JP3550873B2 - Optical head device - Google Patents

Optical head device Download PDF

Info

Publication number
JP3550873B2
JP3550873B2 JP11268896A JP11268896A JP3550873B2 JP 3550873 B2 JP3550873 B2 JP 3550873B2 JP 11268896 A JP11268896 A JP 11268896A JP 11268896 A JP11268896 A JP 11268896A JP 3550873 B2 JP3550873 B2 JP 3550873B2
Authority
JP
Japan
Prior art keywords
diffraction grating
light
head device
optical head
optically anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11268896A
Other languages
Japanese (ja)
Other versions
JPH09297933A (en
Inventor
琢治 野村
具也 滝川
浩一 村田
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP11268896A priority Critical patent/JP3550873B2/en
Publication of JPH09297933A publication Critical patent/JPH09297933A/en
Application granted granted Critical
Publication of JP3550873B2 publication Critical patent/JP3550873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CD(コンパクト・ディスク)、CD−ROM、ビデオディスク、DVD(デジタル・ビデオ・ディスク)等の光ディスク及び光磁気ディスク等に光学的情報を書き込んだり、光学的情報を読み取るための光ヘッド装置に関する。
【0002】
【従来の技術】
従来、光ディスク及び光磁気ディスク等の光記録媒体に光学的情報を書き込んだり、光学的情報を読み取る光ヘッド装置としては、光記録媒体の記録面から反射された信号光を検出部へ導光(ビームスプリット)する光学部品としてプリズム式ビームスプリッタを用いたものと、回折格子はホログラム素子を用いたものとが知られていた。
【0003】
従来、光ヘッド装置用の回折格子はホログラム素子は、ガラスやプラスチック基板上に、矩形の断面を有する矩形格子(レリーフ型)をドライエッチイング法は射出成形法よって形成し、これによって光を回折しビームスプリット機能を付与していた。
【0004】
また、光の利用効率が10%程度の等方性回折格子よりも光の利用効率を上げようとした場合、偏光を利用することが考えられる。偏光を利用しようとすると、プリズム式ビームスプリッタにλ/4板を組み合わせて、往き(光源から光記録媒体かう方向)及び帰り(光記録媒体から検出部へ向かう方向)の効率を上げて往復効率を上げる方法があった。
【0005】
しかし、プリズム式偏光ビームスプリッタは高価であり、他の方式が模索されていた。一つの方式としてLiNbO等の複屈折結晶の平板を用い、表面に異方性回折格子を形成し偏光選択性をもたせる方法が知られている。しかし、複屈折結晶自体が高価であり、民生分野への適用は困難である。またプロトン交換法によって格子を形成する場合、プロトン交換液中のプロトンのLiNbOへの拡散が早いため、細かいピッチの格子を形成するのが困難である問題もあった。
【0006】
等方性回折格子は前述のように、往きの利用効率が50%程度で、帰りの利用効率が20%程度であるため、往復で10%程度が限界である。
【0007】
【発明が解決しようとする課題】
そのため、透明基板の表面に格子状の凹凸部が形成され、前記凹凸部に、光学異方性を有する液晶が充填されている光学異方性回折格子が提案されているが液体である液晶の熱膨張のため、セルが膨らみ、光学波面収差が、高温側で大きく劣化する問題があった。
【0008】
波面収差が劣化すると、光デイスク面で、レーザビームを収束することが、できなくなり、情報の読みとり等が困難になる。
【0009】
本発明は、前述の問題点を解消し、光の利用効率を高め安価に製造できる光ヘッド装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、光源からの光を、透明基板の表面に格子状の凹凸部が形成されその凹凸部に光学異方性を有する液晶が充填された光学異方性回折格子を通して光記録媒体上に照射することにより情報の書き込み及び/又は情報の読み取りを行う光ヘッド装置において、光学異方性回折格子の凸部の頂点における基板間隙が5μm以下とされたことを特徴とする光ヘッド装置を提供する。
【0011】
また、その光学異方性回折格子の凹凸部がSiO(1≦x≦2、0<y≦1.33)で形成されていて、SiO が含有する酸素量xと窒素量yとが、凹凸部の屈折率と液晶の常光屈折率又は異常光屈折率のいずれかの屈折率とが実質的に等しくなるように選ばれている光ヘッド装置、また、SiO が含有する酸素量xと窒素量yとが、その凹凸部の屈折率と透明基板の屈折率の差が0.1以内になるように選ばれている光ヘッド装置、及び、その凹凸部が、透明膜を透明基板表面に形成設けることにより形成され、そのシール部にはその透明膜が形成されていない光ヘッド装置、また、それらの光学異方性回折格子素子の光の入射部、出射部に反射防止膜が設けられた光ヘッド装置、また、それらの光学異方性回折格子素子の、基板の光源側の面に第2の回折格子が形成された光ヘッド装置を提供する。
【0012】
【発明の実施の形態】
本発明の光ヘッド装置に用いる光学異方性回折格子は、透明基板の表面に格子状の凹凸部が形成されその凹凸部に光学異方性を有する液晶が充填された光学異方性回折格子であって、その光学異方性回折格子の凸部の頂点における基板間隙が5μm以下とされる。これにより温度変化があっても部分的な基板間隔変化を生じにくく、光学波面収差が劣化しにくいので、光の回折が安定して得られる。
【0013】
図1は、本発明の光ヘッド装置の代表的な構成を示す模式図である。
【0014】
図1において、1は半導体レーザー等の光源、2は光学異方性回折格子、3は1/4波長板等の位相差素子、4は集光レンズ、6は光検出器を示している。
【0015】
光源1からでた光は、直線偏光、例えばP偏光を有するが、光学異方性回折格子2は回折格子として働かなくそのまま透過する。そして位相差素子3を通過して、集光レンズ4で光を集束して光記録媒体5表面で反射させ、再度集光レンズ4、位相差素子3を通過してS偏光になって光学異方性回折格子2に入射する。すると、往路とは偏光方向が90°ずれているので、光学異方性回折格子2は回折格子として働き、光は回折され光検出器6に到達する。
【0016】
図2は、この光ヘッド装置に用いる光学異方性回折格子の断面図である。
【0017】
図2において、11、12はの基板、13はその基板の一部に設けられた凸部、14は2枚の基板を接着するシール材、15はシール部、16は液晶を示している。なお、dは基板11と、基板12の凸部との間隙を示している。
【0018】
本発明では、この間隙dを5μm以下とする。これにより、温度が変化しても波面収差の変化が少なく、信頼性の高い回折格子が得られる。より好ましくは3μm以下、特には2μm以下とすることが好ましい。ただし、液晶の注入を行うので、0.5μm以上とすることが好ましい。
【0019】
本発明では、光学異方性回折格子は、基板の凸部と液晶との屈折率の差によって回折格子を構成している。液晶は屈折率異方性を有するので、基板表面を配向処理することにより、特定方向に液晶を配列させることができる。これを利用して、光学異方性回折格子への入射する光の偏光方向によって、回折をさせたり、させなかったりすることができる。
【0020】
本発明の基板としては、ガラス、プラスチック等の透明基板が使用できるが、ガラス、ポリオレフィン、ポリカーボネート等の屈折率が1.4以上1.6以下程度の透明基板を用いることが、液晶の常光屈折率の約1.5に整合しやすいため好ましい。
【0021】
この基板に凹凸部を形成するには、基板自体をそのような形状に、エッチングや機械的切削によって加工することもできるが、液晶の常光屈折率又は異常光屈折率のいずれかの屈折率とほぼ等しい屈折率の透明膜を透明基板表面に積層形成することが好ましい。これには、プラズマCVD法、スパッタリング法等公知の透明膜の形成方法が利用できる。
【0022】
この透明膜形成時に、マスクを設けておき、透明膜形成と同時に凹凸を形成してもよいし、透明膜を全面に形成しておき、フォトリソ工程で凹凸を形成してもよい。この凹凸部は、図2のように凸部のみが透明膜とされ、凹部は基板表面が露出するようにされていてもよいし、凹部にも透明膜が薄く残っていてもよい。また、シール部は凹部とした方が狭い基板間隙を容易に作成でき好ましい。
【0023】
本発明の透明膜としては、液晶のいずれかの屈折率とほぼ等しい屈折率の透明膜で、使用する液晶による劣化を生じたり膨潤等により屈折率の変化を生じにくいものであれば使用できる。具体的には、SiO、SiO等の無機酸化物の透明膜が好ましく用いられる。
【0024】
特に、透明膜として、SiO膜(1≦x≦2、0<y≦1.33)を用いることが好ましい。この材料を用いる場合、プラズマCVD法は反応性直流スパッタリング法によって、液晶の常光屈折率は異常光屈折率とほぼ等しく、光学的に良好で安定であり信頼性の高い膜が、再現性良く基板上に容易に形成できるという点で好ましい。
【0025】
SiO膜は、xとyの比率によって屈折率を制御できるだけでなく、どんな比率においても光の吸収等の光学特性の劣化をもたらすことが少ないという利点もある。
【0026】
SiOの形成法としては、プラズマCVD法が好ましく用いられるが、導電性をもつSi基板をターゲットにしOガス、Nガス、NOガスを所定の比率で混合した雰囲気中でスパッタリングする反応性直流スパッタリング法が、プラズマCVD法に比べて膜形成レートが高いという点でより好ましい。
【0027】
具体的には以下のようにして凹凸部を形成することが好ましい。研磨したガラス基板等の基板の表面に、プラズマCVD法は反応性直流スパッタリング法により、液晶の常光屈折率と透明基板の屈折率(ともに屈折率は1.5程度)のいずれにも近くなるように、酸素と窒素の比率を調整してSiO膜を形成する。
【0028】
その後、SiO膜の上にフォトレジストをスピンコート法等によりコーティングし、所定のパターンを有するフォトマスクをフォトレジスト膜に密着させて紫外線で露光し、フォトレジスト現像処理することによってフォトレジストの格子状パターンを透明基板の表面に形成する。そのフォトレジストの格子状パターンをさらにマスクとして、CF、C、C、CHF等のガスを用いドライエッチングすることにより、深さ1〜2μm、ピッチ2〜20μmの光学異方性回折格子用の格子状の凹凸部を形成する。
【0029】
なお透明基板の屈折率とSiO膜の屈折率との差は、界面による好ましくない反射等を防ぐために0.1以内とするのが好ましい。
【0030】
本発明の光学異方性回折格子に用いる液晶としては、ネマチック液晶、スメクチック液晶等の液晶表示装置に使用される公知の液晶、液晶組成物、又は高分子液晶等が好ましく使用できる。
【0031】
この基板の内、平坦な側の基板の内面には配向処理を施す。特に、ポリイミド膜等からなる配向膜を設け、その上をラビングして配向膜を形成することが好ましい。凹凸部を設けた基板側には、配向処理を行うことが難しいので、配向処理を省略してもよい。
【0032】
この光学異方性回折格子に対して、光記録媒体側にλ/2板、λ/4板等として機能する位相差板、位相差フィルム等の位相差素子を積層配置させることにより、光の往き方向と光の帰り方向とで偏光方向を直交させ、光学異方性回折格子として機能させることができる。前記位相差素子は、数10〜数100μm程度の厚を有するポリカーボネート、ポリビニルアルコールはポリアリレート等の材料が好ましく使用できる。
【0033】
この位相差素子の少なくとも片面をフォトポリマー、熱硬化型エポキシ樹脂等の光学的に透明な有機樹脂で覆うか、さらに前記有機樹脂を介して平坦性のよいガラス基板、プラスチック基板等の基板を積層接着すれば、波面収差の低減、信頼性の向上という利点があり好ましい。
【0034】
この回折素子は、基板の光源側の面に第2の回折格子を形成してもよく、その場合3ビーム法によるトラッキングエラー検出ができ好ましい。この第2の回折格子は、フォトポリマー、フォトレジスト等を塗布し所定のパターンに露光することにより形成するか、又はドライエッチング法により直接透明基板を加工することにより形成することが好ましい。
【0035】
本発明の光ヘッド装置を読み取り用として使用する場合は、通常は光源側に光記録媒体からの反射光を検出する光検出器を設けるが、その検出器の受光面上に前記反射光が所望のビーム(スポット)形状で集光するように、光学異方性回折格子のパターンに面内曲率を付与したり、格子間隔に分布を付与してもよい。光学異方性回折格子のパターンは、コンピュータ装置によって設計した曲率分布、格子間隔分布とし、SSD(スポット・サイズ・ディテクション)法等のフォーカスエラー検出法に最適なパターンとできる。前記光検出器としては、フォトダイオード、CCD素子等の半導体素子を利用したものが小型軽量で、低消費電力であるため好ましい。
【0036】
本発明の光源としては半導体レーザ、YAGレーザ等の固体レーザ、He−Ne等の気体レーザが使用でき、半導体レーザが小型軽量化、連続発振、保守点検等の点で好ましい。また、光源部に半導体レーザ等と非線形光学素子を組み込んだ高調波発生装置(SHG)を使用し、青色レーザ等の短波長レーザを用いると、高密度の光記録及び読み取りができる。
【0037】
本発明の光記録媒体は、光により情報を記録及び/又は読み取ることができる媒体である。その例としてはCD(コンパクト ディスク)、CD−ROM、ビデオディスク、DVD(デジタル ビデオ ディスク)等の光ディスク、及び光磁気ディスク、相変化型光ディスク等が使用できる。
【0038】
前記回折素子の光入出射面に反射防止膜を設けることにより、光の損失を防ぐことができる。その場合、反射防止膜としてアモルファスフッ素樹脂を使用すれば、蒸着装置等の高価で大型の成膜装置を使用しないで低コストで成膜できるため好ましい。
【0039】
たとえば、液晶を格子状の凹凸部の長手方向にほぼ平行な方向に(図1では紙面に垂直な方向)配向するように配向処理を行う。この場合、光源1の半導体レーザから入射したP波(図1では偏光方向が紙面に平行な偏光成分)に対しては、液晶と凸部は屈折率が等しく、すなわち光学異方性回折格子はP波に対しては透明となる。そのため、P波は何の変化も受けずそのまま位相差素子3である1/4波長板に入射し、円偏光に変化し、集光レンズとしての非球面レンズを透過し、ほぼ100%の光が光記録媒体の記録面に到達する。
【0040】
即ち、半導体レーザへの戻り光が非常に小さく、戻り光ノイズの点で有利である。さらに往路の透過率が高いということは、書き込みタイプの光ディスク装置においては、書き込み時に相対的に低い出力の半導体レーザで書き込みができるという点でコスト面で優れている。
【0041】
前記記録面で反射し再び非球面レンズを通り戻ってきた反射光は、再び1/4波長板を通過し、偏光方向が90°異なったS波に変化する。S波が光学異方性回折格子に入射すると、今度は液晶と凸部の屈折率が異なっているため回折格子として機能し、+1次回折光として最大40%程度、−1次回折光として最大40%程度の回折効率が得られる。+1次回折光、−1次回折光を検出する検出器をどちらか一方にのみ配置した場合で40%、両方に配置した場合は計80%の往復効率が得られる。
【0042】
さらに前記凹凸部を、斜面状(のこぎり状)にしたときはほぼ70〜90%、3段の階段状にしたときはほぼ81%の往復効率が得られる。
【0043】
【実施例】
本発明の実施例及び比較例を以下の例1〜に示す。
【0044】
厚さ1mm、10mm×10mm角で、屈折率1.52のガラス基板の1表面に、プラズマCVD法によって厚み1.3μmのSiO膜を形成した。このとき、x、yはおのおの1.8、0.17程度であった。次いで、フォトリソグラフィ法とドライエッチング法によって、深さ1.3μm、ピッチ6μmの断面が矩形状の回折格子用の凹凸部を形成し、その上にポリイミド配向膜を形成した。
【0045】
もう1枚のガラス基板の表面に液晶配向用の配向膜としてポリイミド膜を形成し、配向のためのラビング処理を行った。凹凸部を形成したガラス基板の凹凸部を形成した面と、平坦なガラス基板の配向膜を形成した面とを対向させ、さらに配向膜のラビング方向と凹凸部のストライプ方向が同じになるようにして、2つのガラス基板を積層した。
【0046】
その際、液晶注入口を除き、2つのガラス基板の周囲を球状スペーサを含むエポキシ樹脂シール材でシールした。この球状スペーサの直径は例1:4μm、例2:6μm、例3:8μm、例4:10μmとしたものを作成した。その後、液晶注入口から液晶(メルク社製商品名BL009、ネマチック液晶、常光屈折率1.5266、異常光屈折率1.8181)を真空注入した。
【0047】
平坦なガラス基板の配向膜と反対側の面に1/4波長板を透明接着剤により積層接着し、さらにその上に波面収差を改善するためのフォトポリマー、第3のガラス基板を積層接着して回折素子を作製した。回折素子の光源からの光の入射部、出射部には、誘電体多層膜による反射防止膜を施した。
【0048】
凹凸部を設けたガラス基板の凹部は、おおむねエッチングによりぼぼガラス基板表面が露出する程度にされていたが、シール部に相当する部分もドライエッチングにより透明膜をおおむね除去したものを作成した。
【0049】
これらの回折素子のシール部のスペーサ直径(μm)、凸部での基板間隙(μm)、25℃と60℃の波面収差(mλrms)を表1に示す。
【0050】
例1の回折素子を用い、光源として半導体レーザを用い、波長678nmのP波(図1の紙面に平行な偏光成分)を入射させたとき、P波の透過率は約97%であった。また、光ディスクからの反射光(円偏光)が1/4波長フィルムによりS波(紙面に垂直な偏光成分)に変化し、このS波が光学異方性回折格子により回折され、+1次回折光の回折効率は34%で、−1次回折光の回折効率は34%であった。
【0051】
この結果、往路効率約97%、往復効率約66%(±1次回折光検出)となった。
【0052】
例1、例2の回折素子は60℃での波面収差がいずれも30mλrms以下で温度変化に対して光検出器の出力が安定しており、信頼性の高いものであり、特に例1は60℃での波面収差がいずれも0mλrms以下で優れていた。
【0053】
【表1】

Figure 0003550873
【0054】
【発明の効果】
本発明は、液晶を用いた光学異方性回折格子の有する効率が良く、量産性に優れ、安価であるという特長を生かしつつ、その欠点であった温度変化による波面収差の変化による回折効率の低下を抑制でき、広い温度範囲での安定した光ヘッド装置を容易に得ることができる。
【0055】
本発明は、本発明の効果を損しない範囲内で種々の応用が可能である。
【図面の簡単な説明】
【図1】本発明の光ヘッド装置の代表的な構成を示す模式図。
【図2】本発明の光ヘッド装置に用いる光学異方性回折格子の断面図。
【符号の説明】
1:光源
2:光学異方性回折格子
3:位相差素子
4:集光レンズ
5:光記録媒体
6:光検出器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical disk for writing optical information on a optical disk such as a CD (compact disk), a CD-ROM, a video disk, a DVD (digital video disk) and a magneto-optical disk, and for reading optical information. It relates to a head device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as an optical head device that writes optical information on an optical recording medium such as an optical disk and a magneto-optical disk, and reads optical information, a signal light reflected from a recording surface of the optical recording medium is guided to a detection unit ( and those using a prism type beam splitter as an optical component for beam splitting), diffraction grating or was known to those using a hologram element.
[0003]
Conventionally, a diffraction grating or hologram element for the optical head device, a glass or plastic substrate, a rectangular grating (relief type) is also dry-etched queuing method to form by injection molding method having a rectangular cross section, whereby the light Diffracted to provide a beam splitting function.
[0004]
In addition, when trying to increase the light use efficiency over an isotropic diffraction grating having a light use efficiency of about 10%, it is conceivable to use polarized light. When trying to use polarized light, a λ / 4 plate is combined with a prism type beam splitter to increase the efficiency of going (from the light source to the optical recording medium) and returning (the direction from the optical recording medium to the detection unit) to increase the reciprocating efficiency. There was a way to raise.
[0005]
However, the prism type polarizing beam splitter is expensive, and other methods have been sought. Using a plate of birefringent crystal such as LiNbO 3 as a method, a method of forming an anisotropic diffraction grating having polarization selectivity is known to the surface. However, the birefringent crystal itself is expensive, and application to the consumer field is difficult. In the case of forming a grating by proton exchange method, for diffusion into LiNbO 3 protons of the proton exchange solution is early, was also Ru difficult der problem is to form a fine pitch of the grating.
[0006]
As described above, the isotropic diffraction grating has an outgoing utilization efficiency of about 50% and a returning utilization efficiency of about 20%.
[0007]
[Problems to be solved by the invention]
Therefore, an optically anisotropic diffraction grating in which a lattice-like uneven portion is formed on the surface of a transparent substrate and the uneven portion is filled with a liquid crystal having optical anisotropy has been proposed. due to thermal expansion, swelling the cell, the optical wavefront aberration, there is that problem to significantly degrade at the high temperature side.
[0008]
When the wavefront aberration is deteriorated, it becomes impossible to converge the laser beam on the optical disk surface , and it becomes difficult to read information.
[0009]
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide an optical head device which can increase the light use efficiency and can be manufactured at low cost.
[0010]
[Means for Solving the Problems]
According to the present invention, light from a light source is applied to an optical recording medium through an optically anisotropic diffraction grating in which a lattice-shaped uneven portion is formed on the surface of a transparent substrate and the uneven portion is filled with a liquid crystal having optical anisotropy. An optical head device for writing and / or reading information by irradiating an optical head device, wherein a substrate gap at an apex of a convex portion of an optically anisotropic diffraction grating is set to 5 μm or less. you.
[0011]
The uneven portion of the optically anisotropic diffraction grating is formed of SiO x N y (1 ≦ x ≦ 2, 0 <y ≦ 1.33), and the amount of oxygen x and nitrogen contained in the SiO x N y An optical head device in which the amount y is selected such that the refractive index of the concave and convex portions is substantially equal to the refractive index of the ordinary light or the extraordinary light of the liquid crystal; and SiO x N y An optical head device in which the oxygen amount x and the nitrogen amount y are selected such that the difference between the refractive index of the uneven portion and the refractive index of the transparent substrate is within 0.1, and the uneven portion is An optical head device formed by providing a transparent film on the surface of a transparent substrate, and the transparent film is not formed on the sealing portion. Head device provided with an anti-reflection film on its part, and their optically anisotropic diffraction Provided is an optical head device in which a second diffraction grating is formed on a surface of a grating element on a light source side of a substrate .
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An optically anisotropic diffraction grating used in the optical head device of the present invention is an optically anisotropic diffraction grating in which a lattice-shaped uneven portion is formed on the surface of a transparent substrate and the uneven portion is filled with a liquid crystal having optical anisotropy. And the substrate gap at the apex of the convex portion of the optically anisotropic diffraction grating is 5 μm or less. As a result, even if there is a temperature change, a partial change in the distance between the substrates hardly occurs, and the optical wavefront aberration hardly deteriorates, so that light diffraction can be stably obtained.
[0013]
FIG. 1 is a schematic diagram showing a typical configuration of an optical head device according to the present invention.
[0014]
In FIG. 1, reference numeral 1 denotes a light source such as a semiconductor laser, 2 denotes an optically anisotropic diffraction grating, 3 denotes a phase difference element such as a quarter-wave plate, 4 denotes a condenser lens, and 6 denotes a photodetector.
[0015]
Although the light emitted from the light source 1 has linearly polarized light, for example, P-polarized light, the optically anisotropic diffraction grating 2 transmits as it is without acting as a diffraction grating. Then, the light passes through the phase difference element 3, is focused by the condenser lens 4, is reflected by the surface of the optical recording medium 5, passes through the condenser lens 4 and the phase difference element 3 again, becomes S-polarized light, and becomes optically different. The light enters the anisotropic diffraction grating 2. Then, since the polarization direction is shifted from the outward path by 90 °, the optically anisotropic diffraction grating 2 functions as a diffraction grating, and the light is diffracted and reaches the photodetector 6.
[0016]
FIG. 2 is a sectional view of an optically anisotropic diffraction grating used in the optical head device.
[0017]
In FIG. 2, reference numerals 11 and 12 denote substrates, reference numeral 13 denotes a projection provided on a part of the substrate, reference numeral 14 denotes a sealant for bonding two substrates, reference numeral 15 denotes a seal portion, and reference numeral 16 denotes a liquid crystal. Note that d indicates a gap between the substrate 11 and the convex portion of the substrate 12.
[0018]
In the present invention, the gap d is set to 5 μm or less. As a result, even if the temperature changes, a change in wavefront aberration is small, and a highly reliable diffraction grating can be obtained. It is more preferably at most 3 μm, particularly preferably at most 2 μm. However, since the liquid crystal is injected, the thickness is preferably 0.5 μm or more.
[0019]
In the present invention, the optically anisotropic diffraction grating forms the diffraction grating by a difference in refractive index between the convex portion of the substrate and the liquid crystal. Since the liquid crystal has a refractive index anisotropy, the liquid crystal can be arranged in a specific direction by performing an alignment treatment on the substrate surface. By utilizing this, it is possible to diffract or not diffract light depending on the polarization direction of light incident on the optically anisotropic diffraction grating.
[0020]
As the substrate of the present invention, a transparent substrate such as glass or plastic can be used, and it is preferable to use a transparent substrate such as glass, polyolefin, or polycarbonate having a refractive index of about 1.4 or more and about 1.6 or less. This is preferable because the ratio can be easily adjusted to about 1.5.
[0021]
In order to form an uneven portion on the substrate, the substrate itself can be processed into such a shape by etching or mechanical cutting, but the refractive index of any one of the ordinary light refractive index and the extraordinary light refractive index of the liquid crystal. It is preferable to form a transparent film having substantially the same refractive index on the surface of the transparent substrate. For this, a known transparent film forming method such as a plasma CVD method and a sputtering method can be used.
[0022]
During the formation of the transparent film, a mask may be provided to form the concavities and convexities simultaneously with the formation of the transparent film, or the transparent film may be formed on the entire surface, and the concavities and convexities may be formed by a photolithography process. As shown in FIG. 2, only the convex portions of the concave / convex portions may be made of a transparent film, and the concave portions may be such that the substrate surface is exposed, or a thin transparent film may remain in the concave portions. Further, it is preferable that the seal portion be a concave portion because a narrow substrate gap can be easily formed.
[0023]
As the transparent film of the present invention, any transparent film having a refractive index substantially equal to any of the refractive indexes of the liquid crystal, which does not easily deteriorate due to the liquid crystal used or change in the refractive index due to swelling or the like can be used. Specifically, SiO x, a transparent film of an inorganic oxide such as SiO x N y is preferably used.
[0024]
In particular, it is preferable to use a SiO x N y film (1 ≦ x ≦ 2, 0 <y ≦ 1.33) as the transparent film. When using this material, by plasma CVD or reactive DC sputtering method, the ordinary refractive index of the liquid crystal or substantially equal to the extraordinary refractive index, optically good stable and reliable membrane, reproducibility It may preferable because kills with readily form formed on the substrate.
[0025]
The SiO x N y film has the advantage that not only can the refractive index be controlled by the ratio of x and y, but also the optical characteristics such as light absorption do not deteriorate at any ratio.
[0026]
As a method for forming SiO x N y , a plasma CVD method is preferably used, but in an atmosphere in which O 2 gas, N 2 gas, and N 2 O gas are mixed at a predetermined ratio using a conductive Si substrate as a target. Reactive DC sputtering, which performs sputtering, is more preferable in that the film formation rate is higher than that of plasma CVD.
[0027]
Specifically, it is preferable to form the uneven portions as follows. On the surface of the substrate such as a glass substrate polished by a plasma CVD method or reactive DC sputtering, close to any of the liquid crystal of the ordinary refractive index and the refractive index of the transparent substrate (both refractive index about 1.5) Thus, the SiO x N y film is formed by adjusting the ratio of oxygen to nitrogen.
[0028]
Thereafter, a photoresist is coated on the SiO x N y film by a spin coating method or the like, and a photo mask having a predetermined pattern is brought into close contact with the photoresist film, exposed to ultraviolet rays, and subjected to a photoresist developing process. Is formed on the surface of the transparent substrate. Using the lattice pattern of the photoresist as a mask, dry etching is performed using a gas such as CF 4 , C 2 F 6 , C 3 F 8 , CHF 3, etc., to obtain an optical film having a depth of 1 to 2 μm and a pitch of 2 to 20 μm. A lattice-like uneven portion for an anisotropic diffraction grating is formed.
[0029]
Note that the difference between the refractive index of the transparent substrate and the refractive index of the SiO x N y film is preferably within 0.1 in order to prevent undesired reflection or the like at the interface.
[0030]
As the liquid crystal used for the optically anisotropic diffraction grating of the present invention, a known liquid crystal used for a liquid crystal display device such as a nematic liquid crystal or a smectic liquid crystal, a liquid crystal composition, or a polymer liquid crystal can be preferably used.
[0031]
Of these substrates, the inner surface of the flat substrate is subjected to an alignment treatment. In particular, it is preferable to provide an alignment film made of a polyimide film or the like and rub the film thereon to form an alignment film. Since it is difficult to perform the alignment process on the substrate side provided with the uneven portion, the alignment process may be omitted.
[0032]
By providing a phase difference element such as a phase difference plate or a phase difference film functioning as a λ / 2 plate, a λ / 4 plate or the like on the optical recording medium side with respect to the optically anisotropic diffraction grating, the light The polarization direction can be made orthogonal to the traveling direction and the returning direction of the light to function as an optically anisotropic diffraction grating. Wherein the phase difference element, polycarbonate having a thickness of about several tens to several hundreds of 100 [mu] m, the polyvinyl alcohol or the material of the polyarylate can be preferably used.
[0033]
At least one surface of the phase difference element is covered with an optically transparent organic resin such as a photopolymer or a thermosetting epoxy resin, or a substrate such as a glass substrate or a plastic substrate having good flatness is further laminated via the organic resin. Adhering is advantageous because it has the advantages of reducing wavefront aberration and improving reliability.
[0034]
In this diffraction element, a second diffraction grating may be formed on the surface of the substrate on the light source side, in which case a tracking error can be detected by a three-beam method, which is preferable. This second diffraction grating is preferably formed by applying a photopolymer, a photoresist or the like and exposing it to a predetermined pattern, or by directly processing a transparent substrate by a dry etching method.
[0035]
When the optical head device of the present invention is used for reading, a light detector for detecting the reflected light from the optical recording medium is usually provided on the light source side, and the reflected light is desired on the light receiving surface of the detector. An in-plane curvature may be given to the pattern of the optically anisotropic diffraction grating, or a distribution may be given to the grating interval so that the light is focused in the beam (spot) shape. Pattern of optically anisotropic grating, curvature distribution designed by a computer system, the lattice spacing distribution, cut with the optimum pattern SSD focus error detection method such as (spot size Detection) method. As the photodetector, a photodetector using a semiconductor element such as a photodiode or a CCD element is preferable because of its small size and light weight and low power consumption.
[0036]
The semiconductor laser as the light source of the present invention, the solid-state laser such as YAG laser, can be used gas lasers such as the He-Ne, a semiconductor laser is smaller and lighter, continuous wave, preferred in terms of maintenance and inspection. Further, incorporating a semiconductor laser and a nonlinear optical element in the light source unit using a harmonic generator (SHG), the use of short-wavelength laser such as a blue laser, Ru can high-density optical recording and reading.
[0037]
The optical recording medium of the present invention is a medium on which information can be recorded and / or read by light. As examples of CD (compact disk), CD-ROM, video disc, DVD (digital video disk) or the like of the optical disk, and magneto-optical disks, phase change type optical disk or the like can be used.
[0038]
By providing an antireflection film on the light entrance / exit surface of the diffraction element, light loss can be prevented. In that case, it is preferable to use an amorphous fluororesin as the antireflection film because a film can be formed at low cost without using an expensive and large-sized film forming apparatus such as a vapor deposition apparatus.
[0039]
For example, the alignment processing is performed so that the liquid crystal is aligned in a direction substantially parallel to the longitudinal direction of the lattice-shaped uneven portion (in FIG. 1, a direction perpendicular to the paper). In this case, for a P-wave (a polarization component whose polarization direction is parallel to the paper surface in FIG. 1) incident from the semiconductor laser of the light source 1, the liquid crystal and the projection have the same refractive index. It is transparent to P waves. Therefore, the P wave is incident on the quarter wave plate as the phase difference element 3 without any change, changes to circularly polarized light, passes through the aspheric lens as a condenser lens, and almost 100% of light Reaches the recording surface of the optical recording medium.
[0040]
That is, return light to the semiconductor laser is very small, which is advantageous in terms of return light noise. The fact that more high outward transmittance, in the write type optical disk apparatus is superior in terms of cost in that Ru can be written in the semiconductor laser of a relatively low output at the time of writing.
[0041]
The reflected light reflected by the recording surface and returned through the aspheric lens again passes through the quarter-wave plate again, and changes into an S wave having a polarization direction different by 90 °. When the S-wave enters the optically anisotropic diffraction grating, it functions as a diffraction grating because the refractive index of the liquid crystal is different from that of the convex portion. A degree of diffraction efficiency is obtained. A reciprocating efficiency of 40% is obtained when the detectors for detecting the + 1st-order diffracted light and the -1st-order diffracted light are arranged on only one of them, and a total of 80% is obtained when they are arranged on both.
[0042]
Further, when the uneven portion is formed in a slope (saw shape), a reciprocating efficiency of approximately 70% to 90% is obtained, and when the uneven portion is formed in a three-step shape, a reciprocating efficiency of approximately 81% is obtained.
[0043]
【Example】
Examples of the present invention and comparative examples are shown in Examples 1 to 4 below.
[0044]
Thickness 1 mm, with 10 mm × 10 mm square, on the first surface of the glass substrate having a refractive index of 1.52 was formed SiO x N y film having a thickness of 1.3μm by plasma CVD. At this time, x and y were about 1.8 and 0.17, respectively. Next, by photolithography and dry etching, a concave and convex portion for a diffraction grating having a depth of 1.3 μm and a pitch of 6 μm and a rectangular cross section was formed, and a polyimide alignment film was formed thereon.
[0045]
A polyimide film was formed as an alignment film for liquid crystal alignment on the surface of another glass substrate, and a rubbing treatment for alignment was performed. The surface of the glass substrate on which the uneven portions are formed is opposed to the surface of the flat glass substrate on which the alignment film is formed, and the rubbing direction of the alignment film and the stripe direction of the uneven portions are the same. Then, two glass substrates were laminated.
[0046]
At that time, except for the liquid crystal injection port, the periphery of the two glass substrates was sealed with an epoxy resin sealing material including spherical spacers. The diameters of the spherical spacers were as follows: Example 1: 4 μm, Example 2: 6 μm, Example 3: 8 μm, Example 4: 10 μm. Thereafter, a liquid crystal (BL009, trade name, manufactured by Merck, nematic liquid crystal, ordinary refractive index 1.5266, extraordinary refractive index 1.8181) was vacuum-injected from the liquid crystal injection port.
[0047]
A quarter-wave plate is laminated and adhered to the surface of the flat glass substrate opposite to the alignment film with a transparent adhesive, and a photopolymer for improving wavefront aberration and a third glass substrate are laminated and further laminated thereon. Thus, a diffraction element was manufactured. An anti-reflection film made of a dielectric multilayer film was applied to an incident portion and an outgoing portion of light from a light source of the diffraction element.
[0048]
Although the concave portion of the glass substrate provided with the concave and convex portions was formed so that the surface of the glass substrate was almost exposed by etching, a portion corresponding to the seal portion was prepared by removing the transparent film by dry etching.
[0049]
Table 1 shows the spacer diameter (μm) of the seal portion of these diffraction elements, the substrate gap (μm) at the convex portion, and the wavefront aberration (mλrms) at 25 ° C. and 60 ° C.
[0050]
When using the diffraction element of Example 1 and using a semiconductor laser as a light source and injecting a P-wave having a wavelength of 678 nm (a polarized component parallel to the paper surface of FIG. 1), the transmittance of the P-wave was about 97%. Further, the reflected light (circularly polarized light) from the optical disk is changed into an S wave (a polarized component perpendicular to the paper surface) by the quarter-wave film, and this S wave is diffracted by the optically anisotropic diffraction grating, and the + 1st-order diffracted light is The diffraction efficiency was 34%, and the diffraction efficiency of the -1st-order diffracted light was 34%.
[0051]
As a result, the outgoing path efficiency was about 97% and the reciprocating efficiency was about 66% (± first-order diffracted light detection).
[0052]
The diffraction elements of Examples 1 and 2 each have a wavefront aberration at 60 ° C. of 30 mλ rms or less, and the output of the photodetector is stable with respect to a temperature change, and is highly reliable. The wavefront aberration at ° C was excellent at 20 mλrms or less.
[0053]
[Table 1]
Figure 0003550873
[0054]
【The invention's effect】
The present invention, while taking advantage of the high efficiency, excellent mass productivity, and low cost of the optically anisotropic diffraction grating using liquid crystal, has the drawback of improving the diffraction efficiency due to the change in wavefront aberration due to temperature change. The decrease can be suppressed, and a stable optical head device in a wide temperature range can be easily obtained.
[0055]
The present invention can be applied to various applications within a range that does not impair the effects of the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a typical configuration of an optical head device according to the present invention.
FIG. 2 is a sectional view of an optically anisotropic diffraction grating used in the optical head device of the present invention.
[Explanation of symbols]
1: light source 2: optically anisotropic diffraction grating 3: phase difference element 4: condenser lens 5: optical recording medium 6: photodetector

Claims (6)

光源からの光を、透明基板の表面に格子状の凹凸部が形成されその凹凸部に光学異方性を有する液晶が充填された光学異方性回折格子を通して光記録媒体上に照射することにより情報の書き込み及び/又は情報の読み取りを行う光ヘッド装置において、光学異方性回折格子の凸部の頂点における基板間隙が5μm以下とされたことを特徴とする光ヘッド装置。By irradiating light from a light source onto an optical recording medium through an optically anisotropic diffraction grating in which a lattice-shaped uneven portion is formed on the surface of a transparent substrate and the uneven portion is filled with a liquid crystal having optical anisotropy. An optical head device for writing and / or reading information, wherein a substrate gap at a vertex of a convex portion of an optically anisotropic diffraction grating is set to 5 μm or less. 光学異方性回折格子の凹凸部がSiO(1≦x≦2、0<y≦1.33)で形成されていて、SiO が含有する酸素量xと窒素量とが、凹凸部の屈折率と液晶の常光屈折率又は異常光屈折率のいずれかの屈折率とが実質的に等しくなるように選ばれている請求項1記載の光ヘッド装置。The uneven portion of the optically anisotropic diffraction grating is formed of SiO x N y (1 ≦ x ≦ 2, 0 <y ≦ 1.33), and the amount of oxygen x and the amount of nitrogen contained in the SiO x N y are different. 2. The optical head device according to claim 1 , wherein the refractive index of the concave and convex portions is selected to be substantially equal to the refractive index of the ordinary light or the extraordinary light of the liquid crystal . 前記SiO (1≦x≦2、0<y≦1.33)における酸素量xと窒素量yとが、その凹凸部の屈折率と透明基板の屈折率との差が0.1以内であるように選ばれている請求項1又は2記載の光ヘッド装置。 The difference between the oxygen amount x and the nitrogen amount y in the SiO x N y (1 ≦ x ≦ 2, 0 <y ≦ 1.33) is such that the difference between the refractive index of the uneven portion and the refractive index of the transparent substrate is 0.1. The optical head device according to claim 1, wherein the optical head device is selected to be within the range . 前記光学異方性回折格子の凹凸部が、透明膜を透明基板表面に形成設けることにより形成され、そのシール部にはその透明膜が形成されていない請求項1〜3記載の光ヘッド装置。The optical head device according to claim 1, wherein the uneven portion of the optically anisotropic diffraction grating is formed by providing a transparent film on the surface of the transparent substrate, and the transparent film is not formed on the seal portion. 前記光学異方性回折格子素子の光の入射部、出射部に反射防止膜が設けられた請求項1〜4のいずれか1項に記載の光ヘッド装置。The optical head device according to claim 1, wherein an antireflection film is provided on a light incident portion and a light exit portion of the optically anisotropic diffraction grating element. 前記光学異方性回折格子素子の、基板の光源側の面に第2の回折格子が形成された請求項1〜5のいずれか1項に記載の光ヘッド装置。The optical head device according to claim 1, wherein a second diffraction grating is formed on a surface of the substrate on the light source side of the optically anisotropic diffraction grating element.
JP11268896A 1996-05-07 1996-05-07 Optical head device Expired - Fee Related JP3550873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11268896A JP3550873B2 (en) 1996-05-07 1996-05-07 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11268896A JP3550873B2 (en) 1996-05-07 1996-05-07 Optical head device

Publications (2)

Publication Number Publication Date
JPH09297933A JPH09297933A (en) 1997-11-18
JP3550873B2 true JP3550873B2 (en) 2004-08-04

Family

ID=14593001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11268896A Expired - Fee Related JP3550873B2 (en) 1996-05-07 1996-05-07 Optical head device

Country Status (1)

Country Link
JP (1) JP3550873B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113800A (en) * 2010-01-18 2010-05-20 Asahi Glass Co Ltd Polarization diffraction element
JP2011054273A (en) * 2010-10-28 2011-03-17 Asahi Glass Co Ltd Polarization diffraction element

Also Published As

Publication number Publication date
JPH09297933A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
US6271966B1 (en) Optical head device including an optically anisotropic diffraction grating and process for its production
JP2006252638A (en) Polarization diffraction element and optical head apparatus
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
JP3624561B2 (en) Optical modulation element and optical head device
JP4300784B2 (en) Optical head device
JP2001101700A (en) Optical head device
JP3550873B2 (en) Optical head device
JPH1164615A (en) Diffraction element
JP3994450B2 (en) Manufacturing method of optical diffraction grating and optical head device using the same
JP3713778B2 (en) Optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP3509399B2 (en) Optical head device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3885251B2 (en) Optical anisotropic diffraction grating, driving method thereof, and optical head device using the same
JP3528381B2 (en) Optical head device
JP4626026B2 (en) Optical head device
JP3829356B2 (en) Optical head device
JPH09185837A (en) Optical head device
JP2687606B2 (en) Optical pickup
JP4419739B2 (en) Optical head device
JPH1048588A (en) Optical head device
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JPH09127335A (en) Manufacture of optical head device and optical head device
JPH10199004A (en) Liquid crystal phase control element, optical head device and optical disk device
JPH09161303A (en) Optical head device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees