shows an example in which a transparent material film is formed on the substrate surface. (A) is a cross-sectional view showing a state where a photoresist is exposed and developed, and (B) is a cross-sectional view showing a state where a transparent material film is dry-etched using the photoresist. Reference numeral 1 denotes a substrate, 2 denotes a transparent material film, 3 denotes a photoresist, and 4 denotes a transparent material film after etching.

【0022】このように通常の露光、現像、エッチング
を行うと、透明材料膜は格子のストライプの短手方向
(図の左右方向)の凸部の左右の側面は異なる傾斜角と
なり、左右が非対称になる。このような形状の光学回折
格子は、回折光の光量が+1次と−1次とで異なること
になる。これは左右のいずれかに1個の光検出器を設け
て光学記録媒体からの反射光を検出する場合には、光量
を有効利用できるので好適である。
When the normal exposure, development and etching are performed as described above, the transparent material film has different inclination angles on the left and right sides of the protrusions in the short direction (left and right directions in the drawing) of the lattice stripe, and the right and left are asymmetric. become. In an optical diffraction grating having such a shape, the amount of diffracted light differs between the + 1st order and the -1st order. This is preferable in the case where one light detector is provided on either the left or right to detect the reflected light from the optical recording medium, because the light amount can be effectively used.

【0023】本発明で用いる基板は、ガラス等の透明基
板である。この透明基板はそのまま用いて基板表面をエ
ッチングして凸部を形成することもできるが、この図の
例のように、透明基板上に、SiON、SiO2 等の透
明材料膜を、反応性スパッタ法、蒸着法、プラズマCV
D法等によって形成して用いることが好ましい。
The substrate used in the present invention is a transparent substrate such as glass. This transparent substrate may be formed a convex portion of the substrate surface is etched by using as it is, as in the example of this drawing, on a transparent substrate, SiON, a transparent material film such as SiO 2, reactive sputtering Method, evaporation method, plasma CV
It is preferable to form and use by D method or the like.

【0024】液晶等の光学的異方性材料を充填して用い
ない場合には、透明材料膜と基板との界面での反射を低
減するために、この透明材料膜の屈折率は、基板の屈折
率とほぼ一致させることが好ましい。
When an optically anisotropic material such as a liquid crystal is filled and not used, the refractive index of the transparent material film is adjusted to reduce the reflection at the interface between the transparent material film and the substrate. It is preferable to make the refractive index substantially equal to the refractive index.

【0025】液晶等の光学的異方性材料を充填して用い
る場合には、透明材料膜の屈折率は液晶等の常光屈折率
又は異常光屈折率とほぼ等しくすることが好ましい。さ
らに、基板との界面での反射を低減するために、この透
明材料膜の屈折率を、基板の屈折率とほぼ一致させるこ
とが好ましい。
When an optically anisotropic material such as liquid crystal is filled and used, the refractive index of the transparent material film is preferably substantially equal to the ordinary or extraordinary refractive index of liquid crystal or the like. Further, in order to reduce the reflection at the interface with the substrate, it is preferable that the refractive index of the transparent material film is made substantially equal to the refractive index of the substrate.

【0026】この透明材料膜2の上にフォトレジストを
スピンコート法等により積層し、そのフォトレジスト
に、フォトマスクを通して光を照射する。この際に、光
を斜め方向から照射し、その後現像することにより、残
存したフォトレジスト3のストライプの短手方向(図の
左右方向)の凸部の左右の側面は異なる傾斜角となり、
左右が非対称になる。この例では、左側の側面はほぼ垂
直、右側の側面は傾斜面にされている。
A photoresist is laminated on the transparent material film 2 by spin coating or the like, and the photoresist is irradiated with light through a photomask. At this time, by irradiating the light in an oblique direction and then developing, the left and right side surfaces of the protrusion of the remaining photoresist 3 in the short direction (left and right direction in the drawing) of the stripe have different inclination angles,
Left and right become asymmetric. In this example, the left side is substantially vertical, and the right side is inclined.

【0027】この斜め方向からの光照射は、斜め方向か
ら光を照射して行う。この斜めからの照射の角度は、所
望のパターンが得られるように実験的に定めればよい
が、おおむね垂直方向から10〜60°程度傾斜するよ
うにすればよい。具体的には、たとえば、図3に示すよ
うな方法で行えばよい。図3は、斜め方向からの光照射
工程を示す側面図である。
The light irradiation from the oblique direction is performed by irradiating light from the oblique direction. The angle of the oblique irradiation may be determined experimentally so as to obtain a desired pattern, but may be approximately 10 to 60 ° inclined from the vertical direction. Specifically, for example, the method may be performed as shown in FIG. FIG. 3 is a side view showing a light irradiation step from an oblique direction.

【0028】通常の露光は垂直方向から行うので、光源
としては同じ構造の露光装置を用いて、その光路中にプ
リズムを挿入して、光路を斜め方向に折り曲げている。
図3において、21は基板、22は透明材料膜、23は
フォトレジスト、25はマスク、26はプリズム、27
Aは垂直方向の入射光、27Bはプリズム内の光、27
Cはプリズム通過後の光の進行方向を示しす。
Since normal exposure is performed from the vertical direction, an exposure apparatus having the same structure as a light source is used, a prism is inserted into the optical path, and the optical path is bent obliquely.
In FIG. 3, 21 is a substrate, 22 is a transparent material film, 23 is a photoresist, 25 is a mask, 26 is a prism, 27
A is the incident light in the vertical direction, 27B is the light in the prism, 27
C indicates the traveling direction of light after passing through the prism.

【0029】斜め方向からの露光は、これは代表的な露
光方法であるが、これに限定されない。たとえば、複数
のプリズムが並んで設けられているプリズムアレー構造
や、鏡の反射を用いた方法等公知の光学部品を用いて斜
め方向から光を照射するようにすればよい。
Exposure from oblique directions is a typical exposure method, but is not limited to this. For example, light may be emitted from a diagonal direction using a known optical component such as a prism array structure in which a plurality of prisms are provided side by side or a method using mirror reflection.

【0030】次いで、この非対称のフォトレジストを用
いて、基板自体又は透明材料膜のドライエッチングを行
う。このドライエッチングは、基板自体又は透明材料膜
をエッチングできるものを用いてエッチングすればよ
い。この際、透明材料膜はエッチングするが基板はエッ
チングしにくい材料を用いることにより、エッチングを
制御しやすくなり、エッチング深さ等の点で好ましい。
Next, dry etching of the substrate itself or the transparent material film is performed using the asymmetric photoresist. This dry etching may be performed using a material which can etch the substrate itself or a transparent material film. At this time, by using a material that etches the transparent material film but hardly etches the substrate, the etching can be easily controlled, which is preferable in terms of the etching depth and the like.

【0031】これにより、図1(B)で示すような非対
称な透明材料膜4の凸部を形成できる。この透明材料膜
4の凸部は、フォトレジスト3の形状にほぼ似た形状に
なる。この例においては、透明材料膜4の凸部の左側の
側面はほぼ垂直、右側の側面は傾斜面にされている。
As a result, an asymmetric convex portion of the transparent material film 4 as shown in FIG. 1B can be formed. The convex portion of the transparent material film 4 has a shape substantially similar to the shape of the photoresist 3. In this example, the left side of the projection of the transparent material film 4 is substantially vertical, and the right side is inclined.

【0032】この非対称な凸部の格子を設けた基板は、
それ自体として形成した光学回折格子として使用でき
る。また、この非対称な凸部の格子を設けた基板と他の
基板との間に液晶等の光学的異方性材料を充填して光学
回折格子として使用できる。また、上記の例では透明材
料膜を設けた基板を用いた例を中心にして説明したが、
基板自体をエッチングして凸部を形成した基板を用いる
こともできる。
The substrate provided with the asymmetrical convex lattice is
It can be used as an optical diffraction grating formed as such. An optically anisotropic material such as a liquid crystal can be filled between a substrate provided with the asymmetrical convex lattice and another substrate to be used as an optical diffraction grating. Also, in the above example, an example using a substrate provided with a transparent material film has been mainly described,
A substrate in which a projection is formed by etching the substrate itself can also be used.

【0033】図4は、液晶を用いた光学回折格子の例の
断面図である。図4において、31は基板、34は非対
称な形状の凸部の透明材料膜、35は他の基板、36は
2枚の基板の周囲を封止するシール材、37は液晶を示
す。
FIG. 4 is a sectional view of an example of an optical diffraction grating using a liquid crystal. In FIG. 4, 31 is a substrate, 34 is a transparent material film having an asymmetrical convex portion, 35 is another substrate, 36 is a sealing material for sealing the periphery of two substrates, and 37 is a liquid crystal.

【0034】この液晶を用いた場合、基板を配向処理し
て液晶を特定方向に配列させておくことが有利である。
たとえば、液晶分子の長手方向が図4の前後方向になる
ように配向処理した基板を用い、液晶の屈折率のいずれ
かとこの透明材料膜の屈折率とが一致するようにする
と、高い回折効率が得られ好ましい。
When this liquid crystal is used, it is advantageous to align the substrate and align the liquid crystal in a specific direction.
For example, when a substrate that has been subjected to an alignment treatment so that the longitudinal direction of the liquid crystal molecules is in the front-rear direction of FIG. 4 is used and one of the refractive indices of the liquid crystal and the refractive index of the transparent material film match, a high diffraction efficiency is obtained. Obtained and preferred.

【0035】この液晶の配向処理は、SiO等の無機膜
の斜め蒸着をしたり、ポリイミド、ポリアミド、SiO
2 等の膜を形成してラビング処理したりすればよい。さ
らに、必要に応じて電極を形成して、一部の液晶を電圧
の印加により配向状態を変えて光学回折格子としての機
能を可変にしたりしてもよい。具体的には、電圧印加状
態により、光学回折格子の回折能力を可変したり、開口
率を変えたり、旋光性を変えたり、焦点距離を変えたり
できるようにしてもよい。
This liquid crystal alignment treatment is performed by oblique deposition of an inorganic film such as SiO, polyimide, polyamide, SiO 2 or the like.
A rubbing treatment may be performed by forming a second- class film. Further, an electrode may be formed as necessary, and the function of the optical diffraction grating may be changed by changing the alignment state of some liquid crystals by applying a voltage. More specifically, the diffraction ability of the optical diffraction grating, the aperture ratio, the optical rotation, and the focal length may be changed depending on the voltage application state.

【0036】この非対称な凸部の格子を形成した光学回
折格子は、光ヘッド装置に好適に用いられる。光ヘッド
装置において、この光学回折格子は光源と光学記録媒体
との間に配置して用いられる。具体的な構成としては、
図5に示す構成がある。図5において、41はレーザダ
イオード等の光源、42は光学回折格子、43は1/4
λ板のような位相差板、44は対物レンズ、45は光学
記録媒体、46は光検出器、47A、47Bは回折光を
示す。
The optical diffraction grating having the asymmetrical convex grating is suitably used for an optical head device. In an optical head device, this optical diffraction grating is used by being arranged between a light source and an optical recording medium. As a specific configuration,
There is a configuration shown in FIG. In FIG. 5, 41 is a light source such as a laser diode, 42 is an optical diffraction grating, and 43 is 1/4.
A retardation plate such as a λ plate, 44 is an objective lens, 45 is an optical recording medium, 46 is a photodetector, and 47A and 47B are diffracted lights.

【0037】この例では、非対称の光学回折格子で回折
光47Aよりも47Bの方が光量が多くなるので、回折
光47B側にのみ光検出器が設けられている。片側のみ
に光検出器が設けられているので、その側のみ光量が多
くなればよい。このため、光源41の光量は少なくて済
むので、光ヘッド装置の小型化、低消費電力化というメ
リットを有する。
In this example, since the quantity of light of the diffracted light 47A is larger than that of the diffracted light 47A due to the asymmetric optical diffraction grating, the photodetector is provided only on the diffracted light 47B side. Since the photodetector is provided only on one side, the light amount only needs to be large on that side. For this reason, since the light amount of the light source 41 is small, there is an advantage that the optical head device is reduced in size and power consumption is reduced.

【0038】なお、この光ヘッド装置の例は、代表例を
示すにすぎず、これに限定されない。たとえば、これに
プリズムや鏡を付加して、光路を曲げたり、対物レンズ
を交換可能にしたり液晶レンズ等で焦点距離を変えたり
して異なる焦点位置の光学記録媒体を読み書きできるよ
うにしたりしてもよい。また、光のビームを3ビームに
分けるために別個の回折格子を付加してもよい。
The example of the optical head device is only a typical example, and the present invention is not limited to this example. For example, by adding a prism or mirror to this, the optical path can be bent, the objective lens can be exchanged, the focal length can be changed with a liquid crystal lens, etc., so that optical recording media with different focal positions can be read and written. Is also good. Further, a separate diffraction grating may be added to divide the light beam into three beams.

【0039】[0039]

【実施例】【Example】

[実施例1]屈折率1.52のガラス基板上に、透明材
料膜として屈折率1.44のSiO2 膜を600nmの
厚さに真空蒸着法により成膜した。このSiO2 膜上に
スピンコートにより2μm厚のポジ型フォトレジストを
塗布し、プリベークを実施した。その後、通常の密着/
近接露光装置を使用し、4μmピッチのマスクパターン
を用いて密着露光を実施した。
In Example 1 on a glass substrate having a refractive index of 1.52, it was formed by vacuum deposition of SiO 2 film having a refractive index of 1.44 to a thickness of 600nm as a transparent material film. A 2 μm-thick positive photoresist was applied on the SiO 2 film by spin coating, and prebaked. After that, normal adhesion /
Using a proximity exposure apparatus, contact exposure was performed using a mask pattern of 4 μm pitch.

【0040】その際、フォトマスク上に、屈折率約1.
5のアクリル樹脂製直角プリズムをマスク上に配置する
ことにより、上方より垂直に入射する紫外光を約25°
の入射角でフォトレジストに露光した。この後、現像及
びポストベークを実施し、フォトレジストの立ち上がり
角が、約85°及び約60°の非対称形状のフォトレジ
ストのパターンを作製した。
At this time, a refractive index of about 1.
By placing the right angle prism made of acrylic resin of No. 5 on the mask, the ultraviolet light vertically incident from above by about 25 °
The photoresist was exposed at an incident angle of. Thereafter, development and post-baking were performed to form photoresist patterns having asymmetric shapes in which the rising angles of the photoresist were about 85 ° and about 60 °.

【0041】この後、C26 及びO2 の混合ガスを用
いたリアクティブイオンエッチング(RIE)法により
ドライエッチングを行い、フォトレジストの非対称形状
をSiO2 膜にも形成されるようにした。その後、残存
するフォトレジストを除去し、非対称のSiO2 膜の凸
部を有する光学回折格子を実現した。
Thereafter, dry etching is performed by reactive ion etching (RIE) using a mixed gas of C 2 F 6 and O 2 so that an asymmetric shape of the photoresist is formed on the SiO 2 film. . Thereafter, the remaining photoresist was removed to realize an optical diffraction grating having an asymmetric SiO 2 film convex portion.

【0042】得られた光学回折格子は、波長650nm
の半導体レーザ光に対し、+1次約12%、−1次約1
%の非対称比約10、透過率約50%の特性を示した。
The obtained optical diffraction grating has a wavelength of 650 nm.
About 12% for the + 1st order and about 1 for the -1st order
% Asymmetry ratio of about 10 and transmittance of about 50%.

【0043】[実施例2]屈折率1.52のガラス基板
上に、屈折率1.52のSiON膜を1.8μmの厚さ
にプラズマCVD(p−CVD)法により成膜した。S
iON膜上にスピンコートにより2.5μm厚のポジ型
フォトレジストを塗布し、プリベークを実施した。その
後、4μmピッチのマスクパターンを用いて密着露光を
実施した。
Example 2 An SiON film having a refractive index of 1.52 was formed to a thickness of 1.8 μm by a plasma CVD (p-CVD) method on a glass substrate having a refractive index of 1.52. S
A 2.5 μm-thick positive photoresist was applied on the iON film by spin coating, and prebaked. Thereafter, contact exposure was performed using a mask pattern of 4 μm pitch.

【0044】その際、フォトマスク上に、屈折率1.8
5のガラス直角プリズムをマスク上に配置することによ
り、上方より垂直に入射する紫外光を約60°の入射角
でフォトレジストに露光した。この後、現像及びポスト
ベークを実施し、フォトレジストの立ち上がり角が、約
85°及び約60°の非対称形状のフォトレジストのパ
ターンを作製した。
At this time, a refractive index of 1.8 was formed on the photomask.
By arranging the glass right-angle prism No. 5 on the mask, the photoresist was exposed to ultraviolet light vertically incident from above at an incident angle of about 60 °. Thereafter, development and post-baking were performed to form photoresist patterns having asymmetric shapes in which the rising angles of the photoresist were about 85 ° and about 60 °.

【0045】この後、C26 及びO2 の混合ガスを用
いたRIE法によりドライエッチングを行い、フォトレ
ジストの非対称形状をSiON膜にも形成されるように
した。残存するフォトレジストを除去した基板及び対向
ガラス基板に反射防止膜をコーティングした後、ポリイ
ミドを塗布焼成し配向膜を形成した。
Thereafter, dry etching was performed by RIE using a mixed gas of C 2 F 6 and O 2 so that an asymmetric shape of the photoresist was formed on the SiON film. After coating the anti-reflection film on the substrate from which the remaining photoresist was removed and the opposite glass substrate, polyimide was applied and baked to form an alignment film.

【0046】ラビング配向処理の後、これらの基板を8
μmのスペーサを含むシール材で周辺を熱圧着し、常光
屈折率1.52、異常光屈折率1.77のネマチック液
晶を充填し注入口を封止した。
After the rubbing alignment treatment, these substrates were
The periphery was thermocompression-bonded with a sealing material including a μm spacer, and a nematic liquid crystal having an ordinary light refractive index of 1.52 and an extraordinary light refractive index of 1.77 was filled and the injection port was sealed.

【0047】作製した偏光依存性回折格子は、波長65
0nmの半導体レーザ光に対し、S偏光の半導体レーザ
光に対し+1次約50%、−1次約15%の非対称比約
3.3の特性を示した。またP偏光の半導体レーザ光に
対しては、95%の透過率を示した。
The fabricated polarization dependent diffraction grating has a wavelength of 65
With respect to the semiconductor laser light of 0 nm, the characteristics showed an asymmetry ratio of about 3.3, that is, about + 50% of the + 1st order and about 15% of the −1st order with respect to the S-polarized semiconductor laser light. In addition, it showed a transmittance of 95% with respect to the P-polarized semiconductor laser light.

【0048】この光学回折格子を図5に示す光ヘッド装
置に組み込んで使用したところ、光源からの往路の光は
光学回折格子を高効率でそのまま通過し、復路の光は光
学回折格子で回折され、光検出器のある方への光量が多
い回折光が得られた。
When this optical diffraction grating is used by being incorporated in the optical head device shown in FIG. 5, light on the outward path from the light source passes through the optical diffraction grating with high efficiency as it is, and light on the return path is diffracted by the optical diffraction grating. In this case, diffracted light having a large amount of light toward one of the photodetectors was obtained.

【0049】[0049]

【発明の効果】本発明によれば、非対称な構造を有する
光学回折格子を生産性良く製造できる。特に、露光の光
の方向を斜めにするのみでよいので、既存の製造装置を
容易に流用して製造できる。このため、プリズムの付加
というような既存の製造ラインのわずかな変更で容易に
製造でき、従来型の対称な構造を有する光学回折格子と
の併産も簡単なので、生産性がきわめてよい。
According to the present invention, an optical diffraction grating having an asymmetric structure can be manufactured with high productivity. In particular, since it is only necessary to diagonally expose light, the existing manufacturing apparatus can be easily diverted to manufacture. Therefore, the production can be easily performed with a slight change of the existing production line such as addition of a prism, and the co-production with the conventional optical diffraction grating having a symmetric structure is easy, so that the productivity is extremely high.

【0050】この非対称な構造を有する光学回折格子
は、複数の回折光のうち、1つの回折光の利用効率を高
くできるので、光ヘッド装置の小型化、低消費電力化に
有用である。本発明は、本発明の効果を損しない範囲内
で、種々の応用が可能である。
The optical diffraction grating having this asymmetric structure can increase the efficiency of using one of a plurality of diffracted lights, and is useful for reducing the size and power consumption of an optical head device. The present invention can be applied to various applications within a range that does not impair the effects of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学回折格子の製造工程を示す断面
図。
FIG. 1 is a cross-sectional view illustrating a manufacturing process of an optical diffraction grating of the present invention.

【図2】従来の対称な構造を有する光学回折格子の製造
工程を示す断面図。
FIG. 2 is a cross-sectional view showing a manufacturing process of a conventional optical diffraction grating having a symmetric structure.

【図3】本発明の斜め方向からの光照射工程を示す側面
図。
FIG. 3 is a side view showing a light irradiation step from an oblique direction according to the present invention.

【図4】本発明の液晶を用いた光学回折格子の例の断面
図。
FIG. 4 is a cross-sectional view of an example of an optical diffraction grating using the liquid crystal of the present invention.

【図5】本発明の光学回折格子を用いた光ヘッド装置の
代表的な例の模式図。
FIG. 5 is a schematic view of a typical example of an optical head device using the optical diffraction grating of the present invention.

【符号の説明】[Explanation of symbols]

1:基板 2:透明材料膜 3:フォトレジスト 4:透明材料膜 1: substrate 2: transparent material film 3: photoresist 4: transparent material film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基板の表面に格子状の凸部が形成された光
学回折格子の製造方法において、基板の表面にフォトレ
ジストを形成し、このフォトレジストを斜め露光し、現
像することにより残存したフォトレジストの格子の短手
方向の側面が非対称になるようにし、次いでドライエッ
チングすることにより、エッチングにより残存した凸部
の格子の短手方向の側面が非対称になるようにしたこと
を特徴とする光学回折格子の製造方法。
In a method of manufacturing an optical diffraction grating having a lattice-like convex portion formed on a surface of a substrate, a photoresist is formed on a surface of the substrate, and the photoresist is obliquely exposed and developed to be left. The lateral sides of the lattice of the photoresist are made asymmetrical, and then dry etching is performed so that the lateral sides of the lattice of the protrusions left by the etching are made asymmetrical. Manufacturing method of optical diffraction grating.
【請求項2】基板として透明材料膜を設けた基板を用
い、エッチングにより残存した透明材料膜の凸部の格子
の短手方向の側面が非対称になるようにしたことを特徴
とする請求項1の光学回折格子の製造方法。
2. The method according to claim 1, wherein a substrate provided with a transparent material film is used as the substrate, and the lateral sides of the lattice of the projections of the transparent material film remaining by etching are asymmetrical. Of manufacturing an optical diffraction grating.
【請求項3】凸部の側面が非対称になるよう形成された
基板を第1の基板とし、この第1の基板と第2の基板と
の間に光学的異方性材料を充填したことを特徴とする請
求項1又は2の光学回折格子の製造方法。
3. The method according to claim 1, wherein the first substrate is a substrate formed such that the side surfaces of the projections are asymmetrical, and an optically anisotropic material is filled between the first substrate and the second substrate. The method for manufacturing an optical diffraction grating according to claim 1 or 2, wherein
【請求項4】請求項1、2又は3の製造方法により製造
された光学回折格子を用いたことを特徴とする光ヘッド
装置。
4. An optical head device using an optical diffraction grating manufactured by the method according to claim 1, 2 or 3.
【請求項5】光源から出射した光が光学回折格子、位相
差板、対物レンズを順に通過して光学記録媒体に照射さ
れ、その反射光が対物レンズ、位相差板、光学回折格子
を順に通過し、この反射光が光学回折格子で回折されて
光源とは異なる位置にある光検出器に到達するようにさ
れていることを特徴とする請求項4の光ヘッド装置。
5. A light emitted from a light source passes through an optical diffraction grating, a phase difference plate, and an objective lens in order, and is applied to an optical recording medium. The reflected light passes through the objective lens, the phase difference plate, and the optical diffraction grating in order. 5. The optical head device according to claim 4, wherein the reflected light is diffracted by an optical diffraction grating and reaches a photodetector located at a position different from a light source.
JP15722296A 1996-06-18 1996-06-18 Manufacturing method of optical diffraction grating and optical head device using the same Expired - Fee Related JP3994450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15722296A JP3994450B2 (en) 1996-06-18 1996-06-18 Manufacturing method of optical diffraction grating and optical head device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15722296A JP3994450B2 (en) 1996-06-18 1996-06-18 Manufacturing method of optical diffraction grating and optical head device using the same

Publications (2)

Publication Number Publication Date
JPH1010307A true JPH1010307A (en) 1998-01-16
JP3994450B2 JP3994450B2 (en) 2007-10-17

Family

ID=15644901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15722296A Expired - Fee Related JP3994450B2 (en) 1996-06-18 1996-06-18 Manufacturing method of optical diffraction grating and optical head device using the same

Country Status (1)

Country Link
JP (1) JP3994450B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001134204A (en) * 1999-11-09 2001-05-18 Stanley Electric Co Ltd Reflection type display and its manufacturing method
US6899936B2 (en) 2001-08-30 2005-05-31 Sharp Kabushiki Kaisha Stamper, manufacturing method therefor and optical device manufactured therewith
JP2005353207A (en) * 2004-06-11 2005-12-22 Ricoh Co Ltd Polarizing hologram element, optical pickup device, and manufacturing method for them
WO2007116745A1 (en) * 2006-03-30 2007-10-18 Brother Kogyo Kabushiki Kaisha Transmission diffraction element and eye ball projection display
JP4636573B2 (en) * 2000-10-31 2011-02-23 オプトレックス株式会社 Method for forming light diffusion layer of reflective liquid crystal display device
JP2013149682A (en) * 2012-01-17 2013-08-01 Toyota Motor Corp Semiconductor device and method of manufacturing the same
CN106772734A (en) * 2017-01-03 2017-05-31 中国科学院上海光学精密机械研究所 The asymmetric pattern reflection type optical grid of broadband high-diffraction efficiency

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001134204A (en) * 1999-11-09 2001-05-18 Stanley Electric Co Ltd Reflection type display and its manufacturing method
JP4636573B2 (en) * 2000-10-31 2011-02-23 オプトレックス株式会社 Method for forming light diffusion layer of reflective liquid crystal display device
US6899936B2 (en) 2001-08-30 2005-05-31 Sharp Kabushiki Kaisha Stamper, manufacturing method therefor and optical device manufactured therewith
JP2005353207A (en) * 2004-06-11 2005-12-22 Ricoh Co Ltd Polarizing hologram element, optical pickup device, and manufacturing method for them
WO2007116745A1 (en) * 2006-03-30 2007-10-18 Brother Kogyo Kabushiki Kaisha Transmission diffraction element and eye ball projection display
JP2013149682A (en) * 2012-01-17 2013-08-01 Toyota Motor Corp Semiconductor device and method of manufacturing the same
CN106772734A (en) * 2017-01-03 2017-05-31 中国科学院上海光学精密机械研究所 The asymmetric pattern reflection type optical grid of broadband high-diffraction efficiency

Also Published As

Publication number Publication date
JP3994450B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
US6271966B1 (en) Optical head device including an optically anisotropic diffraction grating and process for its production
US8300512B2 (en) Liquid crystal element, optical head device, and variable optical modulation element
JPH09304748A (en) Liquid crystal lens and optical head device using the same
WO1997027583A1 (en) Optical head, method of manufacturing the same, and diffraction element suitable therefor
JP4792679B2 (en) Isolator and variable voltage attenuator
JP3624561B2 (en) Optical modulation element and optical head device
JP3994450B2 (en) Manufacturing method of optical diffraction grating and optical head device using the same
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3598703B2 (en) Optical head device and manufacturing method thereof
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP3885251B2 (en) Optical anisotropic diffraction grating, driving method thereof, and optical head device using the same
JP4999485B2 (en) Beam splitting element and beam splitting method
JPH1069673A (en) Optical head device and composite anisotropic diffraction element using therefor
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JP3528381B2 (en) Optical head device
JP3713778B2 (en) Optical head device
JPH11125710A (en) Manufacture of diffraction element
JPH09274188A (en) Optical modulation element and optical head device
JP3601182B2 (en) Optical head device and manufacturing method thereof
JP3550873B2 (en) Optical head device
JPH10188321A (en) Polarizing diffraction grating and optical head device using the same
JPH10188332A (en) Optical head device
JPH09185837A (en) Optical head device
JPH1021576A (en) Optical head device
JPH10241191A (en) Optical head and driving method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees