JPH1164615A - Diffraction element - Google Patents

Diffraction element

Info

Publication number
JPH1164615A
JPH1164615A JP9224017A JP22401797A JPH1164615A JP H1164615 A JPH1164615 A JP H1164615A JP 9224017 A JP9224017 A JP 9224017A JP 22401797 A JP22401797 A JP 22401797A JP H1164615 A JPH1164615 A JP H1164615A
Authority
JP
Japan
Prior art keywords
light
refractive index
film
liquid crystal
diffraction element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9224017A
Other languages
Japanese (ja)
Other versions
JP3978821B2 (en
Inventor
Hiromasa Sato
弘昌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP22401797A priority Critical patent/JP3978821B2/en
Publication of JPH1164615A publication Critical patent/JPH1164615A/en
Application granted granted Critical
Publication of JP3978821B2 publication Critical patent/JP3978821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a diffraction element light in weight, small in size and high in the availability of light by forming a lattice having projections and recesses in the cross section in a double refractive film, filling the recesses of the lattice with an isotropic material having an almost the same refractive index as the refractive index for normal or abnormal light of the double refractive film. SOLUTION: A double refractive film 24 comprising a uniformly oriented polymer liquid crystal having photosetting property is formed on a transparent substrate 20. Then a lattice 27 having projections and recesses in the cross section is formed in the double refractive film 24 produced by forming film and orienting. As for the means to form the lattice 27, an etching method by photolithography or a pressing method with a die having a lattice form can be used. When the incident linearly polarized light is designed to be perpendicular to the orientation direction of the polymer liquid crystal, the recesses are filled with an isotropic material 28 having almost the same refractive index as the refractive index for normal light of the polymer liquid crystal. When the incident linearly polarized light is designed to be parallel to the orientation direction of the polymer liquid crystal, the recesses are filled with an isotropic material having almost the same refractive index as the refractive index for abnormal light of the polymer liquid crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CD、CD−RO
M、ビデオディスクなどの光ディスクおよび光磁気ディ
スクなどに光学的情報を書き込んだり、光学的情報を読
み取るための光ヘッド装置に使用する回折素子に関す
る。
TECHNICAL FIELD The present invention relates to a CD, a CD-RO
The present invention relates to a diffractive element used for an optical head device for writing optical information on an optical disk such as a video disk, a video disk, and a magneto-optical disk, and for reading optical information.

【0002】[0002]

【従来の技術】光ディスクおよび光磁気ディスクなどの
光記録媒体に光学的情報を書き込んだり、光記録媒体か
ら光学的情報を読み取ったりするのに光ヘッド装置が用
いられる。光ヘッド装置は、ディスク状の光記録媒体の
記録面から反射された信号光を光検出部へ導光(ビーム
スプリット)するための光学部品を備えている。この光
学部品としては、従来、回折素子またはホログラム素子
を用いたものと、プリズム式ビームスプリッタを用いた
ものとが知られていた。
2. Description of the Related Art An optical head device is used for writing optical information on an optical recording medium such as an optical disk and a magneto-optical disk and reading optical information from the optical recording medium. The optical head device includes an optical component for guiding (beam splitting) the signal light reflected from the recording surface of the disk-shaped optical recording medium to the light detection unit. Conventionally, as this optical component, one using a diffraction element or a hologram element and one using a prism type beam splitter have been known.

【0003】光ヘッド装置用の従来の回折素子またはホ
ログラム素子は、ガラスやプラスチックの基板上に、矩
形の断面を有するレリーフ状の格子をドライエッチング
法または射出成形法よって形成したものであり、格子で
光を回折しビームスプリット機能を付与していた。
[0003] A conventional diffraction element or hologram element for an optical head device is formed by forming a relief-shaped grating having a rectangular cross section on a glass or plastic substrate by dry etching or injection molding. Diffracts light to provide a beam splitting function.

【0004】これらの回折素子またはホログラム素子の
うち、ドライエッチング法を用いるものの例を図4に示
す。下面側に低反射コート1を施されたガラス基板2そ
のものの上面、または、ガラス基板2上に蒸着法やスパ
ッタ法などの真空プロセスを用いて成膜されたSiO2
などの無機薄膜3の上面に、フォトリソグラフィによ
り、格子状のフォトレジストマスクを作製し、この状態
で、ドライエッチングを行って無機薄膜3の部分に無機
薄膜3の格子である無機格子4を形成し、さらに、無機
格子4の上に残存しているフォトレジストを除去してか
ら、低反射コート5を施すことにより回折素子を作成
し、偏光無依存型の等方性回折素子として使用する。
FIG. 4 shows an example of a diffraction element or a hologram element using a dry etching method. SiO 2 film formed by using a vacuum process such as an evaporation method or a sputtering method on the upper surface of the glass substrate 2 itself having the low reflection coat 1 on the lower surface side, or on the glass substrate 2
A lattice-shaped photoresist mask is formed on the upper surface of the inorganic thin film 3 by photolithography, and in this state, dry etching is performed to form an inorganic lattice 4 which is a lattice of the inorganic thin film 3 on the portion of the inorganic thin film 3. Further, the photoresist remaining on the inorganic grating 4 is removed, and then a low-reflection coating 5 is applied to produce a diffraction element, which is used as a polarization-independent isotropic diffraction element.

【0005】このような等方性回折素子における光の利
用効率は10%程度と低く、光の利用効率を10%より
も上げようとする場合には、偏光を利用することが考え
られる。
The light use efficiency of such an isotropic diffraction element is as low as about 10%, and if it is desired to increase the light use efficiency to more than 10%, it is conceivable to use polarized light.

【0006】そこで、偏光を利用した光利用効率の高い
ホログラム(回折素子)を備えた光ヘッド装置が特開平
9−180236に提案されている。この提案の偏光性
回折素子は図5のものである。まず、ガラス基板6上
に、後述する液晶7などの複屈折性材料の常光屈折率ま
たは異常光屈折率とほぼ等しい屈折率を有する無機系の
等方性薄膜8を成膜し、つぎに、フォトリソグラフィに
より、等方性薄膜8の上に、格子状のフォトレジストマ
スクを作製し、この状態で、ドライエッチングを行って
無機格子9を形成し、さらに、無機格子9の上に残存し
たフォトレジストを除去してから、配向膜10を塗布焼
成して配向処理を施した後、同様の配向処理を実施した
配向膜11を有する対向基板12を向かい合わせるとと
もに、シール材13を介在させて熱圧着し、内部に液晶
7などの複屈折性材料を充填し封止することにより回折
素子部14を形成し、さらに、ガラス基板6の下面側に
有機系位相差フィルム15を貼り付けたガラス基板16
を挟み込むように取り付けて位相差板部17を形成し、
両面に低反射コート18、19を施す。
Therefore, an optical head device provided with a hologram (diffraction element) using polarized light and having high light use efficiency has been proposed in Japanese Patent Application Laid-Open No. 9-180236. The proposed polarizing diffractive element is that shown in FIG. First, an inorganic isotropic thin film 8 having a refractive index substantially equal to the ordinary refractive index or the extraordinary refractive index of a birefringent material such as a liquid crystal 7 described later is formed on a glass substrate 6. A lattice-shaped photoresist mask is formed on the isotropic thin film 8 by photolithography, and in this state, an inorganic lattice 9 is formed by performing dry etching, and the photo-residue remaining on the inorganic lattice 9 is formed. After the resist is removed, the alignment film 10 is applied and baked to perform an alignment treatment. Then, the opposite substrate 12 having the alignment film 11 that has been subjected to the same alignment treatment is opposed to each other, and the heat is applied through the sealing material 13. A glass substrate in which a diffractive element portion 14 is formed by compression bonding, filling a birefringent material such as a liquid crystal 7 therein, and sealing, and further, an organic retardation film 15 is attached to the lower surface side of the glass substrate 6. 6
To form a phase difference plate portion 17,
Low reflection coats 18 and 19 are applied to both sides.

【0007】[0007]

【発明が解決しようとする課題】上記図5の偏光性の回
折素子の場合に、通常の液晶7は、格子における凹凸部
の延長方向、すなわち、格子方向に沿って配向されるた
め、格子方向と直交する偏光に対しては液晶7の常光屈
折率が対応し、格子方向と平行な偏光に対しては液晶7
の異常光屈折率が対応する。したがって、上記光ヘッド
装置では、入射光の偏光方向に対して格子方向は、平行
または垂直のいずれかとなり、かつ、回折素子部14内
でほぼ一様な方向であるという制約があった。
In the case of the polarizing diffractive element shown in FIG. 5, the ordinary liquid crystal 7 is oriented along the extension direction of the uneven portion in the lattice, that is, along the lattice direction. The ordinary light refractive index of the liquid crystal 7 corresponds to polarized light perpendicular to the liquid crystal, and the liquid crystal 7 corresponds to polarized light parallel to the lattice direction.
Corresponds to the extraordinary light refractive index. Therefore, in the optical head device, there is a restriction that the grating direction is either parallel or perpendicular to the polarization direction of the incident light and is substantially uniform in the diffraction element section 14.

【0008】また、液晶7を封入するのに、ガラス基板
6と対向基板12とシール材13が必要となるため、有
効径に対して素子サイズ上の問題となっていた。さら
に、偏光切り替えのための位相差板部17を合わせ持つ
回折素子において、位相差板部17に安価な有機系位相
差フィルム15を用いる場合には、有機系位相差フィル
ム15単体が持つ透過波面歪みや、回折素子部14に充
填する液晶7との反応に対する信頼性が問題となり、こ
れを解消するためにガラスが3枚必要となり、回折素子
の薄型化、軽量化上の問題となっていた。
Further, since the glass substrate 6, the counter substrate 12, and the sealing material 13 are required for enclosing the liquid crystal 7, there is a problem in the element size with respect to the effective diameter. Further, in the case of using a low-cost organic retardation film 15 for the retardation plate 17 in a diffraction element having a retardation plate 17 for switching polarization, the transmitted wavefront of the organic retardation film 15 alone is used. There is a problem in reliability with respect to distortion and a reaction with the liquid crystal 7 filled in the diffraction element portion 14. To solve this problem, three glasses are required, which is a problem in making the diffraction element thinner and lighter. .

【0009】本発明は、上述の各問題を解決し、位相差
板を内蔵でき、軽量小型で、かつ、格子方向と入射偏光
方向とのなす角度に制約がなく、工業的生産が可能で高
い光利用効率を有する回折素子を提供することを目的と
する。
The present invention solves the above-mentioned problems, can incorporate a retardation plate, is lightweight and small, and has no restriction on the angle between the grating direction and the incident polarization direction, and can be industrially manufactured and high. An object is to provide a diffraction element having light use efficiency.

【0010】[0010]

【課題を解決するための手段】本発明は、透明基板と、
透明基板上に形成された、複屈折性膜の断面が凹凸状の
格子と、前記格子の凹部に充填された、屈折率が前記複
屈折性膜の常光屈折率または異常光屈折率とほぼ等しい
屈折率を有する等方性材料とを備えることを特徴とする
回折素子を提供する。
The present invention comprises a transparent substrate,
A birefringent film formed on a transparent substrate, the cross section of the birefringent film is irregular, and the concave portion of the lattice is filled with a refractive index substantially equal to the ordinary light refractive index or the extraordinary light refractive index of the birefringent film. A diffractive element comprising: an isotropic material having a refractive index.

【0011】また、複屈折性膜に、屈折率楕円体の屈折
率長軸方向に対して平行でも垂直でもない方向に前記格
子が形成されている上記回折素子を提供する。また、複
屈折性膜が、高分子液晶で形成されている上記回折素子
を提供する。また、透明基板が、光学的な位相差を有す
る透明基板、または、位相差膜を形成されている透明基
板である上記回折素子を提供する。また、回折素子の少
なくとも一方の面における有効径内の少なくとも一部分
に、波長が異なる2種類の光に対してそれぞれ異なる透
過率を示す波長選択性の開口径制限部を一体的に備える
上記回折素子を提供する。
[0011] The present invention also provides the diffraction element, wherein the grating is formed on the birefringent film in a direction that is neither parallel nor perpendicular to the refractive index major axis direction of the refractive index ellipsoid. Further, the present invention provides the diffraction element, wherein the birefringent film is formed of a polymer liquid crystal. Further, the present invention provides the diffraction element, wherein the transparent substrate is a transparent substrate having an optical retardation or a transparent substrate having a retardation film formed thereon. Further, the diffractive element integrally provided with a wavelength-selective aperture diameter restricting portion that exhibits different transmittances for two types of light having different wavelengths, at least in a part of an effective diameter of at least one surface of the diffractive element. I will provide a.

【0012】[0012]

【発明の実施の形態】本発明においては、水晶基板など
の光学的な位相差を有する基板、または、位相差膜を形
成されたガラス基板などの透明基板上に、一様に配向し
た光硬化性を有する高分子液晶からなる複屈折性膜を形
成する。この複屈折性膜を構成する高分子液晶の配向方
向としては、透明基板に対して水平で、かつ、入射直線
偏光に対して垂直/平行のいずれでもよく、どちらの場
合でも高透過とできる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a photo-curing material which is uniformly oriented on a substrate having an optical phase difference such as a quartz substrate or a transparent substrate such as a glass substrate having a phase difference film formed thereon. A birefringent film made of a polymer liquid crystal having a property is formed. The alignment direction of the polymer liquid crystal constituting the birefringent film may be either horizontal to the transparent substrate and perpendicular / parallel to the incident linearly polarized light, and high transmittance can be obtained in any case.

【0013】成膜し配向した高分子液晶による複屈折性
膜に、断面が凹凸状の格子を形成する。格子を形成する
手段としては、フォトリソグラフィよるエッチング方式
や、格子形状を有する金型によるプレス方式などが使用
できる。
A lattice having an uneven cross section is formed on a birefringent film made of a polymer liquid crystal that has been formed and oriented. As a means for forming the lattice, an etching method using photolithography, a pressing method using a mold having a lattice shape, or the like can be used.

【0014】この際、格子を複屈折性膜に形成したた
め、格子方向が、高分子液晶の配向方向および入射直線
偏光方向によって制約を受けないので、任意の方向を選
択でき、高分子液晶による複屈折性膜における屈折率楕
円体の屈折率長軸方向に対して平行でも垂直でもない方
向とすることができる。また、回折素子を複数の領域に
分け、各領域について方向の異なる格子を形成すること
もできる。
At this time, since the grating is formed on the birefringent film, the grating direction is not restricted by the orientation direction of the polymer liquid crystal and the direction of the incident linearly polarized light. The direction can be neither parallel nor perpendicular to the refractive index major axis direction of the refractive index ellipsoid in the refractive film. Further, the diffraction element can be divided into a plurality of regions, and a grating having a different direction can be formed for each region.

【0015】形成された格子の凹凸部には等方性媒体を
充填する。等方性媒体の屈折率は、入射直線偏光方向と
複屈折性膜を構成する高分子液晶の配向方向との関係に
よって決まる。例えば、入射直線偏光と高分子液晶の配
向方向とを垂直とした場合には、高分子液晶の常光屈折
率と屈折率のほぼ等しい等方性媒体にて凹部を充填し、
また、入射直線偏光と高分子液晶の配向方向とを平行と
した場合には、高分子液晶の異常光屈折率と屈折率のほ
ぼ等しい等方性媒体にて凹部を充填する。充填する等方
性材料としては、光硬化型のポリマー、熱硬化型のポリ
マーなどが使用でき、例えばアクリル系紫外線硬化型接
着剤などが使用できる。
An isotropic medium is filled in the uneven portions of the formed lattice. The refractive index of the isotropic medium is determined by the relationship between the direction of the incident linearly polarized light and the orientation direction of the polymer liquid crystal forming the birefringent film. For example, when the incident linearly polarized light and the orientation direction of the polymer liquid crystal are perpendicular to each other, the concave portion is filled with an isotropic medium having almost the same refractive index as the ordinary light refractive index of the polymer liquid crystal.
When the incident linearly polarized light and the orientation direction of the polymer liquid crystal are parallel, the concave portion is filled with an isotropic medium having a refractive index substantially equal to the extraordinary light refractive index of the polymer liquid crystal. As the isotropic material to be filled, a photocurable polymer, a thermosetting polymer, or the like can be used, and for example, an acrylic ultraviolet curable adhesive can be used.

【0016】等方性媒体の充填時に、回折素子全体の透
過波面歪みを抑制するためには低反射コートを施したカ
バーガラスなどで挟み込んで硬化させる方法が容易であ
る。しかし、回折素子の薄型化、軽量化のために、カバ
ーガラスなしで硬化させる方が望ましい。また、前記回
折素子に位相差板部を一体化することができ、光ヘッド
装置および回折素子の小型、軽量化のために望ましい。
そこで、位相差を有する透明基板として、水晶の透明基
板を使用できる。
In order to suppress the transmitted wavefront distortion of the entire diffraction element at the time of filling the isotropic medium, it is easy to sandwich and cure the cover glass or the like provided with a low reflection coating. However, in order to reduce the thickness and weight of the diffraction element, it is preferable to cure the diffraction element without a cover glass. Further, a phase difference plate can be integrated with the diffraction element, which is desirable for reducing the size and weight of the optical head device and the diffraction element.
Therefore, a quartz transparent substrate can be used as the transparent substrate having a phase difference.

【0017】また、水晶の透明基板の代わりに有機系位
相差フィルムを貼り付けたガラス製の透明基板も使用で
きる。有機系位相差フィルムの代わりに透明基板に対し
て水平配向された光硬化性を有する高分子液晶などの有
機系位相差材料も使用できる。これらの、位相差を有す
る基板または有機系位相差材料を1/4波長板(直線偏
光を円偏光に変換する)として用いる場合は、これらの
材料の位相差が使用波長の(n+1/4)倍となるよう
調整し、複屈折性材料の光学軸と入射直線偏光の方向を
45゜の角度をなすように配置する。ここでnは0以上
の整数である。
Further, a transparent substrate made of glass to which an organic phase difference film is adhered can be used instead of the transparent substrate made of quartz. Instead of the organic phase difference film, an organic phase difference material such as a polymer liquid crystal having photocurability which is horizontally aligned with the transparent substrate can be used. When a substrate having a phase difference or an organic phase difference material is used as a 波長 wavelength plate (converting linearly polarized light into circularly polarized light), the phase difference between these materials is (n + /) of the used wavelength. The optical axis of the birefringent material and the direction of the incident linearly polarized light are arranged at an angle of 45 °. Here, n is an integer of 0 or more.

【0018】また、光ヘッド装置が2種類の光源、例え
ば波長650nmの半導体レーザと波長780nmの半
導体レーザを備え、同一の集光レンズを用いて、DVD
の読み出しとCDの読み出しにそれぞれ使い分ける場
合、DVDとCDのディスクの厚さの違いによって発生
する集光時の収差を改善するために、CDの読み出し時
に、外周部の光量を落とす方法が知られており、そのた
めの手段の一つとして波長選択性の開口径制限部を用い
ることが知られている。本発明においては、この目的の
ために、2つの光源の波長によって20%以上透過率の
異なる波長選択性の開口径制限部を使用する。
The optical head device includes two types of light sources, for example, a semiconductor laser having a wavelength of 650 nm and a semiconductor laser having a wavelength of 780 nm.
In order to improve the aberration at the time of focusing caused by the difference in the thickness of DVD and CD discs when reading and reading CDs, it is known to reduce the amount of light at the outer periphery when reading CDs. It is known to use a wavelength-selective aperture diameter limiting unit as one of the means for achieving this. In the present invention, for this purpose, a wavelength-selective aperture limiter having a transmittance different by 20% or more depending on the wavelength of the two light sources is used.

【0019】例えば、650nmの波長の光に対しては
90%以上を透過し、780nmの波長の光に対しては
90%以上を反射するダイクロイックミラーなどの光学
多層膜からなる波長選択性の開口径制限部を、有効領域
内のCDデータの読み出しを行う際に切り捨てられる素
子の外周部に一体化して設置でき、これによって、部品
点数の削減や、光ヘッド装置の小型軽量化などの効果が
得られる。
For example, the wavelength selectivity of an optical multilayer film such as a dichroic mirror that transmits at least 90% of light having a wavelength of 650 nm and reflects at least 90% of light having a wavelength of 780 nm. The aperture limiter can be installed integrally with the outer periphery of the element that is cut off when reading CD data in the effective area, thereby reducing the number of components and reducing the size and weight of the optical head device. can get.

【0020】本発明の回折素子は、従来の回折素子に比
べて格子パターンのデザイン自由度も高いうえに、様々
な用途の光学部品を積層一体化できるので、軽量化かつ
薄型化が可能である。
The diffractive element of the present invention has a higher degree of freedom in the design of a grating pattern than conventional diffractive elements, and can be laminated and integrated with optical components for various uses, so that it is possible to reduce the weight and thickness. .

【0021】位相差板および波長選択性の開口径制限部
を合わせ持つ回折素子の場合、波長が650nmの半導
体レーザからのS波のレーザ光は、往路(光源側から光
記録媒体側へ向かう方向)においては、まず、波長選択
性の開口径制限部を透過して、高分子液晶による複屈折
性膜の全ての有効領域に入射する。すると、P波に対応
する方向に配向された高分子液晶の凸部の屈折率は1.
5(常光屈折率)程度であり、凹部もほぼ屈折率が1.
5であるため、レーザ光は回折しないで透過し、位相差
を持つ複屈折性の基板または位相差膜によって直線偏光
が円偏光へ変換される。
In the case of a diffractive element having both a retardation plate and a wavelength-selective aperture diameter limiting portion, the S-wave laser light from the semiconductor laser having a wavelength of 650 nm is transmitted in the outward path (in the direction from the light source side toward the optical recording medium side). In (1), first, the light passes through the wavelength-selective aperture diameter limiting portion and is incident on all the effective regions of the birefringent film made of the polymer liquid crystal. Then, the refractive index of the convex portion of the polymer liquid crystal oriented in the direction corresponding to the P-wave is 1.
5 (ordinary light refractive index), and the concave portion has a refractive index of about 1.
5, the laser light is transmitted without being diffracted, and the linearly polarized light is converted into the circularly polarized light by the birefringent substrate or the retardation film having the phase difference.

【0022】復路(光記録媒体側から光源側へ向かう方
向)においては、レーザ光は、光記録媒体で反射されて
逆回りの円偏光となって回折素子へ入射し、位相差を持
つ複屈折性基板または位相差膜によって、今度は往路と
直交する直線偏光に変化されP波となる。すると、P波
に対応する方向に配向された高分子液晶によって形成さ
れる凸部の屈折率は1.6(異常光屈折率)程度であ
り、凹部の屈折率はほぼ1.5であるため、回折素子と
して機能し、光の回折が起こる。
On the return path (in the direction from the optical recording medium side to the light source side), the laser light is reflected by the optical recording medium, becomes reverse circularly polarized light, enters the diffraction element, and has a birefringence having a phase difference. This time, the light is changed to linearly polarized light orthogonal to the outward path by the conductive substrate or the phase difference film, and becomes a P wave. Then, the refractive index of the convex portion formed by the polymer liquid crystal oriented in the direction corresponding to the P wave is about 1.6 (an extraordinary light refractive index), and the refractive index of the concave portion is approximately 1.5. Function as a diffraction element, and light diffraction occurs.

【0023】これに対し、波長が780nmのレーザ光
に対しては、上記の波長選択性の開口径制限部が機能す
るため、中央部のみが回折素子の回折素子部へ入射す
る。そして、往路では波長が650nmの場合と同様に
屈折率差がほとんどないため、光は回折しないで下方へ
透過する。ここで、位相差板は、650nmの波長に対
し、1/4波長板となるように調整されているため78
0nmの波長に対しては約1/5波長板として機能し、
結果として光記録媒体からの戻り光は完全なP波にはな
らないが、その大部分は回折する。
On the other hand, for a laser beam having a wavelength of 780 nm, the above-described wavelength-selective aperture diameter limiting portion functions, so that only the central portion enters the diffraction element portion of the diffraction element. Then, as in the case of the wavelength of 650 nm, there is almost no difference in the refractive index on the outward path, so that the light is transmitted downward without being diffracted. Here, the retardation plate is adjusted to be a 1 / wavelength plate with respect to the wavelength of 650 nm, so that it is 78
For a wavelength of 0 nm, it functions as an approximately 1/5 wavelength plate,
As a result, the return light from the optical recording medium does not become a complete P-wave, but most of it is diffracted.

【0024】また、本発明の位相差板の位相差を650
nmの波長に対しては5/4波長板となり、780nm
の波長に対して4/4波長板となるようにすることによ
り、650nmの波長に対しては機能し、780nmの
波長に対しては機能せずにほとんどが透過する回折素子
とすることもできる。この場合、波長780nmの光源
の前に、別途に、回折素子を設置してもよく、650n
mの入射偏光方向に対して780nmの入射偏光方向を
20〜45°傾けることにより往路復路ともに回折させ
てもよい。
Further, the retardation of the retardation plate of the present invention is 650.
For a wavelength of nm, it becomes a / wavelength plate, and 780 nm
By making the plate a 4/4 wavelength plate for the wavelength of, a diffraction element that functions for the wavelength of 650 nm, does not function for the wavelength of 780 nm, and transmits most of the light can be obtained. . In this case, a diffraction element may be separately provided before the light source having a wavelength of 780 nm,
By tilting the 780 nm incident polarization direction by 20 ° to 45 ° with respect to the m incident polarization direction, the light may be diffracted in both the forward and backward directions.

【0025】本発明の回折素子は、光源側の面に他の格
子を形成してもよく、その場合には3ビーム法によるト
ラッキングエラー検出ができて好ましい。本発明の回折
素子における格子の凹凸部(光学的異方性回折素子)の
パターンは、光記録媒体からの戻り光のビーム形状が所
望の形状になるように、回折素子面内で曲率をつけた
り、格子間隔に分布をつけたりすることもできる。
In the diffraction element of the present invention, another grating may be formed on the surface on the light source side, in which case a tracking error can be detected by a three-beam method, which is preferable. The pattern of the concave and convex portions (optically anisotropic diffractive element) of the grating in the diffractive element of the present invention may have a curvature in the plane of the diffractive element so that the beam shape of the return light from the optical recording medium has a desired shape. Also, distribution can be added to the lattice spacing.

【0026】本発明の回折素子に対しては、半導体レー
ザ、YAGレーザなどの固体レーザや、He−Neレー
ザなどの気体レーザなど、各種の光源が使用できる。小
型軽量化、連続発振、保守点検などの面では半導体レー
ザを使用するのが好ましい。また、半導体レーザなどの
光源部に非線形光学素子を組み込んだ高調波発生装置を
使用して、青色レーザなどの短波長レーザを用いると、
高密度の光記録および読み取りができる。
Various light sources such as a solid-state laser such as a semiconductor laser and a YAG laser and a gas laser such as a He-Ne laser can be used for the diffraction element of the present invention. It is preferable to use a semiconductor laser in terms of miniaturization, lightening, continuous oscillation, maintenance and inspection. In addition, when using a short-wavelength laser such as a blue laser using a harmonic generator that incorporates a nonlinear optical element in a light source section such as a semiconductor laser,
High-density optical recording and reading are possible.

【0027】本発明の回折素子を搭載した光ヘッド装置
を使用する光記録媒体は、光により情報を記録および/
または読み取ることができる媒体である。その例として
はCD、CD−ROM、DVDなどの光ディスク、およ
び、光磁気ディスク、相変化型光ディスクなどが挙げら
れる。
An optical recording medium using an optical head device equipped with the diffraction element of the present invention can record and / or record information by light.
Or a readable medium. Examples include optical disks such as CDs, CD-ROMs and DVDs, magneto-optical disks, and phase-change optical disks.

【0028】[0028]

【実施例】【Example】

[実施例1]実施例1を図1、図2を参照しつつ説明す
る。CDで使われる650nmの波長の光に対して1/
4波長の位相差を有する、直径3インチ、厚さ0.4m
mの水晶の透明基板20によって位相差板部21を構成
し、位相差板部21を構成する水晶の透明基板20の光
記録媒体側の面(図中下側の面)に低反射コート22を
施した。
Embodiment 1 Embodiment 1 will be described with reference to FIGS. For light of 650 nm wavelength used in CD, 1 /
3 inches in diameter and 0.4 m thick with 4 wavelength phase difference
A phase difference plate portion 21 is formed by a quartz transparent substrate 20 having a low reflection coating 22 on the optical recording medium side surface (the lower surface in the figure) of the quartz transparent substrate 20 constituting the phase difference plate portion 21. Was given.

【0029】つぎに、水晶の透明基板20の光源側の面
(図中上側の面)にポリイミド配向膜23を形成し、ポ
リイミド配向膜23に水晶の透明基板20の光学軸に対
して45゜の方向にラビングを施し、まず、光硬化性を
有する高分子液晶の未重合の液体をポリイミド配向膜2
3上に滴下した。つぎに、表面にポリイミドを塗布し水
晶の透明基板20のラビング方向と180゜のラビング
を施した後に離型化処理を施した図示しない対向ガラス
基板を用いて、未重合の高分子液晶を水平配向状態に
し、さらに、光量600mJの紫外光を照射して重合を
行い、その後、上記の図示しない対向ガラス基板を離型
除去して、厚さ3.5μmの水平配向された高分子液晶
による複屈折性膜24を形成し、さらに光量3000m
Jの紫外光を照射して追加重合を行った後、140℃に
て30分間アニール(焼鈍)を実施して複屈折性膜24
を完全に固化した。
Next, a polyimide alignment film 23 is formed on the light source side surface (upper surface in the figure) of the quartz transparent substrate 20, and the polyimide alignment film 23 is formed at 45 ° to the optical axis of the quartz transparent substrate 20. Rubbing is performed in the direction of, and first, an unpolymerized liquid of a photo-curable high-molecular liquid crystal is applied to the polyimide alignment film 2.
3 was dropped. Next, using a facing glass substrate (not shown) in which polyimide was applied to the surface and rubbing was performed at 180 ° with the rubbing direction of the transparent substrate 20 of quartz, and the unpolymerized polymer liquid crystal was horizontally The alignment state is obtained, and polymerization is performed by irradiating an ultraviolet light having a light amount of 600 mJ. Thereafter, the above-mentioned opposite glass substrate (not shown) is released from the mold and removed by a 3.5 μm thick horizontally aligned polymer liquid crystal. A refractive film 24 is formed, and the light amount is 3000 m
After performing additional polymerization by irradiating ultraviolet light of J, annealing (annealing) is performed at 140 ° C. for 30 minutes to obtain a birefringent film 24.
Was completely solidified.

【0030】この、高分子液晶による複屈折性膜24上
に、スパッタ法により保護膜としてSiO2 膜25を約
50nm成膜した。つぎに、SiO2 膜25の上に、フ
ォトリソグラフィにより格子のストライプ方向がラビン
グ方向に対して+45゜および−45゜の角度をなす2
つの領域を備えたピッチ6μmの格子状をしたフォトレ
ジストマスクを形成した。
On this birefringent film 24 made of a polymer liquid crystal, an SiO 2 film 25 was formed as a protective film to a thickness of about 50 nm by sputtering. Next, on the SiO 2 film 25, the stripe direction of the lattice is at an angle of + 45 ° and −45 ° with respect to the rubbing direction by photolithography.
A photoresist mask having a grid shape with a pitch of 6 μm and two regions was formed.

【0031】そして、まず、格子状をしたフォトレジス
トマスクを利用し、流量100SCCMのCF4 ガスな
どのフッ化炭素ガスを用いて、圧力0.2Torr、出
力300Wの条件下で5分間の反応性イオンエッチング
を実施し、SiO2 膜25にフォトレジストマスクの格
子パターンを転写し、SiO2 の選択マスク26を作製
した。
First, using a lattice-shaped photoresist mask, using a fluorocarbon gas such as CF 4 gas at a flow rate of 100 SCCM, under a condition of a pressure of 0.2 Torr and an output of 300 W for 5 minutes, and an ion etching, the SiO 2 film 25 to transfer the grating pattern of the photoresist mask, to produce a SiO 2 selection mask 26.

【0032】つぎに、作製したSiO2 の選択マスク2
6を利用し、流量100SCCMのO2 ガスを用いて、
圧力0.2Torr、出力300Wの条件下で20分間
のアッシング(灰化処理)を行い、反応性イオンエッチ
ングで残存したフォトレジストマスクを除去すると同時
に、図2に示す深さ3.5μm、ピッチ6μmの格子2
7を高分子液晶による複屈折性膜24に作製した。
Next, the prepared SiO 2 selection mask 2
6, using O 2 gas at a flow rate of 100 SCCM,
Ashing (ashing treatment) is performed for 20 minutes under the conditions of a pressure of 0.2 Torr and an output of 300 W to remove the remaining photoresist mask by reactive ion etching, and at the same time, a depth of 3.5 μm and a pitch of 6 μm shown in FIG. Lattice 2
7 was formed on a birefringent film 24 made of a polymer liquid crystal.

【0033】その後、今回、複屈折性膜24に用いた高
分子液晶(常光屈折率no =1.5、異常光屈折率ne
=1.6)の常光屈折率no と等しい屈折率(n=1.
5)を有する紫外線硬化型の等方性材料28を充填し、
光量5000mJの紫外光照射により硬化重合させ、回
折素子部29を形成した。
[0033] After that, this time, the polymer liquid crystal (ordinary refractive index n o = 1.5 using the birefringent film 24, the extraordinary refractive index n e
= 1.6) the ordinary refractive index n o is equal to the refractive index of the (n = 1.
5) filling the ultraviolet-curable isotropic material 28 having
Curing polymerization was performed by irradiating an ultraviolet light with a light amount of 5000 mJ to form a diffraction element section 29.

【0034】さらに、厚さ0.3mmのガラス基板30
における、中心の2.18mmφの部分を除いた外周部
分に、真空蒸着法およびリフトオフ法で、DVDで使わ
れる650nmの波長の光を90%以上透過し、かつ、
CDで使われる780nmの波長の光を90%以上反射
する光学多層膜31を形成するとともに、中心の2.1
8mmφの部分に中央部と外周部分の位相を補正するた
めのSiO2 コート32を形成して波長選択性の開口径
制限部33を構成し、波長選択性の開口径制限部33の
ガラス基板30で等方性材料28をカバーし、光量50
00mJの紫外光を照射して等方性材料28を硬化重合
させるとともに、波長選択性の開口径制限部33を一体
化し、さらに、波長選択性の開口径制限部33の上から
低反射コート34を施した。最後に、ダイシングにより
切断して、外径4mm×4mm、厚さ約0.7mmの回
折素子35を作製した。
Further, a glass substrate 30 having a thickness of 0.3 mm
, 90% or more of light having a wavelength of 650 nm used in DVDs is transmitted by a vacuum deposition method and a lift-off method to an outer peripheral portion excluding a central portion of 2.18 mmφ, and
An optical multilayer film 31 that reflects 90% or more of light having a wavelength of 780 nm used in a CD is formed.
An SiO 2 coat 32 for correcting the phases of the central portion and the outer peripheral portion is formed at a portion of 8 mmφ to form a wavelength-selective aperture diameter limiting portion 33, and the glass substrate 30 of the wavelength-selective aperture diameter limiting portion 33 is formed. Cover the isotropic material 28 with a light intensity of 50
The isotropic material 28 is cured and polymerized by irradiating it with 00 mJ of ultraviolet light, and the wavelength-selective aperture diameter limiting part 33 is integrated. Was given. Finally, it was cut by dicing to produce a diffraction element 35 having an outer diameter of 4 mm × 4 mm and a thickness of about 0.7 mm.

【0035】こうして作製された回折素子35の特性を
調べたところ、高分子液晶による複屈折性膜24のラビ
ング方向と垂直な方向の偏光に対しては、図示しない半
導体レーザ(光源)からのDVDと同じ波長650nm
のS波(図1において紙面に平行な偏光方向の光)の透
過率は92%であることが確認された。図示しない光記
録媒体からの反射光は、位相差板部21を往復で2度透
過することにより、P波(紙面に垂直な偏光方向の光)
となって回折格子部29へ入射し、その+1次回折光の
回折効率が38%、−1次回折光の回折効率が35%
で、合計73%となることが確認された。
The characteristics of the diffractive element 35 manufactured as described above were examined. As a result, a DVD from a semiconductor laser (light source) (not shown) was used for the polarization of the birefringent film 24 of the polymer liquid crystal in the direction perpendicular to the rubbing direction. Same wavelength as 650nm
It was confirmed that the transmittance of the S-wave (light in the polarization direction parallel to the paper surface in FIG. 1) was 92%. Reflected light from an optical recording medium (not shown) is transmitted through the phase difference plate 21 twice in a reciprocating manner, thereby forming a P wave (light in a polarization direction perpendicular to the paper).
The diffraction efficiency of the + 1st-order diffracted light is 38%, and the diffraction efficiency of the -1st-order diffracted light is 35%.
It was confirmed that the total was 73%.

【0036】したがって、往復効率は、0.92×0.
73=67%となり、実用上充分に高い回折効率が得ら
れた。また、CDと同じ780nmのレーザ光に対して
は、中央の2.18mmφの部分のみに対して、往路の
透過率が91%、復路の+1次回折光の回折効率が17
%、−1次回折光の回折効率が19%で合計36%とな
ることが確認された。したがって、往復効率は、0.9
1×0.36=33%となった。透過光の波面収差は、
回折素子35の光の入出射面の中心部(直径2mmの円
形の範囲)で、0.020λrms (自乗平均)以下であ
った。
Therefore, the reciprocating efficiency is 0.92 × 0.
73 = 67%, and a practically sufficiently high diffraction efficiency was obtained. In addition, for a laser beam of 780 nm, which is the same as that of a CD, only the central portion of 2.18 mmφ has a transmittance of 91% on the outward path and a diffraction efficiency of + 1st-order diffracted light on the return path of 17%.
%, The diffraction efficiency of the -1st-order diffracted light was 19%, which was a total of 36%. Therefore, the reciprocating efficiency is 0.9
1 x 0.36 = 33%. The wavefront aberration of the transmitted light is
It was 0.020λ rms (root mean square) or less at the center of the light entrance / exit surface of the diffraction element 35 (circular range having a diameter of 2 mm).

【0037】[実施例2]実施例2を図3を参照しつつ
説明する。光記録媒体側の面(図中下側の面)に低反射
コート36を施された直径3インチ、厚さ0.5mmの
ガラス製の透明基板37を用意し、ガラス製の透明基板
37の光源側の面(図中上側の面)に、ポリイミド配向
膜38を形成し、ポリイミド配向膜38にラビングによ
る水平配向処理を施した後、ポリイミド配向膜38上に
未重合の光硬化性の高分子液晶を塗布し、重合後の高分
子液晶の屈折率差(Δn≒0.1)に基づき、位相差が
DVDの使用波長である650nmのほぼ5/4波長倍
となるように紫外光によって高分子液晶を重合硬化さ
せ、約8μmの高分子液晶による位相差膜39を形成
し、位相差板部40を構成した。その後、スパッタ法に
より高分子液晶による位相差膜39の上に保護膜として
50nmのSiO2 膜41を成膜した。
Embodiment 2 Embodiment 2 will be described with reference to FIG. A transparent substrate 37 made of glass having a diameter of 3 inches and a thickness of 0.5 mm having a low reflection coat 36 on the surface on the optical recording medium side (the lower surface in the figure) is prepared. A polyimide alignment film 38 is formed on the light source side surface (upper surface in the figure), and the polyimide alignment film 38 is subjected to horizontal alignment treatment by rubbing. A molecular liquid crystal is applied and, based on the refractive index difference (Δn ≒ 0.1) of the polymer liquid crystal after polymerization, ultraviolet light is applied so that the phase difference becomes approximately / wavelength times of 650 nm, which is the wavelength used for DVD. The polymer liquid crystal was polymerized and cured to form a retardation film 39 of about 8 μm of the polymer liquid crystal, thereby forming a retardation plate portion 40. Thereafter, a 50 nm thick SiO 2 film 41 was formed as a protective film on the retardation film 39 made of a polymer liquid crystal by a sputtering method.

【0038】つぎに、SiO2 膜41の上に、再びポリ
イミド配向膜42を形成し、ポリイミド配向膜42に位
相差板部40の光学軸に対して45゜の方向に水平配向
するようにラビング処理を実施した。そして、ポリイミ
ド配向膜42上に未重合の光硬化性の高分子液晶を塗布
し、図示しない対向ガラス基板を用いて、高分子液晶を
水平配向状態にした後、光量600mJの紫外光を照射
して重合を行い、その後、対向ガラス基板を離型除去し
て、厚さ3.5μmの水平配向した高分子液晶による複
屈折性膜43を形成し、さらに光量3000mJの紫外
光を照射して追加重合を行った後、140℃にて30分
間アニールを実施して、高分子液晶による複屈折性膜4
3を完全に固化した。
Next, a polyimide alignment film 42 is formed again on the SiO 2 film 41, and rubbing is performed on the polyimide alignment film 42 so as to be horizontally oriented in a direction of 45 ° with respect to the optical axis of the retardation plate 40. Processing was performed. Then, an unpolymerized photo-curable polymer liquid crystal is applied on the polyimide alignment film 42, and the polymer liquid crystal is horizontally aligned using a counter glass substrate (not shown), and then irradiated with 600 mJ of ultraviolet light. Then, the opposite glass substrate is released from the mold, and a birefringent film 43 of 3.5 μm-thick horizontally oriented polymer liquid crystal is formed, and further irradiated by irradiating 3000 mJ of ultraviolet light. After the polymerization, annealing was performed at 140 ° C. for 30 minutes to obtain a birefringent film 4 made of a polymer liquid crystal.
3 was completely solidified.

【0039】この高分子液晶による複屈折性膜43上
に、スパッタ法によりSiO2 膜44を約50nm成膜
した。つぎに、フォトリソグラフィにより格子の方向が
ラビング方向に対して45゜をなすピッチ6μmの格子
状をしたフォトレジストマスクを形成した。
On the birefringent film 43 made of the polymer liquid crystal, an SiO 2 film 44 was formed to a thickness of about 50 nm by sputtering. Next, a photoresist mask having a lattice shape with a pitch of 6 μm, in which the direction of the lattice is at 45 ° to the rubbing direction, was formed by photolithography.

【0040】そして、まず、格子状のフォトレジストマ
スクを利用し、流量100SCCMのCF4 ガスなどの
フッ化ガスを用いて、圧力0.2Torr、出力300
Wの条件下で5分間の反応性イオンエッチングを実施
し、SiO2 膜44にフォトレジストマスクのパターン
を転写し、SiO2 の選択マスク45を作製した。
First, using a lattice-shaped photoresist mask, a pressure of 0.2 Torr and an output of 300 using a fluoride gas such as CF 4 gas at a flow rate of 100 SCCM.
Under the conditions of W carried reactive ion etching for 5 minutes, then transfer the pattern of the photoresist mask on the SiO 2 film 44, to prepare a SiO 2 selection mask 45.

【0041】つぎに、作製したSiO2 の選択マスク4
5を利用し、流量100SCCMのO2 ガスを用いて、
圧力0.2Torr、出力300Wの条件下で20分間
のアッシングを行い、反応性イオンエッチングで残存し
たフォトレジストを除去すると同時に、深さ3.5μ
m、ピッチ6μmの格子46を高分子液晶による複屈折
性膜43に作製した。
Next, the formed SiO 2 selection mask 4
5, using O 2 gas at a flow rate of 100 SCCM,
Ashing is performed for 20 minutes under the conditions of a pressure of 0.2 Torr and an output of 300 W to remove the remaining photoresist by reactive ion etching and at the same time to a depth of 3.5 μm.
A grid 46 having m and a pitch of 6 μm was formed on the birefringent film 43 made of a polymer liquid crystal.

【0042】その後、今回、複屈折性膜43に用いた高
分子液晶(常光屈折率no =1.5、異常光屈折率ne
=1.6)の常光屈折率no と等しい屈折率(n=1.
5)を有する紫外線硬化型の等方性材料47を塗布、充
填し、光量5000mJの紫外光照射により硬化重合さ
せ、回折格子部48を形成した。そして、等方性材料4
7の上から保護膜として50nmのSiO2 膜49を形
成し、SiO2 膜49の上に低反射コート50を施した
後、ダイシングにより切断して、外径4mm×4mm、
厚さ約0.5mmの回折素子51を作製した。
[0042] After that, this time, the polymer liquid crystal (ordinary refractive index n o = 1.5 using the birefringent film 43, the extraordinary refractive index n e
= 1.6) the ordinary refractive index n o is equal to the refractive index of the (n = 1.
The ultraviolet-curable isotropic material 47 having the above-mentioned 5) was applied and filled, and was cured and polymerized by irradiation with an ultraviolet light having a light amount of 5000 mJ to form the diffraction grating portion 48. And the isotropic material 4
7, a 50 nm SiO 2 film 49 is formed as a protective film, a low reflection coat 50 is applied on the SiO 2 film 49, and then cut by dicing to obtain an outer diameter of 4 mm × 4 mm.
A diffraction element 51 having a thickness of about 0.5 mm was manufactured.

【0043】こうして作製された回折素子51の特性を
調べたところ、回折格子部48を構成する高分子液晶に
よる複屈折性膜43のラビング方向と垂直な方向の偏光
に対しては、図示しない半導体レーザ(光源)からのD
VDと同じ波長650nmのS波(図1において紙面に
平行な偏光方向の光)の透過率は91%であることが確
認された。図示しない光記録媒体からの反射光は、位相
差板を往復で2度透過することにより、P波(紙面に垂
直な偏光方向の光)となって回折格子部48へ入射し、
その+1次回折光の回折効率が37%、−1次回折光の
回折効率が35%で、合計72%となることが確認され
た。
The characteristics of the diffractive element 51 manufactured in this manner were examined. As a result, a semiconductor liquid (not shown) was applied to the birefringent film 43 of the polymer liquid crystal constituting the diffraction grating portion 48 in the direction perpendicular to the rubbing direction. D from laser (light source)
It was confirmed that the transmittance of an S wave having a wavelength of 650 nm (light in a polarization direction parallel to the paper surface in FIG. 1) equal to VD was 91%. The reflected light from the optical recording medium (not shown) is transmitted through the phase difference plate twice in a reciprocating manner, and becomes a P wave (light in a polarization direction perpendicular to the paper surface) and is incident on the diffraction grating portion 48.
It was confirmed that the diffraction efficiency of the + 1st-order diffracted light was 37% and the diffraction efficiency of the -1st-order diffracted light was 35%, for a total of 72%.

【0044】したがって、往復効率は、0.91×0.
72=66%となり、実用上充分に高い回折効率が得ら
れた。透過光の波面収差は、回折素子51の光の入出射
面の中心部(直径2mmの円形の範囲)で、0.025
λrms (自乗平均)以下であった。
Therefore, the reciprocating efficiency is 0.91 × 0.
72 = 66%, and a practically sufficiently high diffraction efficiency was obtained. The wavefront aberration of the transmitted light is 0.025 at the center of the light entrance / exit surface of the diffraction element 51 (circular range having a diameter of 2 mm).
λ rms (root mean square).

【0045】[0045]

【発明の効果】本発明の回折素子によれば、位相差板部
を内蔵でき、軽量小型で、かつ、格子方向と入射偏光方
向とのなす角度に制約がなく、工業的生産が可能で高い
光利用効率を有する回折素子を提供できるという優れた
効果を奏する。
According to the diffractive element of the present invention, the retardation plate can be built in, it is lightweight and small, and there is no restriction on the angle between the grating direction and the incident polarization direction, and industrial production is possible and high. An excellent effect that a diffraction element having light use efficiency can be provided is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の回折素子の側方断面図。FIG. 1 is a side sectional view of a diffraction element according to a first embodiment.

【図2】図1のII−II矢視図。FIG. 2 is a view taken in the direction of arrows II-II in FIG.

【図3】実施例2の回折素子の側方断面図。FIG. 3 is a side sectional view of a diffraction element according to a second embodiment.

【図4】ドライエッチング法を用いた回折素子またはホ
ログラム素子の側方断面図。
FIG. 4 is a side sectional view of a diffraction element or a hologram element using a dry etching method.

【図5】偏光性回折素子を示す側方断面図。FIG. 5 is a side sectional view showing a polarizing diffraction element.

【符号の説明】[Explanation of symbols]

20、37:透明基板 24、43:複屈折性膜 27、46:格子 28、47:等方性材料 33:波長選択性の開口径制限部 39:位相差膜 20, 37: transparent substrate 24, 43: birefringent film 27, 46: grating 28, 47: isotropic material 33: wavelength-selective aperture diameter limiting portion 39: retardation film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】透明基板と、透明基板上に形成された、複
屈折性膜の断面が凹凸状の格子と、前記格子の凹部に充
填された、屈折率が前記複屈折性膜の常光屈折率または
異常光屈折率とほぼ等しい屈折率を有する等方性材料と
を備えることを特徴とする回折素子。
1. A transparent substrate, a lattice formed on the transparent substrate and having a birefringent film having a concave and convex cross section, and a concave portion of the lattice filled in a concave portion having a refractive index of ordinary light refraction of the birefringent film. A isotropic material having a refractive index substantially equal to the refractive index or the extraordinary light refractive index.
【請求項2】複屈折性膜に、屈折率楕円体の屈折率長軸
方向に対して平行でも垂直でもない方向に前記格子が形
成されている請求項1記載の回折素子。
2. The diffraction element according to claim 1, wherein the grating is formed on the birefringent film in a direction that is neither parallel nor perpendicular to the refractive index major axis direction of the refractive index ellipsoid.
【請求項3】複屈折性膜が、高分子液晶で形成されてい
る請求項1または2記載の回折素子。
3. The diffraction element according to claim 1, wherein the birefringent film is formed of a liquid crystal polymer.
【請求項4】透明基板が、光学的な位相差を有する透明
基板、または、位相差膜を形成されている透明基板であ
る請求項1、2または3記載の回折素子。
4. The diffraction element according to claim 1, wherein the transparent substrate is a transparent substrate having an optical retardation or a transparent substrate having a retardation film formed thereon.
【請求項5】回折素子の少なくとも一方の面における有
効径内の少なくとも一部分に、波長が異なる2種類の光
に対してそれぞれ異なる透過率を示す波長選択性の開口
径制限部を一体的に備える請求項1、2、3または4記
載の回折素子。
5. A wavelength-selective aperture diameter limiting portion that exhibits different transmittances for two types of light having different wavelengths, at least in a part of an effective diameter of at least one surface of the diffraction element. The diffraction element according to claim 1, 2, 3, or 4.
JP22401797A 1997-08-20 1997-08-20 Diffraction element Expired - Lifetime JP3978821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22401797A JP3978821B2 (en) 1997-08-20 1997-08-20 Diffraction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22401797A JP3978821B2 (en) 1997-08-20 1997-08-20 Diffraction element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007034478A Division JP2007179069A (en) 2007-02-15 2007-02-15 Optical head device

Publications (2)

Publication Number Publication Date
JPH1164615A true JPH1164615A (en) 1999-03-05
JP3978821B2 JP3978821B2 (en) 2007-09-19

Family

ID=16807286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22401797A Expired - Lifetime JP3978821B2 (en) 1997-08-20 1997-08-20 Diffraction element

Country Status (1)

Country Link
JP (1) JP3978821B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264533A (en) * 2000-03-14 2001-09-26 Konica Corp Optical component having wavelength selecting function, and optical pickup device
JP2001290017A (en) * 2000-01-31 2001-10-19 Asahi Glass Co Ltd Diffraction device for two wavelengths and optical head device
JP2002365416A (en) * 2001-06-06 2002-12-18 Asahi Glass Co Ltd Polarization diffraction element and optical head device
WO2004081620A1 (en) 2003-03-13 2004-09-23 Asahi Glass Company Limited Diffraction element and optical device
US7221509B2 (en) 2001-04-18 2007-05-22 Ricoh Company, Ltd. Method and apparatus for optical pickup capable of performing an effective polarization split
JP2008021368A (en) * 2006-07-13 2008-01-31 Matsushita Electric Ind Co Ltd Manufacturing method of wavelength selective polarization hologram element
JP2010139884A (en) * 2008-12-12 2010-06-24 Jsr Corp Method of manufacturing polarizing diffraction element and polarizing diffraction element
JP2011138169A (en) * 2004-07-26 2011-07-14 Nippon Sheet Glass Co Ltd Transmission diffraction optical element
CN113325508A (en) * 2021-05-19 2021-08-31 哈尔滨工程大学 Method for manufacturing fiber grating based on photo-polymerization material
CN114924413A (en) * 2022-04-28 2022-08-19 歌尔光学科技有限公司 Optical waveguide structure, preparation method of optical waveguide structure and head-mounted display device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001290017A (en) * 2000-01-31 2001-10-19 Asahi Glass Co Ltd Diffraction device for two wavelengths and optical head device
JP2001264533A (en) * 2000-03-14 2001-09-26 Konica Corp Optical component having wavelength selecting function, and optical pickup device
US7221509B2 (en) 2001-04-18 2007-05-22 Ricoh Company, Ltd. Method and apparatus for optical pickup capable of performing an effective polarization split
JP2002365416A (en) * 2001-06-06 2002-12-18 Asahi Glass Co Ltd Polarization diffraction element and optical head device
JP4599763B2 (en) * 2001-06-06 2010-12-15 旭硝子株式会社 Optical head device
EP1602947A4 (en) * 2003-03-13 2007-03-28 Asahi Glass Co Ltd Diffraction element and optical device
JPWO2004081620A1 (en) * 2003-03-13 2006-06-15 旭硝子株式会社 Diffraction element and optical device
EP1602947A1 (en) * 2003-03-13 2005-12-07 Asahi Glass Company Ltd. Diffraction element and optical device
WO2004081620A1 (en) 2003-03-13 2004-09-23 Asahi Glass Company Limited Diffraction element and optical device
JP2011138169A (en) * 2004-07-26 2011-07-14 Nippon Sheet Glass Co Ltd Transmission diffraction optical element
JP2008021368A (en) * 2006-07-13 2008-01-31 Matsushita Electric Ind Co Ltd Manufacturing method of wavelength selective polarization hologram element
JP2010139884A (en) * 2008-12-12 2010-06-24 Jsr Corp Method of manufacturing polarizing diffraction element and polarizing diffraction element
CN113325508A (en) * 2021-05-19 2021-08-31 哈尔滨工程大学 Method for manufacturing fiber grating based on photo-polymerization material
CN113325508B (en) * 2021-05-19 2022-12-13 哈尔滨工程大学 Method for manufacturing fiber grating based on photo-polymerization material
CN114924413A (en) * 2022-04-28 2022-08-19 歌尔光学科技有限公司 Optical waveguide structure, preparation method of optical waveguide structure and head-mounted display device

Also Published As

Publication number Publication date
JP3978821B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
KR100642951B1 (en) Optical head device and production method thereof
KR100497586B1 (en) Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
JP4221939B2 (en) Polarizing phase correction element and optical head device
JP3978821B2 (en) Diffraction element
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
JP4300784B2 (en) Optical head device
JP3671768B2 (en) Optical head device
JPH09304750A (en) Optical modulation element and optical head device
JP4622160B2 (en) Diffraction grating integrated optical rotator and optical head device
JP2000249831A (en) Optical device and optical head device
JP3982025B2 (en) Manufacturing method of diffraction element
JP4599763B2 (en) Optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP4427877B2 (en) Aperture limiting element and optical head device
JP3528381B2 (en) Optical head device
JP2007179069A (en) Optical head device
JP3509399B2 (en) Optical head device
JP3713778B2 (en) Optical head device
JPH09185837A (en) Optical head device
JP4051747B2 (en) Manufacturing method of diffraction element
JP3968593B2 (en) Optical head device
JP3550873B2 (en) Optical head device
JP2004069977A (en) Diffraction optical element and optical head unit
JPH10188321A (en) Polarizing diffraction grating and optical head device using the same
JP4364083B2 (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

EXPY Cancellation because of completion of term