JP3648581B2 - Polarization diffraction grating, aperture control device using the same, aperture control method, and optical head device - Google Patents

Polarization diffraction grating, aperture control device using the same, aperture control method, and optical head device Download PDF

Info

Publication number
JP3648581B2
JP3648581B2 JP34395796A JP34395796A JP3648581B2 JP 3648581 B2 JP3648581 B2 JP 3648581B2 JP 34395796 A JP34395796 A JP 34395796A JP 34395796 A JP34395796 A JP 34395796A JP 3648581 B2 JP3648581 B2 JP 3648581B2
Authority
JP
Japan
Prior art keywords
polarization
diffraction grating
polarization direction
polarization diffraction
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34395796A
Other languages
Japanese (ja)
Other versions
JPH10188321A (en
Inventor
譲 田辺
弘昌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP34395796A priority Critical patent/JP3648581B2/en
Publication of JPH10188321A publication Critical patent/JPH10188321A/en
Application granted granted Critical
Publication of JP3648581B2 publication Critical patent/JP3648581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、CD(コンパクトディスク)、CD−ROM、CD−E、CD−R、ビデオディスク等の光記録媒体に光学的情報を書き込んだり、光学的情報を読みとるための光ヘッド装置に用いられる高分子液晶を用いた偏光回折格子及びそれを用いた光ヘッド装置に関する。
【0002】
【従来の技術】
光ディスク及び光磁気ディスク等の光記録媒体に光学的情報を書き込んだり、光学的情報を読みとるための光ヘッド装置において、DVDとCDとを両方とも読めることが望まれている。DVDとCDとでは厚が異なり、厚の違うディスクを1つの光ヘッド装置で読むことが試みられてきた。1個の集光レンズのみで両方のディスクを読むことは難しい。
【0003】
このため具体的には、2個の集光レンズを用い、これを機械的に切り替えたり、集光レンズにTN(ツイステッドネマチック)型の液晶素子を組合せて、開口径を液晶素子で電気的に切り替えて使用することにより、収差を低減した状態で2種類のディスクを読むことが提案されている。
【0004】
【発明が解決しようとする課題】
しかし、機械的に集光レンズを切り替えるのは、光ヘッド装置が大型化し、コンパクトな光ヘッド装置が得られにくいし、信頼性及び切り替え時間等に問題を生じやすい。また、開口制御にTN型の液晶素子を用いるのは、TN液晶素子には偏光膜が必須であるので、それにより光の透過率が大幅に低下する問題点があった。
このため、電気的に容易に切替が可能で、光利用効率が低下しにくく、信頼性の高い光ヘッド装置が望まれていた。
【0005】
【課題を解決するための手段】
本発明は、前述の問題点を解決すべくなされたものであり、高分子液晶を基板間に挟持した偏光回折格子において、前記偏光回折格子は前記高分子液晶を部分的に配向状態が異なる状態で高分子化させて形成された偏光回折格子であって、中心部と周辺部とで少なくともいずれかの偏光に対する回折効率が異なっていて、直交する2つの偏光のうち、一方の偏光に対しては、中心部ではほぼ全透過し、周辺部では回折するとともに、もう一方の偏光に対しては、中心部では同じくほぼ全透過し、周辺部でもほぼ全透過することを特徴とする偏光回折格子を提供する。
また、前記周辺部に形成された前記偏光回折格子が、格子周期が変化する同心円状、又は内側から外側へ向かって格子周期が増加する同心円状、又は格子周期が変化する直線状である偏光回折格子を提供する。
【0006】
また、その直交する2つの偏光のうち、一方の偏光に対しては、中心部ではほぼ全透過し、周辺部では回折するとともに、もう一方の偏光に対しては、中心部では同じくほぼ全透過し、周辺部でもほぼ全透過する偏光回折格子、及び、それらの中心部がレンズ状の凹凸又はフレネルレンズ状の凹凸とされている偏光回折格子を提供する。
【0007】
さらに、前記偏光回折格子が、前記周辺部は、対向する電極の対向部分が所望の格子パターンになるように形成された電極付き基板間に重合により高分子化する液晶性化合物を挟持し、対向する電極間に電圧を印加しつつ液晶性化合物を重合して高分子化することにより形成されているとともに、前記中心部は、周辺部とは独立した透明電極によって電圧を印加しつつ重合することにより形成された水平配向と垂直配向の中間状態の高分子液晶からなり周辺部との位相差を低減した偏光回折格子を提供する。
【0008】
さらには、入射した偏光の偏光方向を外部信号により変化させて透過する偏光方向制御素子と、前記の偏光回折素子と、を備えていて、入射した光を、前記偏光方向制御素子に印加する外部信号により偏光方向を変化させて前記偏光により開口の異なる偏光回折素子に導くことを特徴とする開口制御装置及び開口制御方法を提供する。
また、それらの偏光回折格子を光源、ビームスプリッタ、光検出器、集光レンズとを含む光ヘッド装置に組み込み、偏光方向制御素子により偏光回折格子に入射する偏光方向を切り替えるようにしたことを特徴とする光ヘッド装置を提供する。
【0009】
【発明の実施の形態】
本発明では、高分子液晶を基板間に挟持した偏光回折格子であって、その中心部と周辺部とで少なくともいずれかの偏光に対する回折効率が異なる偏光回折格子とする。この少なくともいずれかの偏光とは、全偏光方向で中心部と周辺部とで回折効率が異なるものも含むが、ある特定の方向の偏光に対してのみ中心部と周辺部とで回折効率が異なるものも含む。
【0010】
後者の例では、直交する2つの偏光のうち、一方の偏光に対しては、中心部ではほぼ全透過し、周辺部では回折するとともに、もう一方の偏光に対しては、中心部では同じくほぼ全透過し、周辺部でもほぼ全透過するものがある。具体的には、P偏光に対しては中心部では全透過し周辺部では回折するが、S偏光に対しては中心部と周辺部の両方で全透過するものがある。
【0011】
図1は本発明の偏光回折格子の断面図であり、(A)はS偏光(図の紙面に垂直な偏光方向を持つ光)、(B)はP偏光(図の紙面に平行な偏光方向を持つ光)の場合の光の透過状態を説明している。図2は、図1の偏光回折格子の平面図である。
【0012】
図1及び図2において、1は偏光回折格子、2はその中心部、3はその周辺部、4はS偏光、5はP偏光、6A〜6Fは入射光、7A〜7Fは出射光、8は第1の配向部、9は第2の配向部を示す。Wは中心部の幅、W及びWは周辺部の幅を示す。
【0013】
本発明では、この偏光回折格子1の中心部2と周辺部3とで、少なくともいずれかの偏光に対する回折効率が異なるようにされている。この図1及び図2の例では、高分子液晶の配向が中心部と周辺部で異なった状態にされており、かつ周辺部では軸対称に回折格子が形成されている。
【0014】
この例では、上下の両基板とも図1の水平方向に配向処理した状態(液晶分子のツイストは0°)を示しており、S偏光に対して、入射光6A、6B、6Cはいずれもそのまま透過し出射光7A、7B、7Cとなる。P偏光に対して、入射光6D、6E、6Fは、中心部ではそのまま透過し出射光7Dとなり、周辺部では回折して出射光7E、7Fとなる。
【0015】
ただし、図1(A)でも、この断面部分以外では回折する部分がある。すなわち、この断面からもっと奥の部分の周辺部では、格子の長手方向が偏光方向に一致し、回折が生じる。これは、図1(A)の断面に直交する断面で見た場合に相当し、図1(B)と同じことになる。すなわち、このように格子が軸対称の場合には、周辺部のどこかで回折が起きることになる。
【0016】
この場合、基板は通常のガラス、プラスチック等の透明基板が使用できるが、信頼性の点から見てガラス基板が好ましい。基板に凹凸を形成する場合には、基板自体をエッチングや機械的な切削法で削ったり、プレス成形するか、基板表面に膜を形成し、これをエッチングや機械的な切削法で削ったり、プレス成形したりして形成すればよい。
【0017】
この凹凸は、周辺部の格子の場合には直線にしてもよく、輪状にしてもよい。また、後述の例のように中心部をレンズ状にする場合には、単純な凹部や凸部としてもよく、フレネルレンズ状に形成してもよい。用いる液晶の屈折率と基板又は基板表面の膜の屈折率との関係で、格子機能やレンズ機能を生じるので、基板表面に膜を形成して凹凸化する方が、屈折率の調整が容易になり好ましい。
【0018】
具体的には、この膜としては無機化合物の膜が好ましいが、特にSiで表される膜が好ましい。この膜は、xとyとの値により、かなり広い範囲で屈折率を変化させられ、液晶の通常持つ常光屈折率と異常光屈折率との間の屈折率をほぼ自由に選択できる。
【0019】
電極を基板に形成する場合には、通常、透明電極であるITO(In−SnO)が使用されるが、他の透明電極も使用できる。この電極は、所望のパターンにパターニングされて用いられるが、ベタ電極で使用することもある。この例では、両方の基板で電極はパターニングされ、中心部2と周辺部3の一部とに電極がない部分が設けられている。
【0020】
この電極上に、必要に応じて配向膜を形成する。この配向膜としては、通常の液晶表示素子で用いられる配向膜が使用できる。代表的な水平配向膜としては、ポリイミドやポリアミド等の樹脂膜をラビングした膜や、SiOの斜め蒸着膜がある。また、代表的な垂直配向膜は、アミノシラン系等の垂直配向剤を用いた膜がある。
【0021】
その他、シール技術、液晶注入技術、注入口封止技術、多数個取り製法技術等は通常の液晶表示素子の工程で使用される技術を用いればよい。また、本発明の偏光回折格子は、外面に反射防止膜を形成して用いることが好ましい。
【0022】
このような偏光回折格子を製造するには、いくつかの方法があるが、以下のような製造方法が好ましい。
【0023】
最も適している第1の方法は、対向する電極の対向部分が所望の格子パターンになるように電極を形成した一対の基板を用い、対向する電極間に電圧を印加しつつ、液晶性化合物を重合して高分子化する方法である。
【0024】
すなわち、対向する電極の対向部分が所望の格子パターンになるように電極を形成した一対の基板を準備する。具体的には、一方の基板に所望の格子パターンになるように電極を形成し、他方の基板には全面ベタ電極のままとすればよい。もっとも、両方とも同じようにパターニングしてもよく、両方のパターンを組合せて重なった部分が所望の格子パターンになるようにしてもよい。
【0025】
次いで、それらの電極付き基板間に重合により高分子化する液晶性化合物を挟持する。これも具体的には、それらの電極付き基板間を重ね合わせてセル化し、その空セルに重合により高分子化する液晶性化合物を注入すればよい。これも粘性の高い液晶性化合物の場合には、注入と同時にシールするとか、後の高分子化工程の後にシールを行うというような方法も可能である。
【0026】
次いで、対向する電極間に電圧を印加しつつ、液晶性化合物を重合して高分子化する。具体的には、これも光硬化性の液晶性化合物を用いて光照射により硬化させればよい。熱硬化型の場合には、加熱して硬化させる。これにより、電圧の印加されている電極間に挟持されている部分では、部分的に配向状態が異なる状態で高分子化される。
【0027】
正の誘電異方性のネマチック液晶を用い、基板表面をラビング等で水平配向処理した場合には、電圧を印加していない部分では、液晶分子は基板の配向処理方向に沿って水平配向する。一方、電極間に電圧を印加した部分では、液晶分子が垂直配向する。これにより、高分子化した際に2種類の配向状態になる。
【0028】
この場合、上下の基板で平行配向した状態を考えたとき、電圧を印加せずに水平配向した部分では、入射する偏光方向によって常光屈折率(n)乃至異常光屈折率(n)を示す。電圧印加により垂直配向した部分では、常光屈折率(n)を示す。
【0029】
第2の方法としては、所望の格子パターンになるように少なくとも一方の基板自体又は基板の表面に設けた膜に凹凸を形成する。この凹凸を形成した基板ともう1枚の基板とを用い、セル化して、その空セルに重合により高分子化する液晶性化合物を注入する。
【0030】
次いで、注入した液晶性化合物を硬化させる。液晶分子が凹部の溝又は配向処理方向に沿って整列する。この場合、基板又はその基板表面の膜の屈折率と、液晶の配向時の屈折率とにより、回折が起きたり起きなかったりさせうる。
【0031】
第3の方法としては、第1の方法に類似するが、電極はパターニングしないベタ電極とし、表面に所望のパターンの遮光マスクを配置し、全面に電圧を印加しつつ、光硬化させる方法がある。
【0032】
この場合には、2種類の方法がある。1つは遮光マスクを配置し、全面に電圧を印加しつつ光硬化させ、次いで遮光マスクを取り去り、全面に電圧を印加せずに硬化をする。もう1つは、遮光マスクを配置し、全面に電圧を印加せずに光硬化させ、次いで遮光マスクを取り去り、全面に電圧を印加して硬化をする。
【0033】
さらにこれらを組合せたりしてもよく、中心部と周辺部とで少なくともいずれかの偏光に対する回折効率が異なる偏光回折格子が形成されればよい。
【0034】
この図1及び図2のように軸対称に格子が形成されている場合、上記の説明の中心部2では水平配向しており、偏光方向によらず常に光は全透過する。一方、周辺部3では、第1の配向部8では液晶分子(重合後の側鎖部分)は水平配向し、第2の配向部9では液晶分子は垂直配向しており、屈折率の異なる部分が生じ、回折格子を形成している。
このため、周辺部3では、輪状に回折格子が形成されていることになるので、どの偏光方向の光も一部は回折を生じる。
【0035】
さらに、この例では、格子周期を徐々に変化させる(チャープ)ことによって迷光の影響を回避しているが、これも格子ピッチが細かいとき、省略できる。この図では、格子周期は徐々に変化していることを分かりやすくするためにかなり誇張して記載してあるが、実際にはその変化の割合は数十%程度の変化とされ、図示したものよりもずっと少ない。以下の他の例の説明でも同様である。
【0036】
これにより、周辺部では格子のピッチが狭い内側の出射光7Eは、格子のピッチが広い外側の出射光7Fよりも大きく回折する。
【0037】
また、この構成の偏光回折格子においては、中心部と周辺部に生ずる透過波面収差を補正するために位相補正コートを実施することが好ましい。位相補正コートプロセスを省略し全透過する偏光に対して有効径で、回折する偏光に対して中心部分で透過波面収差を低減するためには、50nm以下の薄いITO膜を用いる、または入射側と対向側の計2枚でのITO膜がある部分とない部分の面積比が等しくなるようなパターニングにすることが透過波面収差を低減するうえで好ましい。
【0038】
すべての方向の偏光又は円偏光に対しての有効径内の透過波面収差を抑制するためには、膜自体の影響が少ない50nm以下のITO電極を中心部に周辺部と独立に設け、重合時に周辺部より低い電圧を同時に印加し、液晶が水平配向と垂直配向の中間状態で固体化し、周辺部との位相差を低減することが好ましい。
【0039】
この構成の偏光回折格子において、片側の周辺部を全面ITO膜とすることで位置合わせが不要となり作製プロセスは簡便となるが、周辺部の回折する偏光に対する透過率が上昇する。このため、周辺部に大きな消光比(透過偏光に対する透過率/回折偏光に対する透過率)が要求される場合は、両面に同じ形状のITO電極をパターニングすることが好ましい。
【0040】
また、この例では、回折部における回折光が迷光となって光ノイズになる可能性が有るため、それを抑制するために回折部を軸対称にしているが、次に示すように回折部を直線格子にしてもよい。
【0041】
図3は本発明の偏光回折格子の他の例の断面図であり、(A)はS偏光(図の紙面に垂直な偏光方向を持つ光)、(B)はP偏光(図の紙面に平行な偏光方向を持つ光)の場合の光の透過状態を説明している。図4は、図3の偏光回折格子の平面図である。
【0042】
図3及び図4において、11は偏光回折格子、12はその中心部、13はその周辺部、14はS偏光、15はP偏光、16A〜16Fは入射光、17A〜17Fは出射光、18は第1の配向部、19は第2の配向部を示す。W11は中心部の幅、W12及びW13は周辺部の幅を示す。
【0043】
この例では、中心部2を除き、周辺部3には直線状の格子が形成されている。しかも、例1と同様に格子のピッチが変化させられている。この格子の形成は図1及び図2のところで説明した製造方法と同じ製造方法で製造すればよい。
【0044】
この例でも、上下の両基板とも図の水平方向に配向処理した状態(液晶分子のツイストは0°)を示しており、S偏光に対して、入射光16A、16B、16Cはいずれもそのまま透過し出射光17A、17B、17Cとなる。P偏光に対して、入射光16D、16E、16Fは、中心部ではそのまま透過し出射光17Dとなり、周辺部では回折して出射光17E、17Fとなる。この場合、周辺部の格子のピッチが狭い左側の出射光17Eは、格子のピッチが広い右側の出射光17Fよりも大きく回折する。
【0045】
図5は本発明の偏光回折格子のさらに他の例の断面図であり、(A)はS偏光(図の紙面に垂直な偏光方向を持つ光)、(B)はP偏光(図の紙面に平行な偏光方向を持つ光)の場合の光の透過状態を説明している。図6は、図5の偏光回折格子の平面図である。
【0046】
図5及び図6において、21は偏光回折格子、22はその中心部、23はその周辺部、24はS偏光、25はP偏光、26A〜26Fは入射光、27A〜27Fは出射光、28は第1の配向部、29は第2の配向部を示す。W21は中心部の幅、W22及びW23は周辺部の幅を示す。
【0047】
この例は、図3及び図4の例と同様に周辺部3に直線状の格子が形成されており、かつ中心部2には基板自体に凹部が形成されている。周辺部3の直線状の格子は、図3及び図4の例と同様に格子のピッチが変化させられている。この格子の形成は図1及び図2のところで説明した製造方法と同じ製造方法で製造すればよい。
【0048】
この例では、基板の中心部にレンズ状の曲面を形成することによって、単に開口径を制御するだけでなく、位相も制御し、より光学波面収差を改善している。このために中心部2に凹凸を形成しているが、中心部がレンズとして機能するように所望の形状で形成されていればよい。この凹凸は、単純な凹部や凸部としてもよく、フレネルレンズ状に形成してもよい。
【0049】
この例でも、上下の両基板とも図の水平方向に配向処理した状態(液晶分子のツイストは0°)を示しており、S偏光に対して、入射光26A、26B、26Cはこの断面ではいずれもそのまま透過し出射光27A、27B、27Cとなる。P偏光に対して、入射光26D、26E、26Fは、中心部ではそのまま透過し出射光27Dとなり、周辺部では回折して出射光27E、27Fとなる。この場合、周辺部の格子のピッチが狭い左側の出射光27Eは、格子のピッチが広い右側の出射光27Fよりも大きく回折する。
【0050】
さらに、この例では、中心部22では凹部を設けた基板により、液晶がP偏光に対してのみ凸レンズとして働く。これは、液晶が平行に(ツイストせずに)水平配向しているので、P偏光の方向では液晶が異常光屈折率を示し、基板を常光屈折率近辺にしておくことにより、その屈折率差が生じ、凸レンズとして機能する。一方、S偏光に対しては、液晶が常光屈折率を示し、基板を常光屈折率近辺とした場合には、屈折率差が生じなく、凸レンズとして機能しない。
この場合、基板の屈折率を異常光屈折率に合わせたり、中心部を垂直配向にしたりしてもよく、基板の中心部に凸部を形成したりしてもよい。
【0051】
本発明では、これにより、ある偏光方向の光に対しては、光開口径が制御され、ある偏光方向の光に対しては、光開口径が制限されない。
【0052】
この本発明の偏光回折格子とTN液晶を用いた偏光方向制御素子とを組み合わせると、電気的に容易に開口を切り替えうる。この場合、TN液晶を用いた偏光方向制御素子は、90°ツイストした液晶を封入したベタ電極を有する通常のTN液晶セルでよい。このTN液晶を用いた偏光方向制御素子は、P偏光とS偏光とを切り替える目的で用いるので、偏光膜は使用しなくてよい。このため、偏光膜による光量の損失はない。
【0053】
このようにして製造した偏光回折格子は、光ヘッド装置に組み込まれて使用される。
図7は、本発明の光ヘッド装置の基本的な構成を示す正面図である。
図7において、31はレーザダイオード等の光源、32はビームスプリッタ、33は1/4波長板等の位相差板、34は偏光方向制御素子、35は偏光回折格子、36は集光レンズ、37は第1の光記録媒体、38は第2の光記録媒体、39は光検出器を示す。
【0054】
この光ヘッド装置では、光源31から出射した光が、ビームスプリッタ32、位相差板33、偏光方向制御素子34、偏光回折格子35、集光レンズ36を通過し、第1の光記録媒体37に到達し、そこで反射して逆に戻り、ビームスプリッタ32で回折されて光検出器39に光が到達する。偏光方向制御素子34により偏光方向を変えることにより偏光回折格子35の光の透過状態が変わり、第2の光記録媒体38に光が到達する。
【0055】
すなわち、偏光方向制御素子34への電圧の印加状態の変化により、偏光回折格子35への入射偏光方向をP偏光とS偏光とに切り替える。これにより、偏光回折格子35の出射光が変化し、第1の光記録媒体37、第2の光記録媒体38へ焦点が切り替わる。
【0056】
この光ヘッド装置の構成は、代表的な構成を示したにすぎない。ビームスプリッタに液晶を用いた偏光回折格子を用いたり、ビームスプリッタを複数の部分に分けて複数の光検出器に回折させたり、光源にSHG(第2高調波発生装置)を用いたり、光記録媒体に向かう光を3ビームに分ける回折格子を併用したりする等公知の光ヘッド装置に適用されている応用が本発明の効果を損しない範囲で可能である。
【0057】
【実施例】
例1(実施例)
0.5mm厚のガラス基板に、厚さ30nmのITO透明導電膜をスパッタ法により成膜した。フォトリソグラフィ及びウエットエッチングによりITO膜にパターニングを行い、図2に示すように半径1.25mmφ(w=2.5mm)より外の周辺部に、軸対称のITO格子状の電極を形成した。
【0058】
ただし、通電を確保するため90°及び270°方向には幅20μmのITO電極を残した。格子周期は半径1.25mmの位置でのピッチ16μmから半径2.5mmの位置でのピッチ20μmまで徐々に大きくした。対向基板側のITO電極にも同一のパターニングを実施した。
【0059】
両方の基板の対向する面(ITO電極形成面)に厚さ60nmのポリイミド配向膜を形成し、ラビング布によるラビングを実施した。ラビング方向は、図1の紙面に平行になるようにし、かつ、上下の基板でその方向が180°となるように両方の基板を対向させ、4μmスペーサを混合したシール材により熱圧着し空セルを作製した。
【0060】
空セル内に重合開始剤を1重量%含む未重合の液晶モノマーを注入し、ITO電極に5Vrms、100Hzの矩形電圧を印加した。この状態でパワー密度10mW/cm2 の紫外線を300秒間照射し、周期的に印加された電圧により生じる配向方向の垂直/水平の周期的な繰り返しを高分子化により固定化した。その後、外側を切断し外形5.0mm角の偏光回折格子を作製した。
【0061】
作製した偏光回折格子は、ラビング方向(図1の紙面に平行)と垂直な直線偏光(図1のS偏光)に対しては、半径1.25mmの中心部においても、半径1.25mmから2.5mmの格子が形成された周辺部においても90%以上の透過率を示した。
【0062】
これに対し、ラビング方向と平行な直線偏光(図1のP偏光)に対しては、半径1.25mmの中心部においては90%以上の透過率を示したが、半径1.25mmから2.5mmの格子が形成された周辺部においては入射光は回折され、20%程度しか透過しなかった。
【0063】
この偏光回折格子と電気的に駆動可能な90°ツイストしたTN液晶セル(偏光膜を設けていない)を偏光方向制御素子として用いて、透過光のビーム径を約5mmφと約2.5mmφに電気的に切り替えることができた。
【0064】
例1の構成の偏光回折格子において、片側の基板の周辺部を全面ベタITO膜とした他は、例1と同様にして偏光回折格子(例1A)を製造した。一方の基板の電極をベタ電極とすることにより、2枚の基板の位置合わせが不要となり作製プロセスは簡便となったが、周辺部の回折する偏光に対する透過率は45%程度まで上昇した。
【0065】
中心部にも周辺部の格子とは分離して電極を設けた他は、例1と同様にして空セルを作成した。液晶モノマーの重合時に、中心部の電極には、液晶が垂直配向するよりも低い電圧を印加しつつ、周辺部には例1と同じ電圧を印加して重合した。この偏光回折格子(例1B)は、例1の偏光回折格子よりも透過波面収差が低かった。
【0066】
例2(実施例)
0.5mm厚のガラス基板に、厚さ30nmのITO透明導電膜をスパッタ法により成膜した。フォトリソグラフィ及びウエットエッチングによりITO膜にパターニングを行い、図4に示すように半径1.25mmφ(w 11 =2.5mm)より外の周辺部に、直線周期格子のITO格子状の電極を形成した。
【0067】
格子周期は偏光回折格子中心から2.5mm左側の位置でのピッチ16μmから中心から右側2.5mmの位置でのピッチ20μmまで徐々に大きくした。対向基板側のITO電極にも同一のパターニングを実施した。格子に直交する方向にラビングを行い、両方の基板を用いて例1と同様にして、偏光回折格子を作製した。
【0068】
作製した偏光回折格子は、ラビング方向(図3の紙面に平行)と垂直な直線偏光(図3のS偏光)に対しては、半径1.25mmの中心部においても、半径1.25mmから2.5mmの格子が形成された周辺部においても90%以上の透過率を示した。
【0069】
これに対し、ラビング方向と平行な直線偏光(図3のP偏光)に対しては、半径1.25mmの中心部においては90%以上の透過率を示したが、半径1.25mmから2.5mmの格子が形成された周辺部においては入射光は回折され15%程度しか透過しなかった。
【0070】
この偏光回折格子と、電気的に駆動可能な90°ツイストしたTN液晶セル(偏光膜を設けていない)を偏光方向制御素子として用いて、透過光のビーム径を約5mmφと約2.5mmφに電気的に切り替えることが可能であった。
【0071】
例2の構成の偏光回折格子において、片側の基板の周辺部を全面ベタITO膜とした他は、例1と同様にして偏光回折格子(例2A)を製造した。一方の基板の電極をベタ電極とすることにより、2枚の基板の位置合わせが不要となり作製プロセスは簡便となったが、周辺部の回折する偏光に対する透過率は40%程度まで上昇した。
【0072】
中心部にも周辺部の格子とは分離して電極を設けた他は、例2と同様にして空セルを作成した。液晶モノマーの重合時に、中心部の電極には、液晶が垂直配向するよりも低い電圧を印加しつつ、周辺部には例2と同じ電圧を印加して重合した。この偏光回折格子(例2B)は、例2の偏光回折格子よりも透過波面収差が低かった。
【0073】
例3(実施例)
屈折率1.52の1.0mm厚のガラス基板上に、プレス法により直径2.5mm深さ5μmの非球面凹型形状を作製した。このガラス基板上に、厚さ30nmのITO透明導電膜をスパッタ法により成膜し、フォトリソグラフィ及びウエットエッチングによりITO膜にパターニングを行い、図6に示すように半径1.25mmφ以上の周辺部に、直線周期格子のITO格子状の電極を形成した。
【0074】
格子周期は偏光回折格子中心から2.5mm左側の位置でのピッチ16μmから中心から右側2.5mmの位置でのピッチ20μmまで徐々に大きくした。対向基板側のITO電極にも同一のパターニングを実施した。
【0075】
例2と同様に空セルを作成し、セル内に重合開始剤を1重量%含む未重合のアクリル系液晶モノマー(重合後n=1.5、n=1.6)を注入し、例2と同様にして偏光回折格子を作製した。
【0076】
作製した偏光回折格子は、ラビング方向(図5の紙面に平行)と垂直な直線偏光(S偏光)に対しては、半径1.25mmの中心部においても、半径1.25mmから2.5mmの格子が形成された周辺部においても90%以上の透過率を示した。この直線偏光に対しては屈折率差がほとんどないため中心部はレンズとして機能しなかった。
【0077】
これに対し、ラビング方向と平行な直線偏光(P偏光)に対しては、半径1.25mmの中心部においては90%以上の透過率を示したが、半径1.25mmから2.5mmの格子が形成された周辺部においては入射光は回折され15%程度しか透過しなかった。また、中心部は屈折率差0.1、厚さ5μmの位相補正凸レンズとして機能し透過波面の位相変化が確認された。
【0078】
この偏光回折格子と、電気的に駆動可能な90°ツイストしたTN液晶セル(偏光膜を設けていない)を偏光方向制御素子として用いて、透過光のビーム径を約5mmφと約2.5mmφに電気的に切り替えることが可能であった。
【0079】
【発明の効果】
本発明では、高分子液晶を基板間に挟持した偏光回折格子であって、その中心部と周辺部とで少なくともいずれかの偏光に対する回折効率が異なるようにしている。これにより、偏光膜を用いないで電気的な開口制御が可能になり、光の利用効率が高く、信頼性の高い、コンパクトな光ヘッド装置が容易に得られる。
【0080】
電気的に開口制御が可能になることにより、機械的なレンズ切り替え等の機構が不要になり、光ヘッド装置の小型軽量化、高信頼化に好適である。また、偏光膜を用いなくてすむため、光の利用効率が上り、光源が低出力、小型化でき、低消費電力という利点も有する。
本発明は、本発明の効果を損しない範囲内で、種々の応用が可能である。
【図面の簡単な説明】
【図1】本発明の偏光回折格子の断面図。(A)はS偏光、(B)はP偏光の場合の光の透過状態を説明。
【図2】図1の偏光回折格子の平面図。
【図3】本発明の偏光回折格子の他の例の断面図。(A)はS偏光、(B)はP偏光の場合の光の透過状態を説明。
【図4】図3の偏光回折格子の平面図。
【図5】本発明の偏光回折格子のさらに他の例の断面図。(A)はS偏光、(B)はP偏光の場合の光の透過状態を説明。
【図6】図5の偏光回折格子の平面図。
【図7】本発明の光ヘッド装置の基本的な構成を示す正面図。
【符号の説明】
偏光回折格子:1
中心部 :2
周辺部 :3
S偏光 :4
P偏光 :5
入射光 :6A〜6F
出射光 :7A〜7F
第1の配向部:8
第2の配向部:9
[0001]
BACKGROUND OF THE INVENTION
The present invention is used in an optical head device for writing optical information on an optical recording medium such as a CD (compact disc), a CD-ROM, a CD-E, a CD-R, and a video disc, and for reading the optical information. The present invention relates to a polarization diffraction grating using a polymer liquid crystal and an optical head device using the same.
[0002]
[Prior art]
In an optical head device for writing optical information on an optical recording medium such as an optical disk and a magneto-optical disk or reading optical information, it is desired to read both DVD and CD. Thick with DVD and CDTheThe thickness is differentTheAttempts have been made to read different disks with one optical head device. It is difficult to read both discs with only one condenser lens.
[0003]
Therefore, specifically, two condensing lenses are used, which are mechanically switched, or a TN (twisted nematic) type liquid crystal element is combined with the condensing lens so that the aperture diameter is electrically controlled by the liquid crystal element. It has been proposed to read two types of discs with reduced aberrations by switching between them.
[0004]
[Problems to be solved by the invention]
However, mechanically switching the condenser lens increases the size of the optical head device, makes it difficult to obtain a compact optical head device, and tends to cause problems in reliability, switching time, and the like. In addition, the use of a TN liquid crystal element for aperture control has a problem in that the light transmittance is greatly reduced because a polarizing film is essential for the TN liquid crystal element.
For this reason, there has been a demand for an optical head device that can be easily switched electrically, has a low light utilization efficiency, and has high reliability.
[0005]
[Means for Solving the Problems]
  The present invention has been made to solve the above-mentioned problems, and in a polarization diffraction grating in which a polymer liquid crystal is sandwiched between substrates,The polarization diffraction grating is a polarization diffraction grating formed by polymerizing the polymer liquid crystal in a partially different orientation state,Diffractive efficiencies for at least one polarized light are different between the central part and the peripheral part.Of the two orthogonally polarized lights, one of the polarized lights is almost totally transmitted in the central part and is diffracted in the peripheral part, and the other polarized light is almost entirely in the central part. Transmits and transmits almost completely at the peripheryA polarizing diffraction grating is provided.
  Further, the polarization diffraction grating formed in the peripheral portion may be a concentric circle whose grating period changes, a concentric circle whose grating period increases from the inside to the outside, or a linear diffraction whose grating period changes. Provide a grid.
[0006]
Of the two orthogonally polarized lights, one of the polarized lights is almost totally transmitted in the central part and diffracted in the peripheral part, while the other polarized light is almost totally transmitted in the central part. In addition, the present invention provides a polarization diffraction grating that transmits almost all of the light in the peripheral portion, and a polarization diffraction grating in which the central portion is a lens-shaped unevenness or a Fresnel lens-shaped unevenness.
[0007]
  further,The polarizing diffraction grating includes a liquid crystal compound that is polymerized by polymerization between substrates with electrodes formed so that the peripheral portion of the opposing electrode has a desired grating pattern in the peripheral portion, and the opposing electrode It is formed by polymerizing a liquid crystalline compound while applying a voltage in between, and the central part is formed by polymerizing while applying a voltage by a transparent electrode independent of the peripheral part. Polarized diffraction grating consisting of a polymer liquid crystal in the intermediate state between the aligned horizontal and vertical alignments and with reduced phase difference from the peripheral partI will provide a.
[0008]
  Moreover,A polarization direction control element that changes the polarization direction of incident polarized light by an external signal and transmits the polarization direction control element, and the polarization diffraction element, and the incident light is polarized by an external signal applied to the polarization direction control element. An aperture control apparatus and an aperture control method are provided, wherein the direction is changed and the polarized light is guided to a polarization diffraction element having a different aperture by the polarized light.
  Also,The polarization diffraction grating is incorporated in an optical head device including a light source, a beam splitter, a photodetector, and a condenser lens, and the polarization direction incident on the polarization diffraction grating is switched by a polarization direction control element. An optical head device is provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, it is a polarization diffraction grating in which a polymer liquid crystal is sandwiched between substrates, and a polarization diffraction grating in which the diffraction efficiency is different for at least one of the polarized light in the central portion and the peripheral portion. This at least one polarized light includes those having different diffraction efficiencies in the central part and the peripheral part in all polarization directions, but the diffraction efficiency differs in the central part and the peripheral part only for polarized light in a specific direction. Including things.
[0010]
In the latter example, one of the two orthogonally polarized lights is almost totally transmitted in the central part and diffracted in the peripheral part, and the other polarized light is almost the same in the central part. Permeate completely, and almost completely permeate the surrounding areaRumoThere is. Specifically, for P-polarized light, it is totally transmitted at the center and diffracted at the peripheral part, but for S-polarized light, it is completely transmitted at both the central part and the peripheral part.RumoThere is.
[0011]
FIG. 1 is a cross-sectional view of a polarization diffraction grating according to the present invention, where (A) is S-polarized light (light having a polarization direction perpendicular to the drawing sheet), and (B) is P-polarized light (polarization direction parallel to the drawing sheet). The light transmission state in the case of the light having () has been described. FIG. 2 is a plan view of the polarization diffraction grating of FIG.
[0012]
1 and 2, 1 is a polarization diffraction grating, 2 is its central part, 3 is its peripheral part, 4 is S-polarized light, 5 is P-polarized light, 6A to 6F are incident light, 7A to 7F are outgoing light, 8 Denotes a first orientation part, and 9 denotes a second orientation part. W1Is the width of the center, W2And W3Indicates the width of the periphery.
[0013]
In the present invention, the central portion 2 and the peripheral portion 3 of the polarization diffraction grating 1 have different diffraction efficiencies for at least one of the polarized lights. In the example of FIGS. 1 and 2, the orientation of the polymer liquid crystal is different between the central portion and the peripheral portion, and the diffraction grating is formed in an axially symmetrical manner in the peripheral portion.
[0014]
In this example, both the upper and lower substrates are aligned in the horizontal direction in FIG.CornerIs 0 °), and the incident lights 6A, 6B, and 6C are transmitted as they are with respect to the S-polarized light and become the emitted lights 7A, 7B, and 7C. For P-polarized light, the incident lights 6D, 6E, and 6F are transmitted as they are at the central portion to become outgoing light 7D, and diffracted at the peripheral portion to become outgoing lights 7E and 7F.
[0015]
However, even in FIG. 1A, there is a diffracted portion other than the cross-sectional portion. In other words, in the peripheral part farther from the cross section, the longitudinal direction of the grating coincides with the polarization direction, and diffraction occurs. This corresponds to the case of viewing in a cross section orthogonal to the cross section of FIG. 1A, which is the same as FIG. That is, when the grating is axisymmetric in this way, diffraction occurs somewhere in the periphery.
[0016]
In this case, a transparent substrate such as normal glass or plastic can be used as the substrate, but a glass substrate is preferable from the viewpoint of reliability. When forming irregularities on the substrate, the substrate itself is shaved by etching or mechanical cutting method, press-molded, or a film is formed on the substrate surface, and this is etched by etching or mechanical cutting method, It may be formed by press molding.
[0017]
The unevenness may be a straight line or a ring shape in the case of a lattice in the peripheral part. Further, when the central portion is formed into a lens shape as in the example described later, it may be a simple concave portion or convex portion, or may be formed into a Fresnel lens shape. The relationship between the refractive index of the liquid crystal to be used and the refractive index of the substrate or the film on the surface of the substrate produces a lattice function or a lens function. Therefore, it is easier to adjust the refractive index by forming a film on the substrate surface and making it uneven. It is preferable.
[0018]
Specifically, an inorganic compound film is preferable as this film, but Si film is particularly preferable.xOyIs preferable. The refractive index of this film can be changed in a fairly wide range depending on the values of x and y, and the refractive index between the ordinary light refractive index and the extraordinary light refractive index that the liquid crystal normally has can be selected almost freely.
[0019]
When an electrode is formed on a substrate, ITO (In2O3-SnO2), But other transparent electrodes can also be used. This electrode is used after being patterned into a desired pattern, but may be used as a solid electrode. In this example, the electrodes are patterned on both substrates, and a portion where no electrode is provided is provided in the central portion 2 and a part of the peripheral portion 3.
[0020]
An alignment film is formed on this electrode as necessary. As this alignment film, an alignment film used in a normal liquid crystal display element can be used. As a typical horizontal alignment film, there is a film obtained by rubbing a resin film such as polyimide or polyamide, or an oblique deposition film of SiO. A typical vertical alignment film is a film using a vertical alignment agent such as aminosilane.
[0021]
In addition, a sealing technique, a liquid crystal injection technique, an inlet sealing technique, a multi-cavity manufacturing technique, and the like may be techniques used in a normal liquid crystal display element process. The polarizing diffraction grating of the present invention is preferably used with an antireflection film formed on the outer surface.
[0022]
There are several methods for manufacturing such a polarization diffraction grating, but the following manufacturing method is preferable.
[0023]
The most suitable first method is to use a pair of substrates on which electrodes are formed so that the facing portions of the facing electrodes have a desired lattice pattern, while applying a voltage between the facing electrodes, This is a method of polymerizing to polymerize.
[0024]
That is, a pair of substrates on which electrodes are formed so that opposing portions of the opposing electrodes have a desired lattice pattern is prepared. Specifically, an electrode may be formed on one substrate so as to have a desired lattice pattern, and a solid electrode may be left on the other substrate. However, both may be patterned in the same manner, and a combination of both patterns may form a desired lattice pattern.
[0025]
Next, a liquid crystalline compound that is polymerized by polymerization is sandwiched between the substrates with electrodes. Specifically, these substrates with electrodes may be overlapped to form a cell, and a liquid crystalline compound that is polymerized by polymerization may be injected into the empty cell. In the case of a highly viscous liquid crystalline compound, a method of sealing at the same time as injection or a method of sealing after a subsequent polymerizing step is also possible.
[0026]
Next, the liquid crystalline compound is polymerized to be polymerized while applying a voltage between the opposing electrodes. Specifically, it may be cured by light irradiation using a photocurable liquid crystalline compound. In the case of the thermosetting type, it is cured by heating. Thereby, in the part pinched between the electrodes to which the voltage is applied, the polymer is polymerized in a state where the alignment state is partially different.
[0027]
When nematic liquid crystal having positive dielectric anisotropy is used and the substrate surface is horizontally aligned by rubbing or the like, the liquid crystal molecules are horizontally aligned in the alignment processing direction of the substrate in a portion where no voltage is applied. On the other hand, the liquid crystal molecules are vertically aligned in a portion where a voltage is applied between the electrodes. Thereby, when it polymerizes, it will be in two types of orientation states.
[0028]
In this case, when considering the state of parallel alignment between the upper and lower substrates, the ordinary refractive index (no) To extraordinary light refractive index (ne). In a portion vertically aligned by voltage application, the ordinary refractive index (no).
[0029]
As a second method, unevenness is formed on at least one substrate itself or a film provided on the surface of the substrate so as to have a desired lattice pattern. Using this uneven substrate and another substrate, a cell is formed, and a liquid crystal compound that is polymerized by polymerization is injected into the empty cell.
[0030]
Next, the injected liquid crystal compound is cured. The liquid crystal molecules are aligned along the recess grooves or the alignment treatment direction. In this case, diffraction may or may not occur depending on the refractive index of the substrate or the film on the surface of the substrate and the refractive index when the liquid crystal is aligned.
[0031]
The third method is similar to the first method, but there is a method in which the electrode is a solid electrode that is not patterned, a light-shielding mask having a desired pattern is disposed on the surface, and photocuring is performed while applying a voltage to the entire surface. .
[0032]
In this case, there are two types of methods. One is to dispose a light-shielding mask, photocuring while applying voltage across the entire surface, and then removing the light-shielding mask and curing without applying voltage across the entire surface. The other is to dispose a light shielding mask, photocure without applying voltage across the entire surface, then remove the light shielding mask and apply voltage across the entire surface to cure.
[0033]
Furthermore, these may be combined, and a polarization diffraction grating having different diffraction efficiencies with respect to at least one polarized light may be formed at the central portion and the peripheral portion.
[0034]
In the case where the lattices are formed symmetrically as shown in FIGS. 1 and 2, the central portion 2 in the above description is horizontally oriented, and light is always totally transmitted regardless of the polarization direction. On the other hand, in the peripheral portion 3, the liquid crystal molecules (side chain portions after polymerization) are horizontally aligned in the first alignment portion 8, and the liquid crystal molecules are vertically aligned in the second alignment portion 9. And a diffraction grating is formed.
For this reason, in the peripheral part 3, since the diffraction grating is formed in a ring shape, a part of the light in any polarization direction is diffracted.
[0035]
Further, in this example, the influence of stray light is avoided by gradually changing (chirping) the grating period, but this can also be omitted when the grating pitch is fine. In this figure, the lattice period is exaggerated in order to make it easy to understand that it is changing gradually, but the rate of change is actually a change of about several tens of percent. Much less than. The same applies to the description of other examples below.
[0036]
As a result, the inner emitted light 7E having a narrow grating pitch is diffracted more than the outer emitted light 7F having a larger grating pitch at the periphery.
[0037]
In addition, in the polarization diffraction grating having this configuration, it is preferable to implement a phase correction coat in order to correct the transmitted wavefront aberration generated in the central portion and the peripheral portion. In order to reduce the transmitted wavefront aberration at the central portion with respect to the polarized light to be diffracted by omitting the phase correction coating process and using a thin ITO film of 50 nm or less, In order to reduce the transmitted wavefront aberration, it is preferable to perform patterning so that the area ratio of the portion with and without the ITO film on the two opposite sides is equal.
[0038]
In order to suppress the transmitted wavefront aberration within the effective diameter for polarized light in all directions or circularly polarized light, an ITO electrode with a thickness of 50 nm or less, which is less affected by the film itself, is provided in the central part independently of the peripheral part. It is preferable that a voltage lower than that in the peripheral portion is applied at the same time so that the liquid crystal is solidified in an intermediate state between horizontal alignment and vertical alignment to reduce the phase difference from the peripheral portion.
[0039]
In the polarization diffraction grating having this configuration, the entire peripheral portion of one side is made of an ITO film, so that alignment is not required and the manufacturing process is simplified. However, the transmittance for the diffracted polarized light in the peripheral portion is increased. For this reason, when a large extinction ratio (transmittance for transmitted polarized light / transmittance for diffracted polarized light) is required in the peripheral portion, it is preferable to pattern ITO electrodes having the same shape on both sides.
[0040]
In this example, since the diffracted light in the diffractive part may become stray light and become optical noise, the diffractive part is made axially symmetric to suppress it. A straight grid may be used.
[0041]
FIG. 3 is a cross-sectional view of another example of the polarization diffraction grating of the present invention, where (A) is S-polarized light (light having a polarization direction perpendicular to the paper surface of the figure), and (B) is P-polarized light (on the paper surface of the figure). The light transmission state in the case of light having a parallel polarization direction is described. FIG. 4 is a plan view of the polarization diffraction grating of FIG.
[0042]
3 and 4, 11 is a polarization diffraction grating, 12 is its central part, 13 is its peripheral part, 14 is S-polarized light, 15 is P-polarized light, 16A to 16F are incident light, 17A to 17F are outgoing light, 18 Denotes a first orientation part, and 19 denotes a second orientation part. W11Is the width of the center, W12And W13Indicates the width of the periphery.
[0043]
In this example, a linear lattice is formed in the peripheral portion 3 except for the central portion 2. Moreover, the pitch of the grating is changed as in Example 1. The lattice may be formed by the same manufacturing method as that described with reference to FIGS.
[0044]
In this example as well, both the upper and lower substrates are aligned in the horizontal direction in the figure (a twist of liquid crystal molecules).CornerIs 0 °), and the incident lights 16A, 16B, and 16C are transmitted as they are with respect to the S-polarized light, and become the emitted lights 17A, 17B, and 17C. For P-polarized light, incident light 16D, 16E, and 16F are transmitted as they are at the central portion to become outgoing light 17D, and diffracted at the peripheral portion to become outgoing light 17E and 17F. In this case, the left emitted light 17E having a narrow grating pitch in the peripheral portion is diffracted more than the right emitted light 17F having a larger grating pitch.
[0045]
FIG. 5 is a cross-sectional view of still another example of the polarization diffraction grating of the present invention, where (A) is S-polarized light (light having a polarization direction perpendicular to the paper surface of the figure), and (B) is P-polarized light (paper surface of the figure). In the case of light having a polarization direction parallel to the light transmission state, the light transmission state is described. FIG. 6 is a plan view of the polarization diffraction grating of FIG.
[0046]
5 and 6, 21 is a polarization diffraction grating, 22 is its central part, 23 is its peripheral part, 24 is S-polarized light, 25 is P-polarized light, 26A to 26F are incident light, 27A to 27F are outgoing light, 28 Denotes a first orientation part, and 29 denotes a second orientation part. W21Is the width of the center, W22And W23Indicates the width of the periphery.
[0047]
In this example, a linear lattice is formed in the peripheral portion 3 as in the examples of FIGS. 3 and 4, and a concave portion is formed in the central portion 2 in the substrate itself. The pitch of the lattice of the linear lattice in the peripheral portion 3 is changed as in the examples of FIGS. The lattice may be formed by the same manufacturing method as that described with reference to FIGS.
[0048]
In this example, by forming a lens-like curved surface at the center of the substrate, the optical wavefront aberration is further improved by controlling not only the aperture diameter but also the phase. For this purpose, irregularities are formed in the central portion 2 as long as the central portion is formed in a desired shape so as to function as a lens. The unevenness may be a simple recess or protrusion, or may be formed in a Fresnel lens shape.
[0049]
In this example as well, both the upper and lower substrates are aligned in the horizontal direction in the figure (a twist of liquid crystal molecules).CornerIs 0 °), and incident light 26A, 26B, and 26C are transmitted as they are in this cross section to become outgoing light 27A, 27B, and 27C with respect to S-polarized light. For P-polarized light, the incident lights 26D, 26E, and 26F are transmitted as they are at the central portion to become outgoing light 27D, and are diffracted at the peripheral portions to become outgoing lights 27E and 27F. In this case, the left outgoing light 27E having a narrow grating pitch in the peripheral portion is diffracted more than the right outgoing light 27F having a wide grating pitch.
[0050]
Further, in this example, the liquid crystal functions as a convex lens only for P-polarized light by the substrate provided with the concave portion in the central portion 22. This is because the liquid crystal is horizontally aligned in parallel (not twisted), so that the liquid crystal exhibits an extraordinary refractive index in the direction of P-polarized light, and the refractive index difference is maintained by keeping the substrate near the ordinary refractive index. And functions as a convex lens. On the other hand, for S-polarized light, when the liquid crystal exhibits a normal light refractive index and the substrate is in the vicinity of the normal light refractive index, no difference in refractive index occurs and the lens does not function as a convex lens.
In this case, the refractive index of the substrate may be matched with the extraordinary light refractive index, the central portion may be vertically aligned, or a convex portion may be formed at the central portion of the substrate.
[0051]
Accordingly, in the present invention, the light aperture diameter is controlled for light in a certain polarization direction, and the light aperture diameter is not limited for light in a certain polarization direction.
[0052]
When the polarization diffraction grating of the present invention and a polarization direction control element using TN liquid crystal are combined, the aperture can be easily switched electrically. In this case, the polarization direction control element using the TN liquid crystal may be a normal TN liquid crystal cell having a solid electrode in which 90 ° twisted liquid crystal is enclosed. Since the polarization direction control element using the TN liquid crystal is used for the purpose of switching between P-polarized light and S-polarized light, it is not necessary to use a polarizing film. For this reason, there is no loss of light quantity due to the polarizing film.
[0053]
The polarization diffraction grating thus manufactured is used by being incorporated in an optical head device.
FIG. 7 is a front view showing a basic configuration of the optical head device of the present invention.
In FIG. 7, 31 is a light source such as a laser diode, 32 is a beam splitter, 33 is a retardation plate such as a quarter-wave plate, 34 is a polarization direction control element, 35 is a polarization diffraction grating, 36 is a condenser lens, 37 Denotes a first optical recording medium, 38 denotes a second optical recording medium, and 39 denotes a photodetector.
[0054]
In this optical head device, the light emitted from the light source 31 passes through the beam splitter 32, the phase difference plate 33, the polarization direction control element 34, the polarization diffraction grating 35, and the condenser lens 36, and enters the first optical recording medium 37. The light reaches the light detector 39 by being reflected by the beam splitter 32 and diffracted by the beam splitter 32. When the polarization direction is changed by the polarization direction control element 34, the light transmission state of the polarization diffraction grating 35 is changed, and the light reaches the second optical recording medium 38.
[0055]
That is, the incident polarization direction to the polarization diffraction grating 35 is switched between P-polarized light and S-polarized light according to the change in the voltage application state to the polarization direction control element 34. As a result, the light emitted from the polarization diffraction grating 35 changes, and the focus is switched to the first optical recording medium 37 and the second optical recording medium 38.
[0056]
The configuration of this optical head device is merely a representative configuration. A polarizing diffraction grating using liquid crystal is used for the beam splitter, the beam splitter is divided into a plurality of parts and diffracted by a plurality of photodetectors, or an SHG (SecondApplications that are applied to known optical head devices, such as using a harmonic generation device) or using a diffraction grating that divides light directed to an optical recording medium into three beams, are possible within the range that does not impair the effects of the present invention. It is.
[0057]
【Example】
Example 1 (Example)
An ITO transparent conductive film having a thickness of 30 nm was formed on a glass substrate having a thickness of 0.5 mm by a sputtering method. The ITO film is patterned by photolithography and wet etching, and a radius of 1.25 mmφ (w1= 2.5 mm) Axisymmetric ITO grid-like electrodes were formed on the outer periphery.
[0058]
However, an ITO electrode having a width of 20 μm was left in the 90 ° and 270 ° directions in order to ensure energization. The grating period was gradually increased from a pitch of 16 μm at a radius of 1.25 mm to a pitch of 20 μm at a radius of 2.5 mm. The same patterning was performed on the ITO electrode on the counter substrate side.
[0059]
A polyimide alignment film having a thickness of 60 nm was formed on the opposing surfaces (ITO electrode formation surfaces) of both substrates, and rubbing with a rubbing cloth was performed. The rubbing direction is parallel to the paper surface of FIG. 1 and both substrates are opposed to each other so that the direction is 180 ° between the upper and lower substrates. Was made.
[0060]
An unpolymerized liquid crystal monomer containing 1% by weight of a polymerization initiator is injected into the empty cell, and 5V is applied to the ITO electrode.rmsA rectangular voltage of 100 Hz was applied. In this state, power density 10 mW / cm2 UV was irradiated for 300 seconds, and the vertical / horizontal periodic repetition of the alignment direction caused by the periodically applied voltage was immobilized by polymerisation. Thereafter, the outer side was cut to produce a 5.0 mm square polarization diffraction grating.
[0061]
The produced polarization diffraction grating has a radius of 1.25 mm to 2 even at the center of the radius of 1.25 mm for linearly polarized light (S-polarized light of FIG. 1) perpendicular to the rubbing direction (parallel to the paper surface of FIG. 1). The transmittance of 90% or more was exhibited even in the peripheral portion where a .5 mm grid was formed.
[0062]
On the other hand, for linearly polarized light parallel to the rubbing direction (P-polarized light in FIG. 1), a transmittance of 90% or more was shown at the center of the radius of 1.25 mm. Incident light was diffracted at the periphery where the 5 mm grating was formed, and only transmitted about 20%.
[0063]
Using this polarization diffraction grating and a 90 ° twisted TN liquid crystal cell (without a polarizing film) as a polarization direction control element, the beam diameter of transmitted light is electrically reduced to about 5 mmφ and about 2.5 mmφ. I was able to switch.
[0064]
A polarizing diffraction grating (Example 1A) was manufactured in the same manner as in Example 1 except that the entire surface of the polarizing diffraction grating of Example 1 was a solid ITO film. By making the electrode of one substrate a solid electrode, the alignment of the two substrates is not required and the manufacturing process is simplified, but the transmittance for the diffracted polarized light in the peripheral portion has increased to about 45%.
[0065]
An empty cell was prepared in the same manner as in Example 1 except that an electrode was provided in the center portion separately from the peripheral lattice. During polymerization of the liquid crystal monomer, the same voltage as in Example 1 was applied to the peripheral portion while applying a lower voltage to the central electrode than to vertically align the liquid crystal. This polarization diffraction grating (Example 1B) had lower transmission wavefront aberration than the polarization diffraction grating of Example 1.
[0066]
Example 2 (Example)
An ITO transparent conductive film having a thickness of 30 nm was formed on a glass substrate having a thickness of 0.5 mm by a sputtering method. The ITO film is patterned by photolithography and wet etching, and a radius of 1.25 mmφ (w 11 = 2.5 mm), an ITO lattice-like electrode having a linear periodic lattice was formed on the periphery.
[0067]
The grating period was gradually increased from a pitch of 16 μm at a position 2.5 mm to the left of the polarization diffraction grating center to a pitch of 20 μm at a position of 2.5 mm to the right from the center. The same patterning was performed on the ITO electrode on the counter substrate side. Rubbing was performed in a direction perpendicular to the grating, and a polarization diffraction grating was produced in the same manner as in Example 1 using both substrates.
[0068]
The produced polarization grating has a radius of 1.25 mm to 2 even in the central portion of the radius of 1.25 mm for linearly polarized light (S-polarized light of FIG. 3) perpendicular to the rubbing direction (parallel to the paper surface of FIG. 3). The transmittance of 90% or more was exhibited even in the peripheral portion where a .5 mm grid was formed.
[0069]
On the other hand, for linearly polarized light parallel to the rubbing direction (P-polarized light in FIG. 3), a transmittance of 90% or more was shown at the center of the radius of 1.25 mm. Incident light was diffracted at the periphery where the 5 mm grating was formed, and only transmitted about 15%.
[0070]
Using this polarization diffraction grating and an electrically drivable 90 ° twisted TN liquid crystal cell (without a polarizing film) as a polarization direction control element, the beam diameter of transmitted light is about 5 mmφ and about 2.5 mmφ. It was possible to switch electrically.
[0071]
A polarizing diffraction grating (Example 2A) was manufactured in the same manner as in Example 1 except that the entire surface of the polarizing diffraction grating of Example 2 was a solid ITO film. By making the electrode of one substrate a solid electrode, the alignment of the two substrates becomes unnecessary and the manufacturing process is simplified, but the transmittance for the diffracted polarized light in the peripheral portion has increased to about 40%.
[0072]
An empty cell was prepared in the same manner as in Example 2 except that an electrode was provided in the central portion separately from the peripheral lattice. During polymerization of the liquid crystal monomer, the same voltage as in Example 2 was applied to the peripheral portion while applying a lower voltage to the central electrode than to vertically align the liquid crystal. This polarization diffraction grating (Example 2B) had lower transmission wavefront aberration than the polarization diffraction grating of Example 2.
[0073]
Example 3 (Example)
An aspherical concave shape having a diameter of 2.5 mm and a depth of 5 μm was produced on a 1.0 mm-thick glass substrate having a refractive index of 1.52 by a pressing method. On this glass substrate, an ITO transparent conductive film having a thickness of 30 nm was formed by sputtering, and patterned into an ITO film by photolithography and wet etching. As shown in FIG. 6, a peripheral portion having a radius of 1.25 mmφ or more was formed. Then, an ITO lattice electrode having a linear periodic lattice was formed.
[0074]
The grating period was gradually increased from a pitch of 16 μm at a position 2.5 mm to the left of the polarization diffraction grating center to a pitch of 20 μm at a position of 2.5 mm to the right from the center. The same patterning was performed on the ITO electrode on the counter substrate side.
[0075]
An empty cell was prepared in the same manner as in Example 2, and an unpolymerized acrylic liquid crystal monomer containing 1% by weight of a polymerization initiator in the cell (n after polymerization)o= 1.5, ne= 1.6) was injected, and a polarization diffraction grating was produced in the same manner as in Example 2.
[0076]
The produced polarization grating has a radius of 1.25 mm to 2.5 mm even in the central portion of the radius 1.25 mm for linearly polarized light (S-polarized light) perpendicular to the rubbing direction (parallel to the paper surface of FIG. 5). A transmittance of 90% or more was exhibited even in the peripheral portion where the grating was formed. The central portion did not function as a lens because there was almost no refractive index difference with respect to this linearly polarized light.
[0077]
On the other hand, for linearly polarized light (P-polarized light) parallel to the rubbing direction, a transmittance of 90% or more was shown in the central part with a radius of 1.25 mm, but a grating with a radius of 1.25 mm to 2.5 mm. The incident light was diffracted at the periphery where the sapphire was formed and was transmitted only about 15%. Further, the central portion functions as a phase correction convex lens having a refractive index difference of 0.1 and a thickness of 5 μm, and the phase change of the transmitted wavefront was confirmed.
[0078]
Using this polarization diffraction grating and an electrically drivable 90 ° twisted TN liquid crystal cell (without a polarizing film) as a polarization direction control element, the beam diameter of transmitted light is about 5 mmφ and about 2.5 mmφ. It was possible to switch electrically.
[0079]
【The invention's effect】
The present invention is a polarization diffraction grating in which a polymer liquid crystal is sandwiched between substrates, and the diffraction efficiency for at least one of polarized light differs between the central portion and the peripheral portion. Thereby, electrical aperture control can be performed without using a polarizing film, and a compact optical head device with high light utilization efficiency and high reliability can be easily obtained.
[0080]
Since the aperture control can be electrically performed, a mechanism such as mechanical lens switching is unnecessary, which is suitable for reducing the size and weight of the optical head device and increasing the reliability. Further, since it is not necessary to use a polarizing film, the light utilization efficiency is increased, the light source can be reduced in output and size, and there are also advantages such as low power consumption.
The present invention can be applied in various ways as long as the effects of the present invention are not impaired.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a polarization diffraction grating of the present invention. (A) illustrates S-polarized light, and (B) illustrates light transmission in the case of P-polarized light.
FIG. 2 is a plan view of the polarization diffraction grating of FIG.
FIG. 3 is a cross-sectional view of another example of the polarization diffraction grating of the present invention. (A) illustrates S-polarized light, and (B) illustrates light transmission in the case of P-polarized light.
4 is a plan view of the polarization diffraction grating of FIG. 3;
FIG. 5 is a cross-sectional view of still another example of the polarization diffraction grating of the present invention. (A) illustrates S-polarized light, and (B) illustrates light transmission in the case of P-polarized light.
6 is a plan view of the polarization diffraction grating of FIG.
FIG. 7 is a front view showing a basic configuration of an optical head device of the present invention.
[Explanation of symbols]
Polarization diffraction grating: 1
Center: 2
Peripheral part: 3
S-polarized light: 4
P-polarized light: 5
Incident light: 6A-6F
Outgoing light: 7A-7F
First orientation part: 8
Second orientation part: 9

Claims (9)

高分子液晶を基板間に挟持した偏光回折格子において、前記偏光回折格子は液晶性化合物を部分的に配向状態が異なる状態で高分子化させて形成した高分子液晶層を含む偏光回折格子であって、中心部と周辺部とで少なくともいずれかの偏光に対する回折効率が異なっていて、直交する2つの偏光のうち、一方の偏光に対しては、中心部ではほぼ全透過し、周辺部では回折するとともに、もう一方の偏光に対しては、中心部では同じくほぼ全透過し、周辺部でもほぼ全透過することを特徴とする偏光回折格子。In the polarization diffraction grating in which the polymer liquid crystal is sandwiched between the substrates, the polarization diffraction grating is a polarization diffraction grating including a polymer liquid crystal layer formed by polymerizing a liquid crystalline compound in a partially different orientation state. Te, the diffraction efficiency for at least one of the polarization between the central portion and the peripheral portion is Te different for Ttei, among two orthogonal polarization, for one polarization, substantially total transmission in the central portion, the peripheral portion while diffraction for the other polarization, and also almost all the transmission is in the center, polarization gratings, characterized that you almost total transmission in the peripheral portion. 前記周辺部に形成されている前記偏光回折格子が、格子周期が変化する同心円状である請求項1記載の偏光回折格子。 The polarization diffraction grating according to claim 1 , wherein the polarization diffraction grating formed in the peripheral portion has a concentric shape with a varying grating period . 前記同心円状の偏光回折格子の格子周期が、内側から外側へ向かって増加していることを特徴とする請求項2記載の偏光回折格子。3. The polarization diffraction grating according to claim 2, wherein a grating period of the concentric polarization diffraction grating increases from the inside toward the outside. 前記周辺部に形成されている前記偏光回折格子が、格子周期が変化する直線状の偏光回折格子である請求項1記載の偏光回折格子。 The polarization diffraction grating according to claim 1 , wherein the polarization diffraction grating formed in the peripheral portion is a linear polarization diffraction grating having a grating period changing . 前記中心部がレンズ状の凹凸又はフレネルレンズ状の凹凸とされていることを特徴とする請求項1〜4のいずれかに記載の偏光回折格子。The polarizing diffraction grating according to any one of claims 1 to 4, wherein the central portion is a lens-shaped unevenness or a Fresnel lens-shaped unevenness. 前記偏光回折格子が、前記周辺部は、対向する電極の対向部分が所望の格子パターンになるように形成された電極付き基板間に重合により高分子化する液晶性化合物を挟持し、対向する電極間に電圧を印加しつつ液晶性化合物を重合して高分子化することにより形成されているとともに、前記中心部は、周辺部とは独立した透明電極によって電圧を印加しつつ重合することにより形成された水平配向と垂直配向の中間状態の高分子液晶からなり周辺部との位相差を低減した、請求項1〜5のいずれかに記載の偏光回折格子。The polarizing diffraction grating has a liquid crystal compound that is polymerized by polymerization between substrates with electrodes formed so that the peripheral portion of the opposing portion of the opposing electrode has a desired grating pattern, and the opposing electrode It is formed by polymerizing a liquid crystalline compound while applying a voltage in between, and the central part is formed by polymerizing while applying a voltage with a transparent electrode independent of the peripheral part. The polarization diffraction grating according to any one of claims 1 to 5, wherein the polarization diffraction grating is made of a polymer liquid crystal in an intermediate state between the horizontal alignment and the vertical alignment, and has a reduced phase difference with a peripheral portion. 入射した偏光の偏光方向を外部信号により変化させて透過する偏光方向制御素子と、請求項1〜6のいずれかに記載の偏光回折素子と、を備えていて、入射した光を、前記偏光方向制御素子に印加する外部信号により偏光方向を変化させて前記偏光回折素子に導くことを特徴とする開口制御装置。A polarization direction control element that changes the polarization direction of incident polarized light by an external signal and transmits the polarization direction control element, and the polarization diffraction element according to any one of claims 1 to 6, wherein the incident light is converted into the polarization direction. An aperture control apparatus, wherein the polarization direction is changed by an external signal applied to the control element and is guided to the polarization diffraction element. 入射した偏光を、偏光方向制御素子、前記偏光回折格子をこの順番で透過させ、外部信号により光束径を変化させて出射する開口制御方法であって、前記偏光方向制御素子が、入射した偏光の偏光方向を外部信号により変化させて透過する偏光方向制御素子であって、前記開口制御方法は、入射した光を、前記偏光方向制御素子に外部信号を印加して偏光方向を変化させ、偏光により開口の異なる請求項1〜6のいずれかに記載の偏光回折格子に導くことを特徴とする開口制御方法。An aperture control method in which incident polarized light is transmitted through a polarization direction control element and the polarization diffraction grating in this order, and is emitted by changing the beam diameter by an external signal, wherein the polarization direction control element A polarization direction control element that changes the polarization direction according to an external signal and transmits the polarization direction control element, wherein the aperture control method changes the polarization direction by applying an external signal to the polarization direction control element and changes the polarization direction. 7. An aperture control method, wherein the aperture is guided to the polarization diffraction grating according to claim 1 having a different aperture. 請求項1〜6のいずれかに記載の偏光回折格子を光源、ビームスプリッタ、光検出器、集光レンズとを含む光ヘッド装置に組み込み、偏光方向制御素子により偏光回折格子に入射する偏光方向を切り替えるようにしたことを特徴とする光ヘッド装置。Source polarization diffraction grating child according to any one of claims 1 to 6, the beam splitter, a photodetector, built in an optical head device including a condenser lens, a polarization direction enters the polarization diffraction grating by the polarization direction control element An optical head device characterized by switching between the two.
JP34395796A 1996-12-24 1996-12-24 Polarization diffraction grating, aperture control device using the same, aperture control method, and optical head device Expired - Fee Related JP3648581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34395796A JP3648581B2 (en) 1996-12-24 1996-12-24 Polarization diffraction grating, aperture control device using the same, aperture control method, and optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34395796A JP3648581B2 (en) 1996-12-24 1996-12-24 Polarization diffraction grating, aperture control device using the same, aperture control method, and optical head device

Publications (2)

Publication Number Publication Date
JPH10188321A JPH10188321A (en) 1998-07-21
JP3648581B2 true JP3648581B2 (en) 2005-05-18

Family

ID=18365551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34395796A Expired - Fee Related JP3648581B2 (en) 1996-12-24 1996-12-24 Polarization diffraction grating, aperture control device using the same, aperture control method, and optical head device

Country Status (1)

Country Link
JP (1) JP3648581B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133628A (en) * 1999-08-26 2001-05-18 Nippon Mitsubishi Oil Corp Method for producing polarlized light diffractive film
KR20050117844A (en) 2004-06-11 2005-12-15 삼성전자주식회사 Pick-up device for beam
CN114047569A (en) * 2021-11-17 2022-02-15 佛山市睿琪全钰科技有限公司 Grating diffraction element and method for realizing gradient period of one-word line light spot
WO2023171077A1 (en) * 2022-03-09 2023-09-14 株式会社ジャパンディスプレイ Liquid crystal optical element

Also Published As

Publication number Publication date
JPH10188321A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
KR101330860B1 (en) Liquid crystal element, optical head device, and variable optical modulation element
KR100642951B1 (en) Optical head device and production method thereof
JP3620145B2 (en) Optical head device
KR100497586B1 (en) Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
JPWO2006043516A1 (en) Liquid crystal diffractive lens element and optical head device
US6304312B1 (en) Optical head, method of manufacturing the same, and diffraction element suitable therefor
JP2008139684A (en) Polarization converting element and polarization conversion device
JP4792679B2 (en) Isolator and variable voltage attenuator
JP4300784B2 (en) Optical head device
JP3624561B2 (en) Optical modulation element and optical head device
JP3648581B2 (en) Polarization diffraction grating, aperture control device using the same, aperture control method, and optical head device
JPH1164615A (en) Diffraction element
JP3994450B2 (en) Manufacturing method of optical diffraction grating and optical head device using the same
JP3598703B2 (en) Optical head device and manufacturing method thereof
JP2002357715A (en) Grating-integrated azimuth rotator and optical head device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3885251B2 (en) Optical anisotropic diffraction grating, driving method thereof, and optical head device using the same
JP4179645B2 (en) Optical head device and driving method thereof
JP3799756B2 (en) Optical head device
JP4599763B2 (en) Optical head device
JP3528381B2 (en) Optical head device
JP3986580B2 (en) Optical modulation element and optical head device
JP3713778B2 (en) Optical head device
JP3601182B2 (en) Optical head device and manufacturing method thereof
KR100223860B1 (en) Optical pickup for different disc type

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees