JP3994450B2 - Manufacturing method of optical diffraction grating and optical head device using the same - Google Patents

Manufacturing method of optical diffraction grating and optical head device using the same Download PDF

Info

Publication number
JP3994450B2
JP3994450B2 JP15722296A JP15722296A JP3994450B2 JP 3994450 B2 JP3994450 B2 JP 3994450B2 JP 15722296 A JP15722296 A JP 15722296A JP 15722296 A JP15722296 A JP 15722296A JP 3994450 B2 JP3994450 B2 JP 3994450B2
Authority
JP
Japan
Prior art keywords
substrate
diffraction grating
optical
light
photoresist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15722296A
Other languages
Japanese (ja)
Other versions
JPH1010307A (en
Inventor
弘昌 佐藤
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP15722296A priority Critical patent/JP3994450B2/en
Publication of JPH1010307A publication Critical patent/JPH1010307A/en
Application granted granted Critical
Publication of JP3994450B2 publication Critical patent/JP3994450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CD(コンパクト・ディスク)、CD−ROM、ビデオディスク等の光ディスク及び光磁気ディスク等の光学記録媒体に光学的情報を書き込んだり、光学的情報を読み取るための光ヘッド装置に好適な光学回折格子の製造方法及びそれを用いた光ヘッド装置に関する。
【0002】
【従来の技術】
従来、光ディスク及び光磁気ディスク等の光学記録媒体に光学的情報を書き込んだり、光学的情報を読み取る光ヘッド装置としては、光学記録媒体の記録面から反射された信号光を検出部へ導光(ビームスプリット)する光学部品としてプリズム式ビームスプリッタを用いたものと、回折格子又はホログラム素子を用いたものとが知られていた。
【0003】
この光ヘッド装置用の回折格子又はホログラム素子は、ガラスやプラスチック基板上に、矩形の断面を有する矩形格子(レリーフ型)をドライエッチイング法又は射出成形法よって形成し、これによって光を回折しビームスプリット機能を付与していた。
【0004】
また、この光の利用効率が10%程度の等方性回折格子よりも光の利用効率を上げようとした場合、偏光を利用することが考えられる。偏光を利用しようとすると、プリズム式ビームスプリッタにλ/4板を組み合わせて、往路(光源から光学記録媒体へ向かう方向)及び復路(光学記録媒体から光検出器へ向かう方向)の効率を上げて往復効率を上げる方法があった。
【0005】
しかし、プリズム式偏光ビームスプリッタは高価であり、他の方式が模索されていた。一つの方式としてLiNbO等の複屈折結晶の平板を用い、表面に異方性回折格子を形成し偏光選択性をもたせる方法が知られている。しかし、複屈折結晶自体が製造が困難であり高価であり、民生分野への適用は困難であった。
【0006】
等方性回折格子は、前述のように、利用効率が往路で50%程度、復路で20%程度であるため、往復での利用効率が10%程度しか得られなかった。
【0007】
さらに、これらのものは単に効率が低いだけでなく、格子が左右対称形状を持つ回折格子であるため、+1次光の回折効率と−1次光の回折効率がほぼ等しかった。光検出器が複数設けられて両方で検出する場合には、両方の回折効率がほぼ等しいことは有利であるが、1個の光検出器の場合には必ずしも有利ではない。
【0008】
すなわち、光ヘッドの小型化のために光検出器を1個とすることが提案されており、この場合には2方向に同じ程度の光量で光が回折されることは、光の利用効率からみて有利ではない。2方向に回折された光のうち、光検出器を設けた側に回折する光の光量を増加させることが有利となる。このため、一方の回折光を他方よりも多くすることが望まれていた。
【0009】
【発明が解決しようとする課題】
このためには、回折格子の凹凸の短手方向が左右非対称な回折格子を使用する必要がある。しかし、この非対称な回折格子はもともとかなり微細なピッチの回折格子ということもあり、きわめて製造が難しいものであった。このため、生産性が高い非対称な回折格子の製造方法が望まれていた。
【0010】
本発明は、このような課題を解消し、複数の回折光のうち、1方の回折光の利用効率の高い光学回折格子を容易に製造する製造方法の提供を目的とする。
【0011】
【課題を解決するための手段】
本発明は、基板の表面に格子状の凸部が形成された光学回折格子の製造方法において、基板の表面にフォトレジストを形成し、このフォトレジストを、フォトレジストが形成された側から所望のパターンが得られるように定めた照射角度でフォトマスクを通して斜め露光し、現像することにより残存したフォトレジストの格子の短手方向の側面が非対称になるようにし、次いでドライエッチングすることにより、エッチングにより残存した凸部の格子の短手方向の側面が非対称になるようにしたことを特徴とする光学回折格子の製造方法を提供する。
【0012】
また、基板として透明材料膜を設けた基板を用い、エッチングにより残存した透明材料膜の凸部の格子の短手方向の側面が非対称になるようにしたことを特徴とする上記光学回折格子の製造方法、及び、凸部の側面が非対称になるよう形成された基板を第1の基板とし、この第1の基板と第2の基板との間に光学的異方性材料を充填したことを特徴とする上記光学回折格子の製造方法を提供する。
【0014】
本発明で製造される光学回折格子は、光源からの光をこの光学回折格子を通して光学記録媒体上に照射することにより、情報の書き込み及び/又は情報の読み取りを行う光ヘッド装置に好適に用いられる。
【0015】
本発明では、レジストパターンをフォトマスクで露光するときに、斜め方向から露光することによって、透明基板の表面に左右非対称な格子状(ストライプ状)の凸部を形成する。さらに、このようにして形成された凸部を有する基板を用いて2枚の基板間に光学異方性を有する液晶を充填して使用する。これにより、片側回折効率の高い光学回折格子を容易に製造できる。
【0016】
本発明では、基板自体を直接エッチングして凸部を形成して用いてもよいが、エッチングの深さ、分布、終点検出の点からみて、基板表面に透明材料膜を形成して用いることが好ましい。
【0017】
【発明の実施の形態】
本発明では、基板自体の表面又は透明材料膜を設けた基板の表面にフォトレジストを形成し、このフォトレジストを、フォトレジストが形成された側から所望のパターンが得られるように定めた照射角度でフォトマスクを通して斜め露光し、現像することにより残存したフォトレジストの格子の短手方向の側面が非対称になるようにし、次いでドライエッチングすることにより、エッチングにより残存した凸部の格子の短手方向の側面が非対称になるようにする。
【0018】
図2は、従来の光学回折格子の製造する主要工程を示す。(A)はフォトレジストを露光現像した状態を示す断面図であり、(B)はそれを用いて透明材料膜をドライエッチングした状態を示す断面図である。11は基板、12は透明材料膜、13はフォトレジスト、14はエッチング後の透明材料膜を示す。
【0019】
このように通常の露光、現像、エッチングを行うと、透明材料膜は格子のストライプの短手方向(図の左右方向)の凸部の左右の側面はほぼ同じ傾斜角となり、左右が対称になる。このような形状の光学回折格子は、回折光の光量が+1次と−1次とでほぼ等しくなる。これは左右に複数の光検出器を設けて光学記録媒体からの反射光を検出する場合には好適である。
【0020】
しかし、一方にしか光検出器を設けない場合には、光検出器を設ける側にのみ多くの光が回折する方が有利である。また、両方に光検出器を設けるが、その目的が異なり、一方の光検出器への光量の方が多く要求される場合も同様である。このため、本発明の製造方法で製造された光学回折格子を用いる光ヘッド装置では光検出器が1個のみのものに限定されない。
【0021】
図1は、本発明の光学回折格子を製造する主要工程を示し、基板表面に透明材料膜を形成した例を示す。(A)はフォトレジストを露光現像した状態を示す断面図であり、(B)はそれを用いて透明材料膜をドライエッチングした状態を示す断面図である。1は基板、2は透明材料膜、3はフォトレジスト、4はエッチング後の透明材料膜を示す。
【0022】
このように通常の露光、現像、エッチングを行うと、透明材料膜は格子のストライプの短手方向(図の左右方向)の凸部の左右の側面は異なる傾斜角となり、左右が非対称になる。このような形状の光学回折格子は、回折光の光量が+1次と−1次とで異なることになる。これは左右のいずれかに1個の光検出器を設けて光学記録媒体からの反射光を検出する場合には、光量を有効利用できるので好適である。
【0023】
本発明で用いる基板は、ガラス等の透明基板である。この透明基板はそのまま用いて基板表面をエッチングして凸部を形成することもできるが、この図の例のように、透明基板上に、SiON、SiO等の透明材料膜を、反応性スパッタ法、蒸着法、プラズマCVD法等によって形成して用いることが好ましい。
【0024】
液晶等の光学的異方性材料を充填して用いない場合には、透明材料膜と基板との界面での反射を低減するために、この透明材料膜の屈折率は、基板の屈折率とほぼ一致させることが好ましい。
【0025】
液晶等の光学的異方性材料を充填して用いる場合には、透明材料膜の屈折率は液晶等の常光屈折率又は異常光屈折率とほぼ等しくすることが好ましい。さらに、基板との界面での反射を低減するために、この透明材料膜の屈折率を、基板の屈折率とほぼ一致させることが好ましい。
【0026】
この透明材料膜2の上にフォトレジストをスピンコート法等により積層し、そのフォトレジストに、フォトマスクを通して光を照射する。この際に、光を斜め方向から照射し、その後現像することにより、残存したフォトレジスト3のストライプの短手方向(図の左右方向)の凸部の左右の側面は異なる傾斜角となり、左右が非対称になる。この例では、左側の側面はほぼ垂直、右側の側面は傾斜面にされている。
【0027】
この斜め方向からの光照射は、斜め方向から光を照射して行う。この斜めからの照射の角度は、所望のパターンが得られるように実験的に定めればよいが、おおむね垂直方向から10〜60°程度傾斜するようにすればよい。具体的には、たとえば、図3に示すような方法で行えばよい。図3は、斜め方向からの光照射工程を示す側面図である。
【0028】
通常の露光は垂直方向から行うので、光源としては同じ構造の露光装置を用いて、その光路中にプリズムを挿入して、光路を斜め方向に折り曲げている。図3において、21は基板、22は透明材料膜、23はフォトレジスト、25はマスク、26はプリズム、27Aは垂直方向の入射光、27Bはプリズム内の光、27Cはプリズム通過後の光の進行方向を示す
【0029】
斜め方向からの露光は、これは代表的な露光方法であるが、これに限定されない。たとえば、複数のプリズムが並んで設けられているプリズムアレー構造や、鏡の反射を用いた方法等公知の光学部品を用いて斜め方向から光を照射するようにすればよい。
【0030】
次いで、この非対称のフォトレジストを用いて、基板自体又は透明材料膜のドライエッチングを行う。このドライエッチングは、基板自体又は透明材料膜をエッチングできるものを用いてエッチングすればよい。この際、透明材料膜はエッチングするが基板はエッチングしにくい材料を用いることにより、エッチングを制御しやすくなり、エッチング深さ等の点で好ましい。
【0031】
これにより、図1(B)で示すような非対称な透明材料膜4の凸部を形成できる。この透明材料膜4の凸部は、フォトレジスト3の形状にほぼ似た形状になる。この例においては、透明材料膜4の凸部の左側の側面はほぼ垂直、右側の側面は傾斜面にされている。
【0032】
この非対称な凸部の格子を設けた基板は、それ自体として形成した光学回折格子として使用できる。また、この非対称な凸部の格子を設けた基板と他の基板との間に液晶等の光学的異方性材料を充填して光学回折格子として使用できる。また、上記の例では透明材料膜を設けた基板を用いた例を中心にして説明したが、基板自体をエッチングして凸部を形成した基板を用いることもできる。
【0033】
図4は、液晶を用いた光学回折格子の例の断面図である。図4において、31は基板、34は非対称な形状の凸部の透明材料膜、35は他の基板、36は2枚の基板の周囲を封止するシール材、37は液晶を示す。
【0034】
この液晶を用いた場合、基板を配向処理して液晶を特定方向に配列させておくことが有利である。たとえば、液晶分子の長手方向が図4の前後方向(紙面に垂直方向)になるように配向処理した基板を用い、液晶の屈折率のいずれかとこの透明材料膜の屈折率とが一致するようにすると、高い回折効率が得られ好ましい。
【0035】
この液晶の配向処理は、SiO等の無機膜の斜め蒸着をしたり、ポリイミド、ポリアミド、SiO等の膜を形成してラビング処理したりすればよい。さらに、必要に応じて電極を形成して、一部の液晶を電圧の印加により配向状態を変えて光学回折格子としての機能を可変にしたりしてもよい。具体的には、電圧印加状態により、光学回折格子の回折能力を変化させたり、開口率を変えたり、旋光性を変えたり、焦点距離を変るようにしてもよい。
【0036】
この非対称な凸部の格子を形成した光学回折格子は、光ヘッド装置に好適に用いられる。光ヘッド装置において、この光学回折格子は光源と光学記録媒体との間に配置して用いられる。具体的な構成としては、図5に示す構成がある。図5において、41はレーザダイオード等の光源、42は光学回折格子、43は1/4λ板のような位相差板、44は対物レンズ、45は光学記録媒体、46は光検出器、47A、47Bは回折光を示す。
【0037】
この例では、非対称の光学回折格子で回折光47Aよりも47Bの方が光量が多くなるので、回折光47B側にのみ光検出器が設けられている。片側のみに光検出器が設けられているので、その側のみ光量が多くなればよい。このため、光源41の光量は少なくて済むので、光ヘッド装置の小型化、低消費電力化というメリットを有する。
【0038】
なお、この光ヘッド装置の例は、代表例を示すにすぎず、これに限定されない。たとえば、これにプリズムや鏡を付加して、光路を曲げたり、対物レンズを交換可能にしたり、液晶レンズ等で焦点距離を変えたりして異なる焦点位置の光学記録媒体を読み書きできるようにしてもよい。また、光のビームを3ビームに分けるために別個の回折格子を付加してもよい。
【0039】
【実施例】
[実施例1]
屈折率1.52のガラス基板上に、透明材料膜として屈折率1.44のSiO膜を600nmの厚さに真空蒸着法により成膜した。このSiO膜上にスピンコートにより2μm厚のポジ型フォトレジストを塗布し、プリベークを実施した。その後、通常の密着/近接露光装置を使用し、4μmピッチのマスクパターンを用いて密着露光を実施した。
【0040】
その際、フォトマスク上に、屈折率約1.5のアクリル樹脂製直角プリズムをマスク上に配置することにより、上方より垂直に入射する紫外光を約25°の入射角でフォトレジストに露光した。この後、現像及びポストベークを実施し、フォトレジストの立ち上がり角が、約85°及び約60°の非対称形状のフォトレジストのパターンを作製した。
【0041】
この後、C及びOの混合ガスを用いたリアクティブイオンエッチング(RIE)法によりドライエッチングを行い、フォトレジストの非対称形状をSiO膜にも形成されるようにした。その後、残存するフォトレジストを除去し、非対称のSiO膜の凸部を有する光学回折格子を実現した。
【0042】
得られた光学回折格子は、波長650nmの半導体レーザ光に対し、+1次約12%、−1次約1%の非対称比約10、透過率約50%の特性を示した。
【0043】
[実施例2]
屈折率1.52のガラス基板上に、屈折率1.52のSiON膜を1.8μmの厚さにプラズマCVD法により成膜した。SiON膜上にスピンコートにより2.5μm厚のポジ型フォトレジストを塗布し、プリベークを実施した。その後、4μmピッチのマスクパターンを用いて密着露光を実施した。
【0044】
その際、フォトマスク上に、屈折率1.85のガラス直角プリズムをマスク上に配置することにより、上方より垂直に入射する紫外光を約60°の入射角でフォトレジストに露光した。この後、現像及びポストベークを実施し、フォトレジストの立ち上がり角が、約85°及び約60°の非対称形状のフォトレジストのパターンを作製した。
【0045】
この後、C及びOの混合ガスを用いたRIE法によりドライエッチングを行い、フォトレジストの非対称形状をSiON膜にも形成されるようにした。残存するフォトレジストを除去した基板及び対向ガラス基板に反射防止膜をコーティングした後、ポリイミドを塗布焼成し配向膜を形成した。
【0046】
ラビング配向処理の後、これらの基板を8μmのスペーサを含むシール材で周辺を熱圧着し、常光屈折率1.52、異常光屈折率1.77のネマチック液晶を充填し注入口を封止した。
【0047】
作製した偏光依存性回折格子は、波長650nmの半導体レーザ光に対し、S偏光の半導体レーザ光に対し+1次約50%、−1次約15%の非対称比約3.3の特性を示した。またP偏光の半導体レーザ光に対しては、95%の透過率を示した。
【0048】
この光学回折格子を図5に示す光ヘッド装置に組み込んで使用したところ、光源からの往路の光は光学回折格子を高効率でそのまま通過し、復路の光は光学回折格子で回折され、光検出器のある方への光量が多い回折光が得られた。
【0049】
【発明の効果】
本発明によれば、非対称な構造を有する光学回折格子を生産性良く製造できる。特に、露光の光の方向を斜めにするのみでよいので、既存の製造装置を容易に流用して製造できる。このため、プリズムの付加というような既存の製造ラインのわずかな変更で容易に製造でき、従来型の対称な構造を有する光学回折格子との併産も簡単なので、生産性がきわめてよい。
【0050】
この非対称な構造を有する光学回折格子は、複数の回折光のうち、1つの回折光の利用効率を高くできるので、光ヘッド装置の小型化、低消費電力化に有用である。
発明は、本発明の効果を損しない範囲内で、種々の応用ができる。
【図面の簡単な説明】
【図1】本発明の光学回折格子の製造工程を示す断面図。
【図2】従来の対称な構造を有する光学回折格子の製造工程を示す断面図。
【図3】本発明の斜め方向からの光照射工程を示す側面図。
【図4】本発明の液晶を用いた光学回折格子の例の断面図。
【図5】本発明の光学回折格子を用いた光ヘッド装置の代表的な例の模式図。
【符号の説明】
1:基板
2:透明材料膜
3:フォトレジスト
4:透明材料膜
[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable for an optical head device for writing optical information on an optical recording medium such as an optical disc such as a CD (compact disc), a CD-ROM, a video disc, and a magneto-optical disc, and for reading the optical information. The present invention relates to an optical diffraction grating manufacturing method and an optical head device using the same.
[0002]
[Prior art]
Conventionally, as an optical head device for writing optical information on an optical recording medium such as an optical disk and a magneto-optical disk or reading optical information, signal light reflected from the recording surface of the optical recording medium is guided to a detection unit ( As optical parts for beam splitting, those using a prism type beam splitter and those using a diffraction grating or a hologram element are known.
[0003]
In this diffraction grating or hologram element for an optical head device, a rectangular grating (relief type) having a rectangular cross section is formed on a glass or plastic substrate by a dry etching method or an injection molding method, thereby diffracting light. A beam split function was added.
[0004]
In addition, it is conceivable to use polarized light when trying to increase the light use efficiency more than the isotropic diffraction grating having the light use efficiency of about 10%. When using polarized light, a prism type beam splitter is combined with a λ / 4 plate to increase the efficiency of the forward path (direction from the light source to the optical recording medium) and the return path (direction from the optical recording medium to the photodetector). There was a way to increase the round trip efficiency.
[0005]
However, prismatic polarization beam splitters are expensive, and other methods have been sought. As one method, a method is known in which a flat plate of birefringent crystal such as LiNbO 3 is used, and an anisotropic diffraction grating is formed on the surface to provide polarization selectivity. However, the birefringent crystal itself is difficult to manufacture and expensive, and it has been difficult to apply to the consumer field.
[0006]
As described above, since the use efficiency of the isotropic diffraction grating is about 50% in the forward path and about 20% in the return path, the utilization efficiency in the round trip is only about 10%.
[0007]
Furthermore, since these are not only low in efficiency but also a diffraction grating having a symmetrical shape, the diffraction efficiency of the + 1st order light and the diffraction efficiency of the −1st order light are almost equal. When a plurality of photodetectors are provided to detect both, it is advantageous that both diffraction efficiencies are approximately equal, but it is not necessarily advantageous in the case of a single photodetector.
[0008]
That is, it has been proposed that one optical detector be used for the miniaturization of the optical head, and in this case, light is diffracted by the same amount of light in two directions from the light utilization efficiency. This is not advantageous. Of the light diffracted in two directions, it is advantageous to increase the amount of light diffracted to the side where the photodetector is provided. For this reason, it has been desired to increase one diffracted light more than the other.
[0009]
[Problems to be solved by the invention]
For this purpose, it is necessary to use a diffraction grating in which the lateral direction of the concave and convex portions of the diffraction grating is asymmetrical. However, this asymmetrical diffraction grating was originally a diffraction grating with a very fine pitch, and was extremely difficult to manufacture. Therefore, an asymmetric diffraction grating manufacturing method with high productivity has been desired.
[0010]
An object of the present invention is to solve such a problem and to provide a manufacturing method for easily manufacturing an optical diffraction grating with high utilization efficiency of one of the diffracted lights.
[0011]
[Means for Solving the Problems]
The present invention relates to a method of manufacturing an optical diffraction grating in which a grating-like convex portion is formed on a surface of a substrate, and a photoresist is formed on the surface of the substrate, and the photoresist is desired from the side on which the photoresist is formed. By obliquely exposing through a photomask at a predetermined irradiation angle so that a pattern can be obtained and developing, the lateral side surface of the remaining photoresist lattice becomes asymmetric, and then dry etching is performed by etching. Provided is a method for manufacturing an optical diffraction grating, characterized in that the lateral side surface of the remaining convex portion grating is asymmetrical.
[0012]
A manufacturing method of the optical diffraction grating according to claim 1, wherein a substrate provided with a transparent material film is used as a substrate, and the lateral surface of the convex portion of the transparent material film remaining by etching is asymmetric in the lateral direction. The method and the substrate formed so that the side surfaces of the convex portions are asymmetrical are used as a first substrate, and an optically anisotropic material is filled between the first substrate and the second substrate. A method for producing the optical diffraction grating is provided.
[0014]
The optical diffraction grating manufactured by the present invention is suitably used for an optical head device that writes information and / or reads information by irradiating light from a light source onto the optical recording medium through the optical diffraction grating. .
[0015]
In the present invention, when the resist pattern is exposed with a photomask, it is exposed from an oblique direction, thereby forming a left-right asymmetric lattice (stripe-shaped) convex portion on the surface of the transparent substrate. Further, the substrate having the convex portions formed in this way is used by filling a liquid crystal having optical anisotropy between the two substrates. Thereby, an optical diffraction grating with high one-side diffraction efficiency can be easily manufactured.
[0016]
In the present invention, the substrate itself may be directly etched to form a convex portion, but from the viewpoint of etching depth, distribution, and end point detection, a transparent material film may be formed on the substrate surface. preferable.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a photoresist is formed on the surface of the substrate itself or the surface of the substrate provided with a transparent material film, and the irradiation angle is determined so that a desired pattern can be obtained from the side on which the photoresist is formed. in oblique exposure through a photomask, the lateral direction of the side surface of the grating of photoresist remaining by development is to become asymmetric, then by dry etching, lateral direction of the grid of protrusions remaining etching So that the sides are asymmetric.
[0018]
FIG. 2 shows a main process for manufacturing a conventional optical diffraction grating. (A) is sectional drawing which shows the state which exposed and developed the photoresist, (B) is sectional drawing which shows the state which dry-etched the transparent material film | membrane using it. 11 is a substrate, 12 is a transparent material film, 13 is a photoresist, and 14 is a transparent material film after etching.
[0019]
When the normal exposure, development, and etching are performed in this way, the transparent material film has the same inclination angle on the left and right side surfaces of the convex portion in the short direction of the lattice stripe (left and right in the figure), and the left and right sides are symmetrical. . In the optical diffraction grating having such a shape, the amount of diffracted light is approximately equal between the + 1st order and the −1st order. This is suitable when a plurality of photodetectors are provided on the left and right sides to detect reflected light from the optical recording medium.
[0020]
However, when a photodetector is provided only on one side, it is advantageous that a large amount of light is diffracted only on the side where the photodetector is provided. Although both are provided with photodetectors, the purpose is different, and the same is true when more light is required for one of the photodetectors. For this reason, the optical head device using the optical diffraction grating manufactured by the manufacturing method of the present invention is not limited to one having only one photodetector.
[0021]
FIG. 1 shows the main steps for producing the optical diffraction grating of the present invention, and shows an example in which a transparent material film is formed on the substrate surface. (A) is sectional drawing which shows the state which exposed and developed the photoresist, (B) is sectional drawing which shows the state which dry-etched the transparent material film | membrane using it. Reference numeral 1 denotes a substrate, 2 denotes a transparent material film, 3 denotes a photoresist, and 4 denotes a transparent material film after etching.
[0022]
When normal exposure, development, and etching are performed in this way, the transparent material film has a different inclination angle on the left and right side surfaces of the convex portion in the short direction of the lattice stripe (left and right in the figure), and the left and right sides become asymmetric. In the optical diffraction grating having such a shape, the amount of diffracted light differs between the + 1st order and the −1st order. This is preferable because the amount of light can be used effectively when one photodetector is provided on either the left or right side to detect the reflected light from the optical recording medium.
[0023]
The substrate used in the present invention is a transparent substrate such as glass. Although this transparent substrate can be used as it is, the substrate surface can be etched to form convex portions. However, as shown in the example of this figure, a transparent material film such as SiON or SiO 2 is formed on the transparent substrate by reactive sputtering. It is preferably formed and used by a method, a vapor deposition method, a plasma CVD method or the like.
[0024]
When an optically anisotropic material such as liquid crystal is not filled and used, in order to reduce reflection at the interface between the transparent material film and the substrate, the refractive index of the transparent material film is equal to the refractive index of the substrate. It is preferable to make them substantially coincide.
[0025]
When an optically anisotropic material such as liquid crystal is filled and used, the refractive index of the transparent material film is preferably substantially equal to the ordinary light refractive index or the extraordinary light refractive index of the liquid crystal or the like. Furthermore, in order to reduce reflection at the interface with the substrate, it is preferable to make the refractive index of the transparent material film substantially coincide with the refractive index of the substrate.
[0026]
A photoresist is laminated on the transparent material film 2 by spin coating or the like, and the photoresist is irradiated with light through a photomask. At this time, by irradiating light from an oblique direction and then developing, the left and right side surfaces of the convex portion in the short direction (left and right direction in the figure) of the stripe of the remaining photoresist 3 have different inclination angles. It becomes asymmetric. In this example, the left side surface is substantially vertical and the right side surface is inclined.
[0027]
The light irradiation from the oblique direction is performed by irradiating light from the oblique direction. The angle of the oblique irradiation may be determined experimentally so as to obtain a desired pattern, but it may be generally inclined by about 10 to 60 ° from the vertical direction. Specifically, for example, the method shown in FIG. FIG. 3 is a side view showing a light irradiation process from an oblique direction.
[0028]
Since normal exposure is performed from the vertical direction, an exposure apparatus having the same structure as the light source is used, a prism is inserted in the optical path, and the optical path is bent obliquely. In FIG. 3, 21 is a substrate, 22 is a transparent material film, 23 is a photoresist, 25 is a mask, 26 is a prism, 27A is incident light in a vertical direction, 27B is light in the prism, and 27C is light after passing through the prism. Indicates the direction of travel.
[0029]
The exposure from the oblique direction is a typical exposure method, but is not limited to this. For example, light may be irradiated from an oblique direction using a known optical component such as a prism array structure in which a plurality of prisms are arranged side by side, or a method using mirror reflection.
[0030]
Next, dry etching of the substrate itself or the transparent material film is performed using the asymmetric photoresist. This dry etching may be performed using a material that can etch the substrate itself or the transparent material film. At this time, by using a material that etches the transparent material film but is difficult to etch the substrate, it becomes easier to control the etching, which is preferable in terms of etching depth and the like.
[0031]
Thereby, the convex part of the asymmetric transparent material film | membrane 4 as shown in FIG.1 (B) can be formed. The convex portion of the transparent material film 4 has a shape substantially similar to the shape of the photoresist 3. In this example, the left side surface of the convex portion of the transparent material film 4 is substantially vertical, and the right side surface is inclined.
[0032]
The substrate provided with the asymmetrical convex grating can be used as an optical diffraction grating formed as such. In addition, an optically anisotropic material such as liquid crystal can be filled between a substrate provided with the asymmetric convex grating and another substrate and used as an optical diffraction grating. In the above example, the description is centered on an example in which a substrate provided with a transparent material film is used. However, a substrate in which a convex portion is formed by etching the substrate itself can also be used.
[0033]
FIG. 4 is a cross-sectional view of an example of an optical diffraction grating using liquid crystal. In FIG. 4, 31 is a substrate, 34 is a transparent material film having an asymmetrical convex portion, 35 is another substrate, 36 is a sealing material for sealing the periphery of two substrates, and 37 is a liquid crystal.
[0034]
When this liquid crystal is used, it is advantageous to align the liquid crystal in a specific direction by aligning the substrate. For example, using a substrate that has been aligned so that the longitudinal direction of the liquid crystal molecules is in the front-rear direction of FIG. 4 (perpendicular to the paper surface), one of the refractive indices of the liquid crystals and the refractive index of the transparent material film match. Then, high diffraction efficiency is obtained and preferable.
[0035]
The alignment treatment of the liquid crystal may be performed by obliquely depositing an inorganic film such as SiO, or by performing a rubbing process by forming a film of polyimide, polyamide, SiO 2 or the like. Furthermore, an electrode may be formed as needed, and the function as an optical diffraction grating may be made variable by changing the alignment state of some liquid crystals by applying a voltage. Specifically, the diffraction capability of the optical diffraction grating, the aperture ratio, the optical rotation, or the focal length may be changed depending on the voltage application state.
[0036]
The optical diffraction grating in which the asymmetric convex grating is formed is preferably used for an optical head device. In the optical head device, the optical diffraction grating is used by being disposed between a light source and an optical recording medium. As a specific configuration, there is a configuration shown in FIG. In FIG. 5, 41 is a light source such as a laser diode, 42 is an optical diffraction grating, 43 is a retardation plate such as a 1 / 4λ plate, 44 is an objective lens, 45 is an optical recording medium, 46 is a photodetector, 47A, 47B indicates diffracted light.
[0037]
In this example, the light amount of 47B is larger than that of diffracted light 47A by an asymmetric optical diffraction grating, and therefore a photodetector is provided only on the diffracted light 47B side. Since the photodetector is provided only on one side, the amount of light only needs to increase on that side. For this reason, since the light quantity of the light source 41 may be small, it has the merit of size reduction and low power consumption of the optical head device.
[0038]
In addition, the example of this optical head apparatus shows only a representative example, and is not limited to this. For example, by adding a prism or mirror to this, the optical path can be bent, the objective lens can be exchanged, or the focal length can be changed with a liquid crystal lens, etc. so that optical recording media at different focal positions can be read and written. Good. A separate diffraction grating may be added to divide the light beam into three beams.
[0039]
【Example】
[Example 1]
A SiO 2 film having a refractive index of 1.44 was formed as a transparent material film to a thickness of 600 nm on a glass substrate having a refractive index of 1.52 by a vacuum deposition method. A 2 μm-thick positive photoresist was applied onto the SiO 2 film by spin coating and prebaked. Thereafter, using a normal contact / proximity exposure apparatus, contact exposure was performed using a 4 μm pitch mask pattern.
[0040]
At that time, by placing an acrylic resin right-angle prism having a refractive index of about 1.5 on the photomask on the photomask, ultraviolet light incident vertically from above was exposed to the photoresist at an incident angle of about 25 °. . Thereafter, development and post-baking were performed, and a photoresist pattern having an asymmetric shape with a rising angle of about 85 ° and about 60 ° of the photoresist was produced.
[0041]
Thereafter, dry etching was performed by a reactive ion etching (RIE) method using a mixed gas of C 2 F 6 and O 2 so that an asymmetric shape of the photoresist was also formed on the SiO 2 film. Thereafter, the remaining photoresist was removed to realize an optical diffraction grating having a convex portion of an asymmetric SiO 2 film.
[0042]
The obtained optical diffraction grating showed characteristics of an asymmetry ratio of about 10 and a transmittance of about 50% with respect to a semiconductor laser beam having a wavelength of 650 nm, about + 1st order about 12%, -1st order about 1%.
[0043]
[Example 2]
A SiON film having a refractive index of 1.52 was formed to a thickness of 1.8 μm on a glass substrate having a refractive index of 1.52 by a plasma CVD method. A 2.5 μm-thick positive photoresist was applied onto the SiON film by spin coating and prebaked. Thereafter, contact exposure was performed using a 4 μm pitch mask pattern.
[0044]
At that time, a glass rectangular prism having a refractive index of 1.85 was disposed on the photomask, so that the ultraviolet light incident vertically from above was exposed to the photoresist at an incident angle of about 60 °. Thereafter, development and post-baking were performed, and a photoresist pattern having an asymmetric shape with a rising angle of about 85 ° and about 60 ° of the photoresist was produced.
[0045]
Thereafter, dry etching was performed by an RIE method using a mixed gas of C 2 F 6 and O 2 so that an asymmetric shape of the photoresist was also formed on the SiON film. After coating the anti-reflective film on the substrate from which the remaining photoresist was removed and the counter glass substrate, polyimide was applied and baked to form an alignment film.
[0046]
After the rubbing alignment treatment, the periphery of these substrates was thermocompression bonded with a sealing material containing a spacer of 8 μm, filled with nematic liquid crystal having an ordinary light refractive index of 1.52 and an extraordinary light refractive index of 1.77, and the injection port was sealed. .
[0047]
The produced polarization-dependent diffraction grating exhibited a characteristic of an asymmetry ratio of about 3.3 with respect to a semiconductor laser beam having a wavelength of 650 nm, that is, about + 1st order about 50% and about -1st order about 15% with respect to S-polarized semiconductor laser light. . Further, the transmittance was 95% for P-polarized semiconductor laser light.
[0048]
When this optical diffraction grating is incorporated in the optical head device shown in FIG. 5 and used, the forward light from the light source passes through the optical diffraction grating with high efficiency, and the return light is diffracted by the optical diffraction grating to detect light. A diffracted light with a large amount of light directed toward the vessel was obtained.
[0049]
【The invention's effect】
According to the present invention, an optical diffraction grating having an asymmetric structure can be manufactured with high productivity. In particular, since it is only necessary to make the direction of exposure light oblique, it is possible to manufacture by using an existing manufacturing apparatus easily. For this reason, since it can be easily manufactured with a slight modification of an existing manufacturing line such as addition of a prism, and it can be easily combined with an optical diffraction grating having a conventional symmetrical structure, the productivity is very good.
[0050]
Since the optical diffraction grating having this asymmetric structure can increase the use efficiency of one diffracted light among a plurality of diffracted lights, it is useful for reducing the size and power consumption of the optical head device.
The present invention can be applied in various ways within a range not impairing the effects of the present invention.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a manufacturing process of an optical diffraction grating of the present invention.
FIG. 2 is a cross-sectional view showing a manufacturing process of a conventional optical diffraction grating having a symmetric structure.
FIG. 3 is a side view showing a light irradiation process from an oblique direction according to the present invention.
FIG. 4 is a cross-sectional view of an example of an optical diffraction grating using the liquid crystal of the present invention.
FIG. 5 is a schematic view of a typical example of an optical head device using the optical diffraction grating of the present invention.
[Explanation of symbols]
1: Substrate 2: Transparent material film 3: Photoresist 4: Transparent material film

Claims (3)

基板の表面に格子状の凸部が形成された光学回折格子の製造方法において、基板の表面にフォトレジストを形成し、このフォトレジストを、フォトレジストが形成された側から所望のパターンが得られるように定めた照射角度でフォトマスクを通して斜め露光し、現像することにより残存したフォトレジストの格子の短手方向の側面が非対称になるようにし、次いでドライエッチングすることにより、エッチングにより残存した凸部の格子の短手方向の側面が非対称になるようにしたことを特徴とする光学回折格子の製造方法。  In a method for manufacturing an optical diffraction grating in which a lattice-shaped convex portion is formed on the surface of a substrate, a photoresist is formed on the surface of the substrate, and a desired pattern can be obtained from the side on which the photoresist is formed. As a result of oblique exposure through a photomask at a predetermined irradiation angle and development, the lateral sides of the lateral direction of the remaining photoresist lattice are made asymmetrical, and then dry etching is performed to leave the convex portions remaining by etching. A method of manufacturing an optical diffraction grating, wherein the lateral side surface of the grating is asymmetrical. 基板として透明材料膜を設けた基板を用い、エッチングにより残存した透明材料膜の凸部の格子の短手方向の側面が非対称になるようにしたことを特徴とする請求項1記載の光学回折格子の製造方法。  2. The optical diffraction grating according to claim 1, wherein a substrate provided with a transparent material film is used as a substrate, and the lateral surface of the convex grating of the transparent material film remaining by etching is asymmetric in the lateral direction. Manufacturing method. 凸部の側面が非対称になるよう形成された基板を第1の基板とし、この第1の基板と第2の基板との間に光学的異方性材料を充填したことを特徴とする請求項1又は2記載の光学回折格子の製造方法。  The substrate formed so that the side surfaces of the convex portions are asymmetrical is a first substrate, and an optically anisotropic material is filled between the first substrate and the second substrate. 3. A method for producing an optical diffraction grating according to 1 or 2.
JP15722296A 1996-06-18 1996-06-18 Manufacturing method of optical diffraction grating and optical head device using the same Expired - Fee Related JP3994450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15722296A JP3994450B2 (en) 1996-06-18 1996-06-18 Manufacturing method of optical diffraction grating and optical head device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15722296A JP3994450B2 (en) 1996-06-18 1996-06-18 Manufacturing method of optical diffraction grating and optical head device using the same

Publications (2)

Publication Number Publication Date
JPH1010307A JPH1010307A (en) 1998-01-16
JP3994450B2 true JP3994450B2 (en) 2007-10-17

Family

ID=15644901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15722296A Expired - Fee Related JP3994450B2 (en) 1996-06-18 1996-06-18 Manufacturing method of optical diffraction grating and optical head device using the same

Country Status (1)

Country Link
JP (1) JP3994450B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614193B2 (en) * 1999-11-09 2011-01-19 スタンレー電気株式会社 Reflective display
JP4636573B2 (en) * 2000-10-31 2011-02-23 オプトレックス株式会社 Method for forming light diffusion layer of reflective liquid crystal display device
JP3859473B2 (en) 2001-08-30 2006-12-20 シャープ株式会社 Stamper manufacturing method
JP2005353207A (en) * 2004-06-11 2005-12-22 Ricoh Co Ltd Polarizing hologram element, optical pickup device, and manufacturing method for them
JP2007264555A (en) * 2006-03-30 2007-10-11 Brother Ind Ltd Transmission type diffraction element and eyeball projection type display device using the same
JP5806129B2 (en) * 2012-01-17 2015-11-10 トヨタ自動車株式会社 Semiconductor device and manufacturing method thereof
CN106772734A (en) * 2017-01-03 2017-05-31 中国科学院上海光学精密机械研究所 The asymmetric pattern reflection type optical grid of broadband high-diffraction efficiency

Also Published As

Publication number Publication date
JPH1010307A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
US6271966B1 (en) Optical head device including an optically anisotropic diffraction grating and process for its production
US6304312B1 (en) Optical head, method of manufacturing the same, and diffraction element suitable therefor
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
JP3994450B2 (en) Manufacturing method of optical diffraction grating and optical head device using the same
JP3624561B2 (en) Optical modulation element and optical head device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3598703B2 (en) Optical head device and manufacturing method thereof
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP2541548B2 (en) Diffraction grating type optical polarizer
JP4179645B2 (en) Optical head device and driving method thereof
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JP3528381B2 (en) Optical head device
JP3713778B2 (en) Optical head device
JP3648581B2 (en) Polarization diffraction grating, aperture control device using the same, aperture control method, and optical head device
JP3509399B2 (en) Optical head device
JP3550873B2 (en) Optical head device
JPH05196813A (en) Diffraction grating type optical polarizing element
JPH09274188A (en) Optical modulation element and optical head device
JPH10188332A (en) Optical head device
JP4420990B2 (en) Optical head device
KR100223860B1 (en) Optical pickup for different disc type
JPH09185837A (en) Optical head device
JP4364083B2 (en) Optical head device
JPH09198698A (en) Production of optical head device
JPH09127335A (en) Manufacture of optical head device and optical head device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees