JP4626026B2 - Optical head device - Google Patents

Optical head device Download PDF

Info

Publication number
JP4626026B2
JP4626026B2 JP2000229373A JP2000229373A JP4626026B2 JP 4626026 B2 JP4626026 B2 JP 4626026B2 JP 2000229373 A JP2000229373 A JP 2000229373A JP 2000229373 A JP2000229373 A JP 2000229373A JP 4626026 B2 JP4626026 B2 JP 4626026B2
Authority
JP
Japan
Prior art keywords
optical
linearly polarized
polarized light
liquid crystal
polymer liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000229373A
Other languages
Japanese (ja)
Other versions
JP2002040253A (en
Inventor
真弘 村川
健彦 西山
好晴 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000229373A priority Critical patent/JP4626026B2/en
Publication of JP2002040253A publication Critical patent/JP2002040253A/en
Application granted granted Critical
Publication of JP4626026B2 publication Critical patent/JP4626026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Description

【0001】
本発明は、光ヘッド装置に関する。
【0002】
【従来の技術】
CDやDVDなどの光ディスクおよび光磁気ディスクなどの光記録媒体に情報の記録・再生を行う光ヘッド装置において、光源である半導体レーザからの出射光はレンズにより光記録媒体上に集光され、光記録媒体で反射し戻り光となる。この戻り光はビームスプリッタを用いて光検出器である受光素子へ導かれ、光記録媒体上の情報が電気信号に変換される。
【0003】
同一の光ヘッド装置で、規格の異なる光記録媒体であるCDおよびDVD光ディスクの情報の記録・再生のため、CD/DVD互換光ヘッド装置が製品化されている。光記録媒体の記録層として光の反射・吸収に対して波長依存性の高い媒質を用いる、CD−Rなどの再生を前提とした光ディスクにおいては、CDに用いる半導体レーザは790nm波長帯のものである。このとき、DVD用には660nm波長帯の半導体レーザが用いられている。
【0004】
また、光ヘッド装置において、光利用効率を向上させるため偏光ビームスプリッタなどの、光学特性が入射光の偏光状態に依存した光学部品が用いられる場合があり、さらに記録・再生の性能を向上させるため光ディスクのトラック方向に対して、一定の角度をなす偏波面の直線偏光を集光させる場合がある。
【0005】
【発明が解決しようとする課題】
通常、CD系またはDVD系用のいずれかの波長帯の光に対し所望のリタデーション値を有する位相子によって、偏波面を回転させた2つの直線偏光を用いてそれぞれCD系とDVD系の両光ディスクへ情報の記録・再生を行う場合、一方の光ディスクに対しては良好な特性を示すが、他方に対しては良好な特性を示さない。
【0006】
具体的には、例えばDVD系用の波長帯の光に対して1/2波長板として機能する位相子を用いたとき、DVD系用の波長帯の直線偏光は偏波面を所望の値だけ回転させ透過するが、CD系の波長帯の直線偏光に対して1/2波長板として機能せず、出射光は直線偏光でなく楕円偏光となる。また、逆にCD系用の波長帯の光に対して1/2波長板として機能する位相子は、DVD系の波長帯の光に対して1/2波長板として機能しない。
【0007】
光ディスクに好ましくない複屈折分布が存在する場合、光ディスクからの反射戻り光の強度変動は、反射戻り光が偏光ビームスプリッタにより分離されて光検出器に集光されるとき、直線偏光に比べ楕円偏光の方が大きい。したがって、上記のような位相子を用いると、光ヘッド装置において情報の記録・再生ができない問題があった。
【0008】
そのため、CD系とDVD系の両波長帯の直線偏光に対して、位相子の透過後に偏波面の回転角が同じであり、かつ直線性を維持できる位相子として、旋光子などの光学素子が求められていた。
【0009】
【課題を解決するための手段】
本発明は、上記の課題を解決するためになされたものであり、DVD系の660nm波長帯となる波長λの直線偏光PとCD系の790nm波長帯となる波長λの直線偏光Pを出射する光源と、前記直線偏光Pおよび前記直線偏光Pを光記録媒体に集光する対物レンズと、前記光記録媒体で反射された戻り光を検出する光検出器と、を備える光ヘッド装置において、前記光源と前記対物レンズとの間の、前記直線偏光Pと前記直線偏光Pとが共通する光路中に旋光子を備え、前記旋光子は、一方の面に配向膜を有する一対の透明基板と、配向方向が交差する前記一対の透明基板の前記配向膜に挟持された高分子液晶膜と、を有し、前記高分子液晶膜は、液晶モノマーが重合硬化された高分子液晶からなり、前記直線偏光Pに対して異常光屈折率と常光屈折率との差Δnが0.05〜0.25の値を有し、前記高分子液晶の配向方向が前記高分子液晶膜の膜面に平行でかつ膜内でらせん状に捩じれており、さらに、前記旋光子は、前記高分子液晶膜を透過する直線偏光P および直線偏光P の偏波面が、実質的に同じ角度回転できるように、λ<λ<λの関係を満たす波長λに基づいて設計した旋光子である光ヘッド装置を提供する。
【0010】
また、前記高分子液晶膜は、前記直線偏光P に対してΔnが0.11の値を有する上記の光ヘッド装置を提供する。
【0011】
【発明の実施の形態】
本発明の光ヘッド装置に用いる旋光子101は、図1に示すように、透明基板13Aと13Bの間に、高分子液晶膜11を挟んだ構成を有する。また、図1では、波長λの直線偏光が旋光子101を透過して、その偏波面を旋光角度φだけ回転させて出射する様子も示している。旋光子101は以下のように作製する。
【0012】
透明基板13Aおよび13B上に配向膜用の膜を塗布し、おのおの所望の配向処理を施し配向膜12A、12Bとした後、透明基板13A上の配向膜12Aに、複屈折性材料である液晶モノマーの溶液を塗布する。つぎに、配向膜12Aの配向処理方向と配向膜12Bの配向処理方向とが交差するように、透明基板13Bを重ねる。
【0013】
このとき、液晶モノマーの分子方向を、配向膜12Aと12Bの接する位置ではそれぞれの配向処理方向に合わせ、液晶層の厚さ方向に徐々に回転させて配向させる。すなわち配向膜12Aと12Bの接する位置では交差方向に合っている。最後に、光重合用の光源光を照射することで重合硬化させて高分子液晶膜11とする。高分子液晶の配向方向は、高分子液晶膜の膜面に平行であり、配向膜12Aと12Bに接する位置では、それぞれの配向処理方向に一致している。したがって、高分子液晶の配向方向は高分子液晶膜11の膜内ではらせん状に捩じれている。
【0014】
また、高分子液晶膜11として、異常光屈折率と常光屈折率の差Δnが0.05〜0.25の値を採る。Δnが0.05より小さいと、高分子液晶膜の膜厚dが厚くなり高分子液晶の配向不良となり好ましくない。また、Δnが0.25より大きいと、適切なリタデーション値を得るために、膜厚dを1〜3μmと薄くしなければならず、生産性が低下して好ましくない。すなわち、Δnが0.05〜0.25の値であると、高分子液晶の配向性と高分子液晶膜の生産性の点から好ましい。
【0015】
図2は、本発明の光ヘッド装置に用いる旋光子の高分子液晶膜11に、波長λの直線偏光が入射し、その偏波面を回転させる様子を示している。図2において、高分子液晶膜11の光入射側の高分子液晶の配向方向をα、光出射側の配向方向をαとするとき、入射する直線偏光の偏光方向と出射側の配向方向αとを揃えることによって、波長λの直線偏光に対して所望の旋光特性を示し、その旋光角度φは入射側の配向方向αと出射側の配向方向αの差|α−α|に等しくなる。
【0016】
また、旋光子を透過する直線偏光の直線性を維持できる、高分子液晶膜11の膜厚dは、d=λ/(Δn・E)の関係式から決められる。ここで、係数Eは、図3に示すように、旋光角度φの関数として与えられ、φ=90°のとき、E(90°)≒1.0、φ=45°のとき、E(45°)≒2.3である。
【0017】
さらに、本発明の光ヘッド装置に用いる旋光子としては、波長λの直線偏光Pおよび波長λの直線偏光P(λ<λ)が入射するので、上記のように旋光子を設計するときに用いた波長λを、λ<λ<λとする。波長λをこのように限定することで旋光子は、前記の異なる2種の直線偏光に対し波長が異なっていても、その直線性を維持しつつ偏波面を実質的に同じ角度回転できる。ここで、実質的に同じ角度とは、2つの角度は同じである方がよいが異なっていても同程度の効果をもたらす程度のずれはこの範囲に入る。具体的には、ずれが10°以下ならば同じ角度である。
【0018】
また、温度変化に対して良好な透過波面収差を維持するために、透明基板としてガラス基板などの無機材料からなる光学的に平坦な基板を用いることは好ましい。また、透明基板の表面にフォトリソグラフィやエッチングなどの技術を用いて回折格子を形成して、光を回折させる機能を発現させてもよい。
【0019】
図4の本発明の光ヘッド装置において、半導体レーザ1Aおよび1Bを出射した、異なる波長の直線偏光はビームスプリッタ2および3によってそれぞれ反射後、旋光子101透過し、コリメートレンズ4で平行光となる。旋光子101透過前後で、異なる波長の直線偏光はともに偏光方向を角度φだけ回転した後、対物レンズ5によって、光ディスク6の記録面上に集光する。光ディスク6の記録面上で反射した復路光は、対物レンズ5によって、再び平行光となり、コリメートレンズ4、旋光子101、ビームスプリッタ3および2を経て光検出器8上に集光される。ここで、旋光子101を透過した復路光は、その偏光方向を往路の偏光方向に一致させる。
【0020】
本発明の光ヘッド装置においては、本発明の旋光子を使用しているため光ディスクに残留する好ましくない複屈折分布に起因する、光ディスクからの反射信号光の強度変動を低減でき、安定した情報の記録・再生ができる。また、ランド・グルーブ構造を有する記録用光ディスクに対して、記録・再生性能が良好となる方向に偏波面を回転した直線偏光を入射できる。また、従来の水晶を用いた旋光子に比べ、入射角度に依存する旋光特性の変動が小さいので、安定した情報の記録・再生特性が得られる。
また、上記においては、旋光子101をビームスプリッタ3とコリメートレンズ4の間に配設したが、コリメートレンズ4と対物レンズ5の間に配設してもよい。
【0021】
【実施例】
「例1」
本例は図1に示した旋光子101の具体例で、旋光角度φが45°の旋光子である。
屈折率が1.5であるガラスの透明基板13Aおよび13B上に、配向膜用のポリイミド膜を塗布しラビングによる配向処理を施して、配向膜12A、12Bとした。つぎに、透明基板13A上の配向膜12Aに複屈折性材料である液晶モノマーの溶液を塗布し、配向膜12Aの配向処理方向と配向膜12Bの配向処理方向とが45°に交差するように透明基板13Bを重ね、光重合用の光源光を照射することで重合硬化させて高分子液晶膜11とし、旋光子101を作製した。また、高分子液晶膜11としては、異常光屈折率と常光屈折率との差Δnが0.11であるものを用いて、膜厚dを2.7μmとした。
【0022】
上述のように作製した旋光子101は、透明基板13A側から入射する光が波長685nmの直線偏光であり、その偏波面が配向膜12Bの配向方向に平行なときにその直線性を維持しつつ、その偏波面を45°回転させる旋光子である(図2参照)。
【0023】
また、本例の旋光子は、CD/DVD互換の光ヘッド装置に搭載するものであり、CD用の波長780nmの光およびDVD用の波長660nmの光に対して旋光特性を測定した。その結果、660nmの直線偏光に対しては、偏波面の旋光角度は46°であり、直線維持性能を楕円率であらわすと0.04であった。一方、790nmの直線偏光に対しては、偏波面の旋光角度は40°であり、楕円率は0.12であった。両波長において、良好な旋光特性と直線維持性能を示した。ここで、楕円率とは、光の偏光状態を示すパラメータの一つで、楕円偏光の電場強度の短軸成分と長軸成分との比として表され、楕円率が0であれば直線偏光、1であれば円偏光である。
【0024】
さらに、本例で作成した複数個の旋光子101の透過波面収差を測定したところ、いずれの素子も波長633nmで0.01λrms(二乗平均偏差)以下の、低い値となった。この値は、従来の複屈折性を誘起したポリカーボネートなどをガラスなどで挟んだ光学素子の値0.015λrmsに比べ小さく、安定した値である。
【0025】
「例2」
例1で作製された旋光子101を、図4に示すように、光ヘッド装置にコリメートレンズ4と対物レンズ5との間に設置した。DVD系の660nm波長帯(λ1)の直線偏光を発振する半導体レーザ1A、およびCD系の790nm波長帯(λ2)の直線偏光を発振する半導体レーザ1Bから出射した2種の直線偏光は、旋光子101に透明基板13A(図1参照)側から入射した。
【0026】
それぞれの直線偏光の偏波面が平行になるように半導体レーザ1Aおよび1Bを設置した。この偏波面と旋光子101を構成する高分子液晶膜11の、出射側の高分子液晶の配向方向αBとが平行になるように、光ヘッド装置に位相子101を設置した(図2参照)。
【0027】
このように構成された光ヘッド装置において、光ディスク6に集光される660nm波長帯の光および790nm波長帯の光はともに直線偏光であり、かつその偏光方向が平行であった。その結果、従来の単一波長の直線偏光に対して45°偏波面を回転させる1/2波長板を用いた場合に比べ、本発明の光ヘッド装置はCD系およびDVD系の両光ディスクに対して、信号光の変動を低減でき、良好な情報の記録・再生特性を示した。
【0028】
【発明の効果】
以上説明したように、本発明の光ヘッド装置に用いる旋光子は、一つの旋光子でCD系光ディスク用およびDVD系光ディスク用の両波長帯のレーザ光に対して、その直線偏光の状態を維持しつつ、レーザ光の偏波面を同じ角度回転できる。
【0029】
本発明の旋光子を光ヘッド装置に搭載することにより、光ディスクに残留する複屈折などの偏光依存性のある光ディスク構造に起因する信号光の変動を低減でき、光ディスクの情報再生時の読み取りエラーおよび情報記録時の書き込みエラーの極めて少ない安定した信号検出を行える光ヘッド装置を実現できる。
【図面の簡単な説明】
【図1】本発明の光ヘッド装置に用いる旋光子の構成の1例を示す断面図。
【図2】図1の旋光子が直線偏光の偏波面を回転させる様子を示す概念図。
【図3】係数Eと旋光角度φの関係を示すグラフ。
【図4】本発明の光ヘッド装置の構成を示す概念図。
【符号の説明】
101:旋光子
11:高分子液晶膜
12A、12B:配向膜
13A、13B:透明基板
1A、1B:半導体レーザ
2、3:ビームスプリッタ
4:コリメートレンズ
5:対物レンズ
6:光ディスク
8:光検出器
、P:直線偏光
φ:旋光角度
d:高分子液晶膜の膜厚
λ:入射光の波長
α、α:配向方向
[0001]
The present invention relates to an optical head device.
[0002]
[Prior art]
In an optical head device for recording / reproducing information on / from an optical recording medium such as an optical disk such as a CD or DVD and a magneto-optical disk, light emitted from a semiconductor laser as a light source is condensed on the optical recording medium by a lens. It is reflected by the recording medium and becomes return light. The return light is guided to a light receiving element which is a photodetector using a beam splitter, and information on the optical recording medium is converted into an electric signal.
[0003]
CD / DVD compatible optical head devices have been commercialized for recording / reproducing information on CD and DVD optical disks, which are optical recording media having different standards, with the same optical head device. In an optical disc that uses a medium having a high wavelength dependency with respect to reflection / absorption of light as a recording layer of an optical recording medium and is premised on reproduction such as a CD-R, the semiconductor laser used for the CD has a wavelength of 790 nm. is there. At this time, a semiconductor laser having a wavelength band of 660 nm is used for DVD.
[0004]
In addition, in an optical head device, an optical component whose optical characteristics depend on the polarization state of incident light, such as a polarizing beam splitter, may be used in order to improve the light utilization efficiency, and in order to further improve the recording / reproducing performance. In some cases, linearly polarized light with a polarization plane that makes a certain angle with respect to the track direction of the optical disk is condensed.
[0005]
[Problems to be solved by the invention]
Usually, both CD and DVD optical discs using two linearly polarized light whose planes of polarization are rotated by a phaser having a desired retardation value for light in any wavelength band for CD and DVD systems. When information is recorded / reproduced, the one optical disk exhibits good characteristics but the other does not exhibit good characteristics.
[0006]
Specifically, for example, when using a phase shifter that functions as a half-wave plate for light in the wavelength band for DVD, linear polarization of the wavelength band for DVD rotates the plane of polarization by a desired value. However, it does not function as a half-wave plate for linearly polarized light in the CD wavelength band, and the emitted light is not linearly polarized light but elliptically polarized light. Conversely, a retarder that functions as a half-wave plate for light in the wavelength band for the CD system does not function as a half-wave plate for light in the wavelength band for the DVD system.
[0007]
When there is an unfavorable birefringence distribution on the optical disk, the intensity fluctuation of the reflected return light from the optical disk is elliptically polarized compared to the linearly polarized light when the reflected return light is separated by the polarization beam splitter and collected on the photodetector. Is bigger. Therefore, when the above phaser is used, there is a problem that information cannot be recorded / reproduced in the optical head device.
[0008]
For this reason, optical elements such as an optical rotator are used as a phase shifter capable of maintaining the linearity of the rotation angle of the polarization plane after transmission through the phase shifter for linear polarization in both wavelength bands of the CD system and the DVD system. It was sought after.
[0009]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-mentioned problems, and linearly polarized light P 1 having a wavelength λ 1 that is a 660 nm wavelength band of a DVD system and linearly polarized light P 1 having a wavelength λ 2 that is a 790 nm wavelength band of a CD system. comprising a light source for emitting 2, an objective lens for focusing the linearly polarized light P 1 and the linear polarization P 2 to the optical recording medium, and a photodetector for detecting the reflected return light by the optical recording medium in the optical head device, between the light source and the objective lens comprises a polarization rotator in an optical path between the linearly polarized light P 1 and the linear polarization P 2 is common, the polarization rotator, the alignment layer on one surface A pair of transparent substrates, and a polymer liquid crystal film sandwiched between the alignment films of the pair of transparent substrates whose orientation directions cross each other. The polymer liquid crystal film is obtained by polymerizing and curing a liquid crystal monomer. Made of polymer liquid crystal, the linearly polarized light The difference Δn between the extraordinary refractive index and the ordinary refractive index with respect to 1 has a value of 0.05 to 0.25, the orientation direction of the polymer liquid crystal and parallel to the film surface of the polymer liquid crystal film Further, the optical rotator is twisted spirally in the film, and the optical rotator can be rotated so that the polarization planes of the linearly polarized light P 1 and the linearly polarized light P 2 transmitted through the polymer liquid crystal film can be rotated by substantially the same angle. Provided is an optical head device that is an optical rotator designed based on a wavelength λ that satisfies the relationship 1 <λ <λ 2 .
[0010]
Further, the polymer liquid crystal film, [Delta] n provides the above optical head device having a value of 0.11 with respect to the linearly polarized light P 1.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, an optical rotator 101 used in the optical head device of the present invention has a configuration in which a polymer liquid crystal film 11 is sandwiched between transparent substrates 13A and 13B. FIG. 1 also shows a state in which the linearly polarized light having the wavelength λ is transmitted through the optical rotator 101 and is emitted by rotating its polarization plane by the optical rotation angle φ. The optical rotator 101 is produced as follows.
[0012]
A liquid crystal monomer, which is a birefringent material, is applied to the alignment film 12A on the transparent substrate 13A after coating the alignment film on the transparent substrates 13A and 13B and applying the desired alignment treatment to the alignment films 12A and 12B. Apply the solution. Next, the transparent substrate 13B is overlapped so that the alignment treatment direction of the alignment film 12A and the alignment treatment direction of the alignment film 12B intersect each other.
[0013]
At this time, the molecular direction of the liquid crystal monomer is aligned with the alignment treatment direction at the position where the alignment films 12A and 12B are in contact with each other, and is gradually rotated in the thickness direction of the liquid crystal layer to be aligned. In other words, the alignment films 12A and 12B are aligned with each other in the crossing direction. Finally, the polymer liquid crystal film 11 is formed by being cured by being irradiated with light source light for photopolymerization. The alignment direction of the polymer liquid crystal is parallel to the film surface of the polymer liquid crystal film, and coincides with each alignment treatment direction at a position in contact with the alignment films 12A and 12B. Therefore, the orientation direction of the polymer liquid crystal is twisted in a spiral manner in the polymer liquid crystal film 11.
[0014]
Further, as the polymer liquid crystal film 11, the difference Δn between the extraordinary refractive index and the ordinary refractive index takes a value of 0.05 to 0.25. If Δn is smaller than 0.05, the film thickness d of the polymer liquid crystal film is increased, which leads to poor alignment of the polymer liquid crystal. On the other hand, if Δn is larger than 0.25, the film thickness d must be reduced to 1 to 3 μm in order to obtain an appropriate retardation value, which is not preferable because productivity is lowered. That is, Δn is preferably from 0.05 to 0.25 from the viewpoint of the orientation of the polymer liquid crystal and the productivity of the polymer liquid crystal film.
[0015]
FIG. 2 shows a state in which linearly polarized light having a wavelength λ is incident on the rotatory polymer liquid crystal film 11 used in the optical head device of the present invention, and its polarization plane is rotated. In FIG. 2, when the alignment direction of the polymer liquid crystal on the light incident side of the polymer liquid crystal film 11 is α A and the alignment direction on the light output side is α B , the polarization direction of the incident linearly polarized light and the alignment direction on the output side By aligning with α B , a desired optical rotation characteristic is exhibited with respect to linearly polarized light of wavelength λ, and the optical rotation angle φ is the difference between the incident-side orientation direction α A and the output-side orientation direction α B | α A −α B |
[0016]
The film thickness d of the polymer liquid crystal film 11 that can maintain the linearity of the linearly polarized light transmitted through the optical rotator is determined from the relational expression d = λ / (Δn · E). Here, as shown in FIG. 3, the coefficient E is given as a function of the optical rotation angle φ. When φ = 90 °, E (90 °) ≈1.0, and when φ = 45 °, E (45 °) ≈2.3.
[0017]
Further, as the polarization rotator used for the optical head device of the present invention, since the linear polarization P 2 of the linearly polarized light P 1 and wavelength lambda 2 wavelength λ 1 (λ 1 <λ 2 ) are incident, as described above rotator The wavelength λ used when designing is set as λ 1 <λ <λ 2 . By limiting the wavelength λ in this way, the optical rotator can rotate the plane of polarization substantially at the same angle while maintaining the linearity even if the wavelengths are different with respect to the two different types of linearly polarized light. Here, “substantially the same angle” means that the two angles should be the same, but a deviation that provides the same effect even if they are different falls within this range. Specifically, if the deviation is 10 ° or less, the angle is the same.
[0018]
In order to maintain good transmitted wavefront aberration with respect to temperature change, it is preferable to use an optically flat substrate made of an inorganic material such as a glass substrate as the transparent substrate. In addition, a diffraction grating may be formed on the surface of the transparent substrate using a technique such as photolithography or etching to develop a function of diffracting light.
[0019]
In the optical head device of the present invention shown in FIG. 4, the linearly polarized light beams having different wavelengths emitted from the semiconductor lasers 1A and 1B are reflected by the beam splitters 2 and 3, respectively, then transmitted through the optical rotator 101, and converted into parallel light by the collimating lens 4. . Before and after transmission through the optical rotator 101, the linearly polarized light having different wavelengths is condensed on the recording surface of the optical disk 6 by the objective lens 5 after the polarization direction is rotated by an angle φ. The return light reflected on the recording surface of the optical disk 6 is converted again into parallel light by the objective lens 5 and is condensed on the photodetector 8 through the collimating lens 4, the optical rotator 101, and the beam splitters 3 and 2. Here, the return light transmitted through the optical rotator 101 has its polarization direction matched with the forward polarization direction.
[0020]
In the optical head device of the present invention, since the optical rotator of the present invention is used, fluctuations in the intensity of the reflected signal light from the optical disk due to an undesirable birefringence distribution remaining on the optical disk can be reduced, and stable information Recording and playback are possible. Further, linearly polarized light whose polarization plane is rotated in a direction in which recording / reproducing performance is good can be incident on a recording optical disc having a land / groove structure. In addition, since the fluctuation of the optical rotation characteristic depending on the incident angle is small as compared with a conventional optical rotator using quartz, stable information recording / reproducing characteristics can be obtained.
In the above description, the optical rotator 101 is disposed between the beam splitter 3 and the collimating lens 4, but may be disposed between the collimating lens 4 and the objective lens 5.
[0021]
【Example】
"Example 1"
This example is a specific example of the optical rotator 101 shown in FIG. 1, and is an optical rotator having an optical rotation angle φ of 45 °.
On the glass transparent substrates 13A and 13B having a refractive index of 1.5, a polyimide film for an alignment film was applied and subjected to an alignment process by rubbing to obtain alignment films 12A and 12B. Next, a solution of a liquid crystal monomer that is a birefringent material is applied to the alignment film 12A on the transparent substrate 13A so that the alignment treatment direction of the alignment film 12A and the alignment treatment direction of the alignment film 12B intersect at 45 °. The transparent substrate 13B was stacked and polymerized and cured by irradiating light source light for photopolymerization to form a polymer liquid crystal film 11, and an optical rotator 101 was produced. Further, as the polymer liquid crystal film 11, a film having a difference Δn between the extraordinary light refractive index and the ordinary light refractive index of 0.11, and the film thickness d was set to 2.7 μm.
[0022]
The optical rotator 101 produced as described above is linearly polarized light having a wavelength of 685 nm and incident from the transparent substrate 13A side, and maintains its linearity when the plane of polarization is parallel to the alignment direction of the alignment film 12B. The optical rotator rotates the plane of polarization by 45 ° (see FIG. 2).
[0023]
The optical rotator of this example was mounted on a CD / DVD compatible optical head device, and the optical rotation characteristics were measured for light with a wavelength of 780 nm for CD and light with a wavelength of 660 nm for DVD. As a result, for the 660 nm linearly polarized light, the optical rotation angle of the plane of polarization was 46 °, and the straight line maintenance performance was 0.04 when expressed by ellipticity. On the other hand, for 790 nm linearly polarized light, the optical rotation angle of the polarization plane was 40 ° and the ellipticity was 0.12. Good optical rotation characteristics and straight line maintenance performance were exhibited at both wavelengths. Here, the ellipticity is one of the parameters indicating the polarization state of light, and is expressed as a ratio between the short axis component and the long axis component of the electric field intensity of the elliptically polarized light. If the ellipticity is 0, linear polarization, If it is 1, it is circularly polarized light.
[0024]
Furthermore, when the transmitted wavefront aberrations of the plurality of optical rotators 101 prepared in this example were measured, all the elements had low values of 0.01λ rms (root mean square deviation) or less at a wavelength of 633 nm. This value is small and stable compared to the value 0.015λ rms of the conventional optical element in which polycarbonate or the like in which birefringence is induced is sandwiched between glass or the like.
[0025]
"Example 2"
The optical rotator 101 produced in Example 1 was placed between the collimating lens 4 and the objective lens 5 in the optical head device as shown in FIG. Two types of linearly polarized light emitted from a semiconductor laser 1A that oscillates linearly polarized light in the 660 nm wavelength band (λ 1 ) of the DVD system and a semiconductor laser 1B that oscillates linearly polarized light in the 790 nm wavelength band (λ 2 ) of the CD system are: The light enters the optical rotator 101 from the side of the transparent substrate 13A (see FIG. 1).
[0026]
The semiconductor lasers 1A and 1B were installed so that the polarization planes of the respective linearly polarized light were parallel. The phase shifter 101 is installed in the optical head device so that the polarization plane and the alignment direction α B of the polymer liquid crystal on the exit side of the polymer liquid crystal film 11 constituting the optical rotator 101 are parallel to each other (see FIG. 2). ).
[0027]
In the optical head device configured as described above, the light in the 660 nm wavelength band and the light in the 790 nm wavelength band collected on the optical disk 6 are both linearly polarized light and the polarization directions thereof are parallel. As a result, the optical head device of the present invention can be applied to both CD and DVD optical discs as compared to the case of using a half-wave plate that rotates a 45 ° polarization plane with respect to the conventional linearly polarized light of a single wavelength. Thus, fluctuations in signal light can be reduced, and good information recording / reproducing characteristics have been demonstrated.
[0028]
【The invention's effect】
As described above, the optical rotator used in the optical head device of the present invention maintains the state of linear polarization with respect to laser light in both wavelength bands for CD optical disks and DVD optical disks with a single optical rotator. However, the polarization plane of the laser light can be rotated by the same angle.
[0029]
By mounting the optical rotator of the present invention on an optical head device, fluctuations in signal light due to polarization-dependent optical disk structures such as birefringence remaining on the optical disk can be reduced, and read errors and errors during optical disk information reproduction can be reduced. An optical head device capable of performing stable signal detection with extremely few writing errors during information recording can be realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of the configuration of an optical rotator used in an optical head device of the present invention.
FIG. 2 is a conceptual diagram showing how the optical rotator of FIG. 1 rotates the polarization plane of linearly polarized light.
FIG. 3 is a graph showing a relationship between a coefficient E and an optical rotation angle φ.
FIG. 4 is a conceptual diagram showing a configuration of an optical head device of the present invention.
[Explanation of symbols]
101: Optical rotator 11: Polymer liquid crystal film 12A, 12B: Alignment film 13A, 13B: Transparent substrate 1A, 1B: Semiconductor laser 2, 3: Beam splitter 4: Collimator lens 5: Objective lens 6: Optical disk 8: Photo detector P 1 , P 2 : Linearly polarized light φ: Optical rotation angle d: Film thickness of polymer liquid crystal film λ: Wavelength of incident light α A , α B : Orientation direction

Claims (2)

DVD系の660nm波長帯となる波長λの直線偏光PとCD系の790nm波長帯となる波長λの直線偏光Pを出射する光源と、前記直線偏光Pおよび前記直線偏光Pを光記録媒体に集光する対物レンズと、前記光記録媒体で反射された戻り光を検出する光検出器と、を備える光ヘッド装置において、
前記光源と前記対物レンズとの間の、前記直線偏光Pと前記直線偏光Pとが共通する光路中に旋光子を備え、
前記旋光子は、一方の面に配向膜を有する一対の透明基板と、配向方向が交差する前記一対の透明基板の前記配向膜に挟持された高分子液晶膜と、を有し、
前記高分子液晶膜は、液晶モノマーが重合硬化された高分子液晶からなり、前記直線偏光Pに対して異常光屈折率と常光屈折率との差Δnが0.05〜0.25の値を有し、前記高分子液晶の配向方向が前記高分子液晶膜の膜面に平行でかつ膜内でらせん状に捩じれており、
さらに、前記旋光子は、前記高分子液晶膜を透過する直線偏光P および直線偏光P の偏波面が、実質的に同じ角度回転できるように、λ<λ<λの関係を満たす波長λに基づいて設計した旋光子である光ヘッド装置。
A light source that emits linearly polarized light P 1 having a wavelength λ 1 in the 660 nm wavelength band of the DVD system and linearly polarized light P 2 having a wavelength λ 2 in the 790 nm wavelength band of the CD system, the linearly polarized light P 1, and the linearly polarized light P 2 In an optical head device comprising: an objective lens that focuses light onto an optical recording medium; and a photodetector that detects return light reflected by the optical recording medium.
Between the light source and the objective lens comprises a polarization rotator in an optical path between the linearly polarized light P 1 and the linear polarization P 2 is common,
The optical rotator has a pair of transparent substrates having an alignment film on one surface, and a polymer liquid crystal film sandwiched between the alignment films of the pair of transparent substrates whose alignment directions intersect,
The polymer liquid crystal film is composed of a polymer liquid crystal obtained by polymerizing and curing a liquid crystal monomer, and a difference Δn between an extraordinary refractive index and an ordinary refractive index with respect to the linearly polarized light P 1 is 0.05 to 0.25. And the orientation direction of the polymer liquid crystal is parallel to the film surface of the polymer liquid crystal film and twisted in a spiral in the film,
Further, the optical rotator satisfies the relationship of λ 1 <λ <λ 2 so that the polarization planes of the linearly polarized light P 1 and the linearly polarized light P 2 that pass through the polymer liquid crystal film can be rotated by substantially the same angle. An optical head device that is an optical rotator designed based on a wavelength λ .
前記高分子液晶膜は、前記直線偏光Pに対してΔnが0.11の値を有する請求項1に記載の光ヘッド装置。2. The optical head device according to claim 1, wherein the polymer liquid crystal film has a value of Δn of 0.11 with respect to the linearly polarized light P 1 .
JP2000229373A 2000-07-28 2000-07-28 Optical head device Expired - Fee Related JP4626026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000229373A JP4626026B2 (en) 2000-07-28 2000-07-28 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000229373A JP4626026B2 (en) 2000-07-28 2000-07-28 Optical head device

Publications (2)

Publication Number Publication Date
JP2002040253A JP2002040253A (en) 2002-02-06
JP4626026B2 true JP4626026B2 (en) 2011-02-02

Family

ID=18722502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000229373A Expired - Fee Related JP4626026B2 (en) 2000-07-28 2000-07-28 Optical head device

Country Status (1)

Country Link
JP (1) JP4626026B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468970B1 (en) * 2002-04-20 2005-01-29 엘지전자 주식회사 Polarization phase compensator and optical disc reader/writer using the same
CN100350474C (en) * 2004-05-10 2007-11-21 索尼株式会社 Optical pickup
JPWO2008081941A1 (en) * 2007-01-05 2010-04-30 旭硝子株式会社 Wavelength selection wave plate and optical head device using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177216A (en) * 1990-11-13 1992-06-24 Nippon Oil Co Ltd Manufacture of optical element having optical rotatory power
JPH06314449A (en) * 1993-04-30 1994-11-08 Sony Corp Optical pickup device
JPH09161306A (en) * 1995-12-08 1997-06-20 Hitachi Ltd Optical disk device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422917A (en) * 1990-05-18 1992-01-27 Nippon Oil Co Ltd Optically active optical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177216A (en) * 1990-11-13 1992-06-24 Nippon Oil Co Ltd Manufacture of optical element having optical rotatory power
JPH06314449A (en) * 1993-04-30 1994-11-08 Sony Corp Optical pickup device
JPH09161306A (en) * 1995-12-08 1997-06-20 Hitachi Ltd Optical disk device

Also Published As

Publication number Publication date
JP2002040253A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
JP3671768B2 (en) Optical head device
JP4300784B2 (en) Optical head device
JP4930084B2 (en) Broadband wave plate
JP3624561B2 (en) Optical modulation element and optical head device
JP5071316B2 (en) Broadband wave plate and optical head device
JP4622160B2 (en) Diffraction grating integrated optical rotator and optical head device
JP4626026B2 (en) Optical head device
JP4349335B2 (en) Optical head device
JP5056059B2 (en) Broadband wave plate
JP2007280460A (en) Optical head device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP4649748B2 (en) Two-wavelength phase plate and optical head device
JP4218393B2 (en) Optical head device
JP5131244B2 (en) Laminated phase plate and optical head device
WO2005045484A1 (en) Diffraction element and optical head device
JP4427877B2 (en) Aperture limiting element and optical head device
JP2004145255A (en) Polarizing optical element, optical element unit, optical head, and optical disk drive
JP2001344800A (en) Optical head device
JP2001311821A (en) Phase shifter and optical head device
JPWO2008081941A1 (en) Wavelength selection wave plate and optical head device using the same
JP3968593B2 (en) Optical head device
JP2010238350A (en) Optical head device
JP2005339595A (en) Optical head device
JP3713778B2 (en) Optical head device
JP3550873B2 (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees