JP3711652B2 - Polarization diffraction element and optical head device using the same - Google Patents

Polarization diffraction element and optical head device using the same Download PDF

Info

Publication number
JP3711652B2
JP3711652B2 JP24372496A JP24372496A JP3711652B2 JP 3711652 B2 JP3711652 B2 JP 3711652B2 JP 24372496 A JP24372496 A JP 24372496A JP 24372496 A JP24372496 A JP 24372496A JP 3711652 B2 JP3711652 B2 JP 3711652B2
Authority
JP
Japan
Prior art keywords
light
refractive index
substrate
liquid crystal
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24372496A
Other languages
Japanese (ja)
Other versions
JPH1068820A (en
Inventor
浩一 村田
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP24372496A priority Critical patent/JP3711652B2/en
Publication of JPH1068820A publication Critical patent/JPH1068820A/en
Application granted granted Critical
Publication of JP3711652B2 publication Critical patent/JP3711652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、DVD(デジタルビデオディスク)、LD(レーザディスク)、CD(コンパクトディスク)、CD−ROM等の光ディスク、相変化光ディスク及び光磁気ディスク等の光学ディスクに光学的情報を書き込んだり、光学的情報を読み取るための光ヘッド装置に使用されるに適した偏光回折素子及びそれを用いた光ヘッド装置に関する。
【0002】
【従来の技術】
従来、光ディスク、光磁気ディスク等の光学ディスクに光学的情報を書き込んだり、光学的情報を読み取る光ヘッド装置としては、ディスクの記録面から反射された信号光を検出部へ導光(ビームスプリット)する光学部品としてプリズム式ビームスプリッタを用いたものと、回折格子又はホログラム素子を用いたものとが知られていた。
【0003】
従来、光ヘッド装置用の回折格子又はホログラム素子は、ガラスやプラスチック基板上に、矩形の断面を有する矩形格子(レリーフ型)をドライエッチング法又は射出成形法よって形成し、これによって光を回折しビームスプリット機能を付与していた。
【0004】
また、光の利用効率が10%程度の等方性回折格子よりも光の利用効率を上げようとした場合、偏光を利用することが考えられる。偏光を利用しようとすると、プリズム式ビームスプリッタにλ/4板を組み合わせて、往路(光源から光学ディスクへ向かう方向)及び復路(光学ディスクから検出部へ向かう方向)の効率を上げて往復効率を上げる方法があった。
【0005】
しかし、プリズム式偏光ビームスプリッタは高価であり、他の方式が模索されていた。一つの方式としてLiNbO3 等の複屈折結晶の平板を用い、表面に異方性回折格子を形成し偏向選択性をもたす方法が知られている。しかし、複屈折結晶自体が高価であり、民生分野への適用は困難である。
【0006】
一方、等方性回折格子は、前述のように光の利用効率が往路で50%程度、復路で20%程度であるため、往復での光の利用効率は10%程度が限界である。
【0007】
上記の問題点を解決し、高光利用効率の光ヘッドを実現するために、基板上に、格子状凸部を形成し、その凹部に光学異方性材料を充填する偏光回折素子、又は、そのような偏光回折素子を用いた光ヘッドが提案されている。
【0008】
この偏光回折素子の例を図3に示す。図3において、11は第1の基板、12は凹凸、13は第2の基板、15はシール材、16は光学異方性材料である液晶を示す。
【0009】
この偏光回折素子は、往路では光源からの光は回折せずに直進して光学ディスクに到達し、復路では偏光方向が90°回転した光のため光は回折して光検知器に到達するようにされる。
【0010】
しかし、実際のシステム上では、例えば、CD再生とDVD再生を単一の光ヘッドで行う必要があるが、DVDではトラッキング方式が通常1ビーム方式であり、CDではトラッキング方式が通常3ビーム方式である。
【0011】
そのためCDとDVDを両方再生するために、3ビーム発生用の単純回折格子を上記の光学異方性回折格子とは別に何らかの方法で設置する必要がある。このため、従来以下のような方式が提案されている。
【0012】
1つの例としては、図4に示すように光学異方性回折格子とは別に3ビーム発生用の単純回折格子を光源と光学異方性回折格子との間に設置する方式がある。図4において、21は光源、22は3ビーム発生用の単純回折格子、23は光学異方性回折格子、24はλ/4板、25は集光レンズ、26は光学ディスク、27A、27Bは回折光、28A、28Bは光検知器を示す。この方式では、部品点数が増え、調整、組立が煩雑になる問題があった。
【0013】
この部品点数を減らすために、単純回折格子を別置せずに、光学異方性回折格子を形成した基板の反対面(外側の面)に単純回折格子を形成することも考えられた。この方式では、光学異方性格子による復路の回折光の干渉(光学異方性格子から出射した回折光が単純回折格子を通ること)を避けるために、光学異方性格子と単純回折格子の距離を極端に空けたり、又は光学異方性回折格子の回折角を広くとるために光学異方性格子のピッチを極端に細かくする必要があった。
【0014】
【発明が解決しようとする課題】
光学異方性格子と単純回折格子の距離を空けるためには、透明基板の厚みを厚くする必要がある。これは光学異方性格子自体の重量増を生じ、加工が困難になる問題がある。また、格子のピッチを細かくすることは、加工が難しく生産性が低下する問題がある。
【0015】
本発明は、前述の問題を解消し、DVD、CDの両方を再生するための、3ビーム発生用の単純回折格子を、ビームスプリッタとして使用する光学異方性回折格子と共存させて、軽量で小型な多機能光学異方性回折格子を安価に生産性よく提供することを目的とする。また、光学異方性回折格子と3ビーム発生用の単純回折格子の位置関係に関して設計上の自由度を確保することを目的とする。
【0016】
【課題を解決するための手段】
本発明は、一対の基板間に光学異方性材料が充填された偏光回折素子において、2枚の基板がいずれもその内面に格子状の凹凸が形成された基板であって、一方の基板の凹凸の 凸部の屈折率が光学異方性材料の常光屈折率にほぼ等しくされ、他方の基板の凹凸の凸部の屈折率が光学異方性材料の異常光屈折率にほぼ等しくされていることを特徴とする偏光回折素子を提供する。
【0017】
また、格子の長手方向が2枚の基板で異なっていることを特徴とする上記偏光回折素子を提供する。
【0018】
また、少なくとも一方の基板の凹凸の凸部が基板の表面に形成された透明材料膜で形成されていることを特徴とする上記偏光回折素子、及び、光学異方性材料が液晶であり、格子の長手方向が2枚の基板でほぼ直交しており、液晶のツイスト角が90°+180°×n(nは0以上の整数)とされていることを特徴とする上記偏光回折素子を提供する。
【0019】
また、上記偏光回折素子を光源と光学ディスクとの間に配置したことを特徴とする光ヘッド装置を提供する。また、偏光回折素子の光源側の格子状の凹凸の長手方向を光源の光の偏光方向とほぼ一致するようにするとともに凹凸の凸部の屈折率を光学異方性材料の異常光屈折率にほぼ等しくするか、又は、光源側の格子状の凹凸の長手方向を光源の光の偏光方向とほぼ直交するようにするとともに凹凸の凸部の屈折率を光学異方性材料の常光屈折率にほぼ等しくするようにしたことを特徴とする上記光ヘッド装置とすることが好ましい。
【0020】
本発明の偏光回折素子は、2枚の基板がいずれもその内面に格子状の凹凸が形成された基板であり、1個の素子で往路で光を3分割可能にし、復路で回折して光検知器に導くという多機能を有し、光ヘッド装置に組み込んでその小型多機能化に有用である。
【0021】
【発明の実施の形態】
図1は本発明の偏光回折素子の断面図であり、図2はその基板をずらした状態で示す平面図である。図1及び図2において、1はガラス、プラスチック等の第1の基板、2はその内面に形成された格子状の第1の凹凸、3はガラス、プラスチック等の第2の基板、4はその内面に形成された格子状の第2の凹凸、5はシール材、6は液晶を示す。P1は第1の基板1の格子のピッチ、P2は第2の基板3の格子のピッチ、θは第1の基板1の格子の長手方向7と第2の基板3の格子の長手方向8との交差角を示す。
【0022】
本発明の偏光回折素子で用いる基板は、ガラス、プラスチック等の透明基板が使用でき、透過損失、信頼性等の点からみてガラス基板の使用が好ましい。また、基板と光学異方性材料との界面での反射を低減するために基板の屈折率は光学異方性材料のいずれかの屈折率と一致するようにされていることが好ましい。
【0023】
本発明における光学異方性材料の代表的なものとして液晶がある。この液晶は種々の液晶が使用でき、最も一般的な正の誘電異方性のネマチック液晶が好適に使用できるので、以下の説明では正の誘電異方性のネマチック液晶を用いたものとして説明する。
【0024】
なお、本発明では電界をオンオフしなくてもよいので、このネマチック液晶は電界のオンオフによる配列の変化は生じなくてもよい。このため、このネマチック液晶はその配列状態のまま重合されて高分子化されたものであってもよい。
【0025】
本発明で形成する凹凸は、基板自体に直接凹凸を形成してもよく、基板表面に透明材料膜を形成し透明材料膜に凹凸を形成してもよい。この透明材料膜は、各種の透明材料が使用でき、基板に対する接着性がよく、後で充填する液晶等の光学異方性材料の屈折率と一致する屈折率を有する材料が好ましい。
【0026】
具体的には、SiO2、Al23、MgO、SiON、ZrO2等の透明な無機の酸化物、窒化物等の膜が使用できる。特に、SiONが酸素と窒素の量を変えることにより得られる膜の屈折率を容易に変化させうるので好ましい。これらの透明材料膜は、基板上に反応性スパッタ法、蒸着法、プラズマCVD法等によって形成すればよい。
【0027】
なお、上記の説明では、SiONと記載したが、これは一般式で書けば、SiOxy(0<x<2、0<y<1.3)とされるべきものであり、煩雑さを避けるために、以下の説明においてもSiONと表記する。同様なことがSiO2等にも適用される。
【0028】
基板に凹凸を形成するには、基板自体又は基板上に形成された透明材料膜をフォトリソグラフィ、ドライエッチング等によって加工し、格子状凹凸を形成すればよい。
【0029】
より具体的には、例えばSiON等の透明材料膜上にフォトレジストをスピンコートし、そのフォトレジストに、フォトマスクを通して紫外線を照射し、その後現像処理することによって、格子状のレジスト形状を形成し、これをマスク材として、ドライエッチングによって、レジスト形状を転写することによって、透明ガラス基板上に格子状の凹凸を形成する。
【0030】
本発明では、2つの格子状の凹凸を夫々の基板上に形成する。この2枚の基板の格子状の凹凸の長手方向は異なった方向にすることが好ましい。通常は、夫々が相互に影響しにくくするために、相互にほぼ直交する方向にされることがさらに好ましい。
【0031】
夫々の格子状の凹凸のピッチP1 及びP2 は、夫々の目的である往路で光を3分割し、復路で回折して光検知器に導くのに適したピッチで設けられればよい。
【0032】
この格子状の凹凸を形成した基板は、凹凸面をラビング、斜め蒸着等によりその格子の長手方向に液晶分子が整列するように配向処理することが好ましい。この配向処理は、ネマチック液晶自体が固有のねじれピッチを有している場合には、一方の基板にのみ行ってもよい。また、配向処理前にポリイミドやポリアミド等の薄膜を形成してから配向処理してもよい。
【0033】
本発明では、液晶分子のツイスト角は90°+180°×n(nは0以上の整数)とすることが好ましい。これは、2枚の基板の格子状の凹凸の長手方向の交差角θがほぼ90°にされ、それに沿った方向に配向処理されることにより容易に得られる。この場合、nがいくつになるかは、液晶自体の固有のねじれピッチをどの程度にするかで決まる。
【0034】
図5は、本発明の偏光回折素子を用いた光ヘッド装置の基本的な構成を示す模式図である。図5において、31は光源、33は本発明の偏光回折素子、34はλ/4板、35は集光レンズ、36は光学ディスク、37A、37Bは回折光、38A、38Bは光検知器を示す。この光ヘッド装置では、偏光回折素子33が偏光ビームスプリッタとして機能するとともに、3ビーム発生用の単純回折格子としても機能する。
【0035】
光源31には、半導体レーザが通常用いられるが、波長変換素子等を組み込んでより短波長化したレーザも使用できる。λ/4板34は偏光方向を回転させるために使用される位相差板であり、所望の角度の偏光方向の回転ができるような位相差板が使用されればよい。
【0036】
図5の光ヘッド装置の構成は基本的な構成であり、必要に応じて、焦点距離を変える機構やレンズの開口率を変える機構を設けてもよい。また、偏光回折素子の格子を1つの基板に2種以上設けて回折光の数を増やしたりすることもできる。また、光検知器への回折に用いる格子は、凹凸を完全に平行にするのでなく、わずかに湾曲させてレンズ効果を持たせるようにしてもよい。
【0037】
図5のような構成をとることにより、本発明の光ヘッド装置は以下のような機能が得られる。本発明の偏光回折素子は、一方の基板の格子状の凹凸で偏光ビームスプリッタとして機能し、他方の基板の格子状の凹凸でトラッキングエラー検出のために必要な3ビーム発生用の光学異方性回折格子として機能している。
【0038】
例えば、一方の基板では、液晶の常光屈折率にほぼ等しい基板上に、同じく液晶の異常光屈折率にほぼ等しいSiONの透明材料膜による格子状の凹凸を形成する。この格子は通常は3ビーム発生のためであるので、通常直線状の格子である。これは液晶が基板間に充填された状態で、光源から光デイスクに向かうある偏光状態の光を持つ往路においては、例えばその70%を透過し、15%をおのおの+1次と−1次の方向へ回折させる。一方、それと直交した偏光状態を持つ復路においては、全透過し、無視できる。
【0039】
この場合、他方の基板では、液晶の常光屈折率にほぼ等しい透明基板上に、同じく液晶の常光屈折率にほぼ等しいSiONの透明薄膜による格子状の凹凸を形成する。この格子は偏光ビームスプリッタとして機能し、通常はフォーカスエラー検出のための複雑な湾曲を有する。液晶が基板間に充填された状態で、光源から光デイスクに向かうある偏光状態の光を持つ往路においてはほぼ全透過する。一方、それとほぼ直交した偏光状態を持つ復路においては、光に対しフォーカスエラー検出のための光学処理をした状態で、ほぼ全面的に回折し、光検知器に導かれる。
【0040】
すなわち、光源からの往路においては、光源から出た特定の偏光方向を持つ光は偏光ビームスプリッタとして機能する格子は透過し、3ビーム発生用の光学異方性回折格子として機能する格子はある量の光を+1次と−1次の方向へ回折させて3ビームを発生させる。
【0041】
一方、光学ディスクからの復路の光は、位相差板を往復で2度通過することにより往路の光に対して90°偏光方向が回転する。このため、3ビーム発生用の光学異方性回折格子として機能する格子はそのまま通過し、偏光ビームスプリッタとして機能する格子により回折を生じて光検知器に導かれる。
【0042】
この代表的な例として、図5の例で、光源31からの光がP偏光(紙面に平行な方向の偏光)であるとした場合で説明する。偏光回折素子33は光源側で格子状の凹凸の長手方向が紙面に垂直であり、その凸部の屈折率が液晶の常光屈折率と一致するようにされ、光学ディスク側で格子状の凹凸の長手方向が紙面に平行であり、その凸部の屈折率が液晶の異常光屈折率と一致するようにされる。これらの2枚の基板に挟持された液晶は、基板間で90°ツイストするようにされている。
【0043】
このような光ヘッド装置の場合、光源から出射した光は、P偏光で偏光回折素子33に入射するが、上側の格子状の凹凸では液晶分子はP偏光に対しては常光屈折率を示すので、凹凸の凸部の屈折率と等しくなり、この格子状の凹凸は回折格子として機能しなくなるので、光はこの上側の回折格子をそのまま透過する。
【0044】
液晶層に入射した光の偏光方向は90°ねじられてS偏光(紙面に垂直な方向の偏光)になり、下側の格子状の凹凸に入射する。液晶分子は90°ツイストしているので、下側の凹凸では紙面に平行な方向に配列している。この液晶分子はS偏光に対しては常光屈折率を示すので、下側の凹凸の凸部の屈折率と異なることになり、この格子状の凹凸は回折格子として機能するので、光はこの下側の回折格子で回折され3本のビームにされる。
【0045】
λ/4板等の位相差板を経由して光学ディスクで反射して戻ってきた光は偏光方向が90°回転していて、P偏光になっている。下側の格子状の凹凸では液晶分子はP偏光に対しては異常光屈折率を示すので、下側の凹凸の凸部の屈折率と一致することになり、この格子状の凹凸は回折格子として機能せず、光はこの下側の回折格子をそのまま透過する。
【0046】
液晶層に入射した光の偏光方向は再度90°回転してS偏光になり、上側の格子状の凹凸に入射する。上側の格子状の凹凸では液晶分子はS偏光に対しては異常光屈折率を示すので、凹凸の凸部の屈折率と異なることになり、この格子状の凹凸は回折格子として機能するので、光はこの上側の回折格子で回折されて光検知器に到達する。
【0047】
また、2枚の基板に挟持された液晶が、基板間でツイストしていない場合も同様に機能する。ただし、この場合には、一方の基板では格子状の凹凸の長手方向にラビングする等配向処理が容易にできるが、他方の基板では格子状の凹凸の短手方向に配向処理することになり、格子状の凹凸により配向の安定度が低下する傾向にあるので、液晶がツイストしている場合に比して性能が低下しやすい。
【0048】
この他方の基板の格子状の凹凸はピッチが大きいほど影響を受けにくいので、通常はピッチが大きくてよい3ビーム発生用の回折格子側とすることが好ましい。特に、このピッチを30μm以上とすると影響を生じにくい。
【0049】
この場合には、光源から出射した光はP偏光で偏光回折素子33に入射するが、上側の格子状の凹凸では上記の場合と同様に液晶分子はP偏光に対しては常光屈折率を示すので、凹凸の凸部の屈折率と等しくなり、この格子状の凹凸は回折格子として機能しなくなるので、光はこの上側の回折格子をそのまま透過する。
【0050】
液晶層に入射した光はそのまま透過してP偏光のまま下側の格子状の凹凸に入射する。液晶分子はツイストしていないので、下側の凹凸では紙面に垂直な方向に配列している。この液晶分子はP偏光に対しては常光屈折率を示すので、下側の凹凸の凸部の屈折率と異なることになり、上記の場合と同様にこの格子状の凹凸は回折格子として機能するので、光はこの下側の回折格子で回折され3本のビームにされる。
【0051】
λ/4板等の位相差板を経由して光ディスクで反射して戻ってきた光は偏光方向が90°回転していて、S偏光になっている。下側の格子状の凹凸では液晶分子(紙面に垂直な方向に配列)はS偏光に対しては異常光屈折率を示すので、下側の凹凸の凸部の屈折率と一致することになり、この格子状の凹凸は回折格子として機能せず、光はこの下側の回折格子をそのまま透過する。
【0052】
液晶層に入射した光はそのまま透過しS偏光のまま、上側の格子状の凹凸に入射する。上側の格子状の凹凸では液晶分子はS偏光に対しては異常光屈折率を示すので、凹凸の凸部の屈折率と異なることになり、この格子状の凹凸は回折格子として機能することになるので、光はこの上側の回折格子で回折されて光検知器に到達する。
【0053】
この例は一例にすぎず、表1に示すような態様がある。なお、光源からの光はP偏光(図5で紙面に平行な方向の偏光)であるとした場合で示す。S偏光の場合には、全てが90°回転すれば同じことになる。また、液晶分子は90°ツイストしているものとする。これも上記したように、液晶分子がツイストしていなくてもほぼ同様に機能する。
【0054】
各格子の目的は「ホロ」が光検知器への光の回折のためのホログラムを意味し、「3B」が3ビームに分けるグレーティングを意味する。長手方向は、「平行」は図5の紙面に平行方向、「垂直」は紙面に垂直(奥行き)方向を意味する。凸部屈折率は各基板の凹凸の凸部が、「常光」は常光屈折率、「異常」は異常光屈折率と一致していることを意味する。
【0055】
前記した例は、この表1では例1に該当する。なお、本発明では光検知器への光の回折のためのホログラムが光源側に設けられることが所望以外の余分な光の回折を生じにくく好ましく思われたが、逆に光学ディスク側に配置された方が高い効率が得られることが判明した。
【0056】
すなわち、グレーティングが光源側に配置され、ホログラムが光ディスク側に配置された方が高い効率が得られる。この原因は不明であるが、復路において液晶部を通過するときに、何らかの光学的擾乱を受けることが推定される。
【0057】
また、この光検知器への光の回折のためのホログラム用の凹凸のピッチは、光の回折角により決めればよいが、3ビームに分割する方よりも回折角を大きくとることが多いので、小さいピッチとされる。具体的には、ピッチを3〜20μm程度にすればよい。また、3ビームに分割する側の凹凸のピッチは、具体的には10〜50μm程度にすればよい。
【0058】
【表1】

Figure 0003711652
【0059】
【実施例】
「実施例1」
2枚の透明ガラス基板上に、SiON等の透明材料膜を夫々SiONの組成を変えることによって、膜の屈折率を1.52と1.80となるように形成した。これら2枚の基板の透明薄膜上にフォトレジストをスピンコートし、そのフォトレジストに、フォトマスクを通して紫外線を照射し、その後現像処理して、格子状のレジスト形状を形成し、これをマスク材として、ドライエッチングによって、レジスト形状を転写して、透明ガラス基板上に格子状凹凸を形成した。
【0060】
これにより透明材料膜の層のみがエッチングされ、透明ガラス基板の表面に透明材料膜の凸部が格子状に形成された基板が作成された。このとき形成した格子としては、3ビーム発生用として、ピッチが15μmで凸部の屈折率が1.80の直線格子とし、また、光検知器に回折させるためのホログラム用として、ピッチが約5μmで凸部の屈折率が1.52のほぼ直線格子とした。このホログラム用の格子はその格子をわずかに湾曲させてレンズ効果を生じるようにしたものを用いた。
【0061】
その後、この2枚の基板の格子形成面に、ポリイミドを塗布し、さらに夫々の格子状の凹凸の長手方向にほぼ平行にラビング処理を施した。この格子状の凹凸の長手方向をほぼ直交させるようにこれら2枚の基板を凸部間のギャップ8μmで貼り合せた。そこに正の誘電異方性を有するネマチック液晶を注入し、90°ツイストしたセルを作製した。使用した液晶は、常光屈折率が1.52、異常光屈折率が1.80であった。
【0062】
このように作成した偏光回折素子を図5に示すように、光源31側にホログラム用の格子が来るようにかつ前記表1の例1と同様に配置した。図5のようにP偏光(紙面に平行な方向の偏光)の半導体レーザを素子に照射すると、光は紙面に垂直方向に長手方向を有するホログラムの格子に達した。このとき基板上の屈折率1.52のSiON膜の凸部と液晶の常光屈折率1.52の差がほとんどないことから光はこの格子により回折されることなく透過した。
【0063】
その後、ツイストした液晶内を進行することとなり偏光方向は紙面に垂直となった(S偏光)。そして、3ビーム用の格子に到達し、基板上の屈折率1.80のSiON膜の凸部と液晶の常光屈折率1.52の差により、ほぼ紙面に平行な格子により光が回折した。このときの±1次回折光と0次透過光の強度は、15:70で、所望の3ビームを得ることができた。
【0064】
さらにこれらの光は、λ/4板を通過することにより円偏光となり、ディスクに到達し反射してもう一度λ/4板を通過することにより円偏光が紙面に平行な偏光方向(P偏光)となった。
【0065】
この戻り光は、3ビーム用の格子では屈折率1.80のSiON膜の凸部と液晶の異常光屈折率1.80がほぼ等しいために回折されることなしに透過した。その後、液晶内を進行し、偏光方向が紙面とほぼ垂直に回転された(S偏光)。この光は、屈折率1.52のSiON膜の凸部と液晶の異常光屈折率1.80の差のために、このホログラムで回折された。このときの回折効率は±1次ともに約35%であった。この回折された光は、光検知器に到達した。
【0066】
本例では、基板の表面に透明材料膜を形成し、それによる凸部を設け、その凸部の屈折率をホログラム側の基板では液晶の異常光屈折率と一致させ、3ビーム発生用の基板では液晶の常光屈折率と一致するようにした。
【0067】
この凸部の格子の長手方向、屈折率等については、前記したような種々の組み合わせが使用できる。
【0068】
「実施例2」
3ビーム用の格子は屈折率1.52のSiON膜の凸部で形成し、ホログラムの格子は屈折率1.80のSiON膜の凸部で形成し、光源側に3ビーム用の格子の凸部を設けた基板を配置した。3ビーム用の格子の長手方向は、図5の紙面に平行になるように配置した。その他は実施例1と同様にして、光ヘッド装置を作成した。
【0069】
図5のようにP偏光(紙面に平行な方向の偏光)の半導体レーザを素子に照射すると、光は紙面に平行方向に長手方向を有するグレーティングの格子に達した。このとき基板上の屈折率1.52のSiON膜の凸部と液晶の異常光屈折率1.80の差により、ほぼ紙面に平行な格子となり光が回折した。このときの±1次回折光と0次透過光の強度は、15:70で、所望の3ビームを得ることができた。
【0070】
その後、ツイストした液晶内を進行することとなり偏光方向は紙面に垂直となった(S偏光)。そして、ホログラム用の格子に到達し、基板上の屈折率1.80のSiON膜の凸部と液晶の異常光屈折率1.80との差がほとんどないことから光はこの格子により回折されることなく透過した。
【0071】
さらにこれらの光は、λ/4板を通過することにより円偏光となり、ディスクに到達し反射してもう一度λ/4板を通過することにより円偏光が紙面に平行な偏光方向(P偏光)となった。
【0072】
この戻り光は、ホログラム用の格子に到達し、基板上の屈折率1.80のSiON膜の凸部と液晶の常光屈折率1.52の差によりこのホログラムで回折された。この回折光は液晶内を進行し、偏光方向が紙面とほぼ垂直に回転された(S偏光)。この光は屈折率1.52のSiON膜の凸部と液晶の常光屈折率1.52との差がほとんどないことから光はこの格子により回折されることなく透過した。
【0073】
このときの回折効率は±1次合計で71.3%であった。この回折された光は、光検知器に到達した。
【0074】
本例では、基板の表面に透明材料膜を形成し、それによる凸部を設け、その凸部の屈折率をホログラム側の基板では液晶の異常光屈折率と一致させ、3ビーム発生用の基板では液晶の常光屈折率と一致するようにした。
【0075】
この凸部の格子の長手方向、屈折率等については、前記したような種々の組み合わせが使用できる。
【0076】
【発明の効果】
本発明の偏光回折素子は、2枚の基板がいずれもその内面に格子状の凹凸が形成された基板であり、その格子の長手方向が2枚の基板で異なっており、好ましくは直交しているように配置しているので、2種類の回折を生じさせうる。これにより、簡単な構成で往路で3ビームを発生させるとともに、復路で光検知器に回折でき、光ヘッド装置の小型化軽量化に有用である。
【0077】
また、液晶に代表される光学異方性材料を用いた偏光回折素子を用いているので、光の利用効率が高く、少ない光量ですみ、低消費電力にもなる。本発明は、本発明の効果を損しない範囲内で、種々の応用ができる。
【図面の簡単な説明】
【図1】本発明の偏光回折素子の断面図。
【図2】図1の偏光回折素子の基板をずらした状態で示す平面図。
【図3】従来の偏光回折素子の例の断面図。
【図4】従来の光学異方性回折格子と単純回折格子とを併用した光ヘッド装置の模式図。
【図5】本発明の偏光回折素子を用いた光ヘッド装置の模式図。
【符号の説明】
1:第1の基板
2:第1の凹凸
3:第2の基板
4:第2の凹凸
5:シール材
6:液晶[0001]
BACKGROUND OF THE INVENTION
  The present invention writes optical information on optical discs such as DVD (digital video disc), LD (laser disc), CD (compact disc), CD-ROM, etc., phase change optical discs, magneto-optical discs, etc. The present invention relates to a polarization diffractive element suitable for use in an optical head device for reading out optical information and an optical head device using the same.
[0002]
[Prior art]
  Conventionally, as an optical head device for writing optical information on an optical disk such as an optical disk or a magneto-optical disk or reading optical information, the signal light reflected from the recording surface of the disk is guided to a detection unit (beam split). As an optical component, a prism type beam splitter and a diffraction grating or a hologram element are known.
[0003]
  Conventionally, a diffraction grating or a hologram element for an optical head device is obtained by dry etching or injection molding a rectangular grating (relief type) having a rectangular cross section on a glass or plastic substrate.InThus, the light was diffracted by this to impart a beam splitting function.
[0004]
  In addition, it is conceivable to use polarized light when trying to increase the light utilization efficiency as compared with an isotropic diffraction grating having a light utilization efficiency of about 10%. When using polarized light, the prism beam splitter is combined with a λ / 4 plate to increase the efficiency of the forward path (the direction from the light source to the optical disk) and the return path (the direction from the optical disk to the detection unit), thereby improving the round-trip efficiency. There was a way to raise.
[0005]
  However, prismatic polarization beam splitters are expensive, and other methods have been sought. One method is LiNbOThree A method is known in which an anisotropic diffraction grating is formed on the surface using a birefringent crystal flat plate such as that to provide deflection selectivity. However, the birefringent crystal itself is expensive and difficult to apply to the consumer field.
[0006]
  On the other hand, as described above, the isotropic diffraction grating has a light utilization efficiency of about 50% in the forward path and about 20% in the return path, so that the light utilization efficiency in the round trip is limited to about 10%.
[0007]
  In order to solve the above problems and realize an optical head with high light utilization efficiency, a polarization diffraction element in which a lattice-shaped convex portion is formed on a substrate and an optically anisotropic material is filled in the concave portion, or An optical head using such a polarization diffraction element has been proposed.
[0008]
  An example of this polarization diffraction element is shown in FIG. In FIG. 3, 11 is a first substrate, 12 is uneven, 13 is a second substrate, 15 is a sealing material, and 16 is a liquid crystal that is an optically anisotropic material.
[0009]
  This polarization diffraction element travels straight without diffracting the light from the light source in the forward path and reaches the optical disk, and in the return path, the light is diffracted and reaches the photodetector because the polarization direction is rotated by 90 °. To be.
[0010]
  However, on an actual system, for example, it is necessary to perform CD playback and DVD playback with a single optical head. However, the tracking system is usually a 1-beam system for DVD, and the tracking system is usually a 3-beam system for CD. is there.
[0011]
  Therefore, in order to reproduce both CD and DVD, it is necessary to install a simple diffraction grating for generating three beams by some method separately from the optical anisotropic diffraction grating. For this reason, the following methods have been proposed.
[0012]
  As an example, as shown in FIG. 4, there is a system in which a simple diffraction grating for generating three beams is provided between a light source and an optical anisotropic diffraction grating in addition to the optical anisotropic diffraction grating. In FIG. 4, 21 is a light source, 22 is a simple diffraction grating for generating three beams, 23 is an optical anisotropic diffraction grating, 24 is a λ / 4 plate, 25 is a condenser lens, 26 is an optical disk, 27A and 27B are Diffracted light, 28A, 28B indicates a photodetector. This method has a problem that the number of parts increases and adjustment and assembly become complicated.
[0013]
  In order to reduce the number of parts, it has been considered that a simple diffraction grating is formed on the opposite surface (outer surface) of the substrate on which the optical anisotropic diffraction grating is formed without separately providing the simple diffraction grating. In this method, in order to avoid interference of the diffracted light in the return path by the optical anisotropic grating (diffracted light emitted from the optical anisotropic grating passes through the simple diffraction grating), the optical anisotropic grating and the simple diffraction grating It was necessary to make the pitch of the optical anisotropic grating extremely fine in order to make the distance extremely large or to increase the diffraction angle of the optical anisotropic diffraction grating.
[0014]
[Problems to be solved by the invention]
  In order to increase the distance between the optically anisotropic grating and the simple diffraction grating, it is necessary to increase the thickness of the transparent substrate. This increases the weight of the optically anisotropic grating itself and makes it difficult to process. Further, there is a problem that making the pitch of the grating finer makes it difficult to process and the productivity is lowered.
[0015]
  The present invention solves the above-mentioned problems, and a simple diffraction grating for generating three beams for reproducing both DVDs and CDs coexists with an optical anisotropic diffraction grating used as a beam splitter. An object is to provide a small-sized multifunctional optically anisotropic diffraction grating at low cost with high productivity. Another object of the present invention is to ensure a degree of freedom in design regarding the positional relationship between the optically anisotropic diffraction grating and the simple diffraction grating for generating three beams.
[0016]
[Means for Solving the Problems]
  The present invention relates to a polarization diffraction element in which an optically anisotropic material is filled between a pair of substrates, each of which has a lattice-like unevenness formed on the inner surface thereof.The unevenness of one substrate The refractive index of the convex part is approximately equal to the ordinary light refractive index of the optically anisotropic material, and the refractive index of the convex part of the concave and convex parts of the other substrate is approximately equal to the extraordinary light refractive index of the optically anisotropic material.A polarization diffraction element is provided.
[0017]
  The polarization diffractive element is characterized in that the longitudinal direction of the grating differs between the two substrates.Childprovide.
[0018]
  In addition, the polarization diffraction element, and the optically anisotropic material is a liquid crystal, wherein the convex and concave portions of at least one of the substrates are formed of a transparent material film formed on the surface of the substrate. The polarization diffraction element is characterized in that the longitudinal direction of the liquid crystal is substantially orthogonal between the two substrates, and the twist angle of the liquid crystal is 90 ° + 180 ° × n (n is an integer of 0 or more). .
[0019]
  Also provided is an optical head device characterized in that the polarization diffraction element is disposed between a light source and an optical disk. In addition, the longitudinal direction of the lattice-like irregularities on the light source side of the polarization diffraction element is made to substantially coincide with the polarization direction of the light of the light source, and the refractive index of the convexes of the irregularities is changed to the extraordinary light refractive index of the optically anisotropic material. Either make the longitudinal direction of the grid-like irregularities on the light source side substantially perpendicular to the polarization direction of the light of the light source, and change the refractive index of the irregularities to the ordinary refractive index of the optically anisotropic material It is preferable that the optical head device is characterized by being made substantially equal.
[0020]
  The polarization diffractive element of the present invention is a substrate in which both of the two substrates have lattice-like irregularities formed on the inner surface. One element can divide the light into three in the forward path and diffract the light in the return path. It has a multi-function of being guided to a detector, and is incorporated in an optical head device and is useful for making it small and multi-functional.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
  FIG. 1 is a cross-sectional view of the polarization diffraction element of the present invention, and FIG. 2 is a plan view showing the substrate in a shifted state. 1 and 2, 1 is a first substrate made of glass, plastic or the like, 2 is a grid-like first unevenness formed on its inner surface, 3 is a second substrate made of glass, plastic or the like, 4 is its Grid-like second irregularities formed on the inner surface, 5 is a sealing material, and 6 is a liquid crystal. P1Is the lattice pitch of the first substrate 1, P2Represents the pitch of the grating of the second substrate 3, and θ represents the crossing angle between the longitudinal direction 7 of the grating of the first substrate 1 and the longitudinal direction 8 of the grating of the second substrate 3.
[0022]
  The substrate used in the polarization diffraction element of the present invention can be a transparent substrate such as glass or plastic, and is preferably a glass substrate from the viewpoint of transmission loss, reliability, and the like. In order to reduce reflection at the interface between the substrate and the optically anisotropic material, it is preferable that the refractive index of the substrate matches the refractive index of any of the optically anisotropic materials.
[0023]
  A typical example of the optically anisotropic material in the present invention is a liquid crystal. As this liquid crystal, various liquid crystals can be used, and the most common nematic liquid crystal having positive dielectric anisotropy can be suitably used. Therefore, in the following description, it is assumed that nematic liquid crystal having positive dielectric anisotropy is used. .
[0024]
  In the present invention, since the electric field does not have to be turned on / off, the nematic liquid crystal does not have to change its arrangement due to the on / off of the electric field. For this reason, this nematic liquid crystal may be polymerized by polymerization in the aligned state.
[0025]
  The unevenness formed in the present invention may be formed directly on the substrate itself, or a transparent material film may be formed on the substrate surface, and the unevenness may be formed on the transparent material film. As this transparent material film, various transparent materials can be used, and the material having good refractive index that matches the refractive index of an optically anisotropic material such as liquid crystal to be filled later is preferable.
[0026]
  Specifically, SiO2, Al2OThree, MgO, SiON, ZrO2A transparent inorganic oxide film, nitride film or the like can be used. In particular, SiON is preferable because the refractive index of a film obtained by changing the amounts of oxygen and nitrogen can be easily changed. These transparent material films may be formed on the substrate by reactive sputtering, vapor deposition, plasma CVD, or the like.
[0027]
  In the above description, it is described as SiON.xNy(0 <x <2, 0 <y <1.3). In order to avoid complications, the following description will be expressed as SiON. The same is true for SiO2And so on.
[0028]
  In order to form unevenness on the substrate, the substrate itself or the transparent material film formed on the substrate may be processed by photolithography, dry etching, or the like to form lattice-like unevenness.
[0029]
  More specifically, for example, a photoresist is spin-coated on a transparent material film such as SiON, and the photoresist is irradiated with ultraviolet rays through a photomask, and then developed to form a lattice-like resist shape. Then, by using this as a mask material and transferring the resist shape by dry etching, lattice-shaped irregularities are formed on the transparent glass substrate.
[0030]
  In the present invention, two grid-like irregularities are formed on each substrate. It is preferable that the longitudinal directions of the lattice-like irregularities of the two substrates are different directions. In general, it is more preferable that the directions are substantially orthogonal to each other in order to make them less likely to affect each other.
[0031]
  Each grid-like pitch P1 And P2 May be provided at a pitch suitable for dividing the light into three on the forward path, which is the respective purpose, and diffracting the light on the return path and guiding it to the photodetector.
[0032]
  The substrate on which the lattice-like irregularities are formed is preferably subjected to an alignment treatment so that liquid crystal molecules are aligned in the longitudinal direction of the lattice by rubbing, oblique vapor deposition or the like. This alignment treatment may be performed only on one substrate when the nematic liquid crystal itself has a unique twist pitch. Further, the alignment treatment may be performed after forming a thin film of polyimide, polyamide or the like before the alignment treatment.
[0033]
  In the present invention, the twist angle of the liquid crystal molecules is preferably 90 ° + 180 ° × n (n is an integer of 0 or more). This can be easily obtained by setting the crossing angle θ in the longitudinal direction of the lattice-like irregularities of the two substrates to approximately 90 ° and performing an orientation treatment along the crossing angle θ. In this case, the number of n is determined by how much the inherent twist pitch of the liquid crystal itself is set.
[0034]
  FIG. 5 is a schematic diagram showing a basic configuration of an optical head device using the polarization diffraction element of the present invention. In FIG. 5, 31 is a light source, 33 is a polarization diffraction element of the present invention, 34 is a λ / 4 plate, 35 is a condenser lens, 36 is an optical disk, 37A and 37B are diffracted light, and 38A and 38B are optical detectors. Show. In this optical head device, the polarization diffraction element 33 functions as a polarization beam splitter and also functions as a simple diffraction grating for generating three beams.
[0035]
  As the light source 31, a semiconductor laser is usually used, but a laser having a shorter wavelength by incorporating a wavelength conversion element or the like can also be used. The λ / 4 plate 34 is a retardation plate used for rotating the polarization direction, and a retardation plate capable of rotating the polarization direction at a desired angle may be used.
[0036]
  The configuration of the optical head device in FIG. 5 is a basic configuration, and a mechanism for changing the focal length and a mechanism for changing the aperture ratio of the lens may be provided as necessary. It is also possible to increase the number of diffracted lights by providing two or more types of gratings of polarization diffraction elements on one substrate. In addition, the grating used for diffraction to the photodetector may be slightly curved so as to have a lens effect instead of making the unevenness completely parallel.
[0037]
  By taking the configuration as shown in FIG. 5, the optical head device of the present invention has the following functions. The polarization diffraction element of the present invention functions as a polarization beam splitter with the lattice-like unevenness of one substrate, and the optical anisotropy for generating three beams necessary for tracking error detection with the lattice-like unevenness of the other substrate. It functions as a diffraction grating.
[0038]
  For example, in one substrate, lattice-like irregularities are formed on a substrate that is substantially equal to the ordinary light refractive index of the liquid crystal by a transparent material film of SiON that is also substantially equal to the extraordinary light refractive index of the liquid crystal. Since this grating is usually for generating three beams, it is usually a linear grating. This is because the liquid crystal is filled between the substrates, and, for example, 70% is transmitted through the forward path having light in a certain polarization state from the light source to the optical disk, and 15% is in the + 1st order and −1st order directions. Diffract to On the other hand, in the return path having a polarization state orthogonal thereto, it is totally transmitted and can be ignored.
[0039]
  In this case, on the other substrate, lattice-like irregularities are formed on the transparent substrate substantially equal to the ordinary light refractive index of the liquid crystal by a transparent thin film of SiON which is almost equal to the ordinary light refractive index of the liquid crystal. This grating functions as a polarizing beam splitter and usually has a complex curvature for focus error detection. In the state where the liquid crystal is filled between the substrates, almost all the light is transmitted in the outward path having light in a certain polarization state from the light source toward the optical disk. On the other hand, in the return path having a polarization state substantially orthogonal to the light, the light is diffracted almost entirely and guided to the light detector in a state where the optical processing for detecting the focus error is performed on the light.
[0040]
  That is, in the forward path from the light source, light having a specific polarization direction emitted from the light source is transmitted through the grating that functions as a polarization beam splitter, and a certain amount of grating functions as an optical anisotropic diffraction grating for generating three beams. Are diffracted in the + 1st order and −1st order directions to generate three beams.
[0041]
  On the other hand, the light of the return path from the optical disk passes through the phase difference plate twice, so that the polarization direction of the light is rotated by 90 ° with respect to the light of the forward path. For this reason, the grating functioning as the optically anisotropic diffraction grating for generating three beams passes through as it is, and diffraction is generated by the grating functioning as the polarization beam splitter and is guided to the photodetector.
[0042]
  A typical example will be described in the case of FIG. 5 where the light from the light source 31 is P-polarized light (polarized light in a direction parallel to the paper surface). In the polarization diffraction element 33, the longitudinal direction of the lattice-like unevenness on the light source side is perpendicular to the paper surface, the refractive index of the convex portion matches the ordinary light refractive index of the liquid crystal, and the lattice-like unevenness on the optical disk side. The longitudinal direction is parallel to the paper surface, and the refractive index of the convex portion is made to coincide with the extraordinary light refractive index of the liquid crystal. The liquid crystal sandwiched between these two substrates is twisted by 90 ° between the substrates.
[0043]
  In such an optical head device, the light emitted from the light source is incident on the polarization diffraction element 33 as P-polarized light, but the liquid crystal molecules exhibit an ordinary refractive index with respect to the P-polarized light in the upper lattice-like unevenness. The refractive index of the projections and depressions of the projections and depressions becomes equal, and the grating-like projections and depressions do not function as a diffraction grating, so that light passes through the upper diffraction grating as it is.
[0044]
  The polarization direction of the light incident on the liquid crystal layer is twisted by 90 ° to become S-polarized light (polarized light in a direction perpendicular to the paper surface), and is incident on the lower lattice-shaped unevenness. Since the liquid crystal molecules are twisted by 90 °, the lower unevenness is arranged in a direction parallel to the paper surface. Since this liquid crystal molecule has an ordinary refractive index for S-polarized light, it differs from the refractive index of the convex portion of the lower concave and convex portions, and the lattice-like concave and convex portions function as a diffraction grating. It is diffracted by the diffraction grating on the side and is made into three beams.
[0045]
  The light that has been reflected by the optical disk via a retardation plate such as a λ / 4 plate and returned is rotated by 90 ° and becomes P-polarized light. Since the liquid crystal molecules show an extraordinary refractive index with respect to P-polarized light in the lower lattice-like unevenness, it matches the refractive index of the convex portion of the lower unevenness. The light passes through the lower diffraction grating as it is.
[0046]
  The polarization direction of the light incident on the liquid crystal layer is again rotated by 90 ° to become S-polarized light, and is incident on the upper lattice-like irregularities. Since the liquid crystal molecules show an extraordinary refractive index with respect to S-polarized light in the upper grid-like irregularities, the refractive index of the irregularities is different from the refractive index of the irregularities. The light is diffracted by the upper diffraction grating and reaches the photodetector.
[0047]
  Further, the liquid crystal sandwiched between the two substrates functions in the same manner when the substrates are not twisted between the substrates. However, in this case, one substrate can be easily subjected to an alignment treatment such as rubbing in the longitudinal direction of the lattice-like irregularities, but the other substrate is subjected to an alignment treatment in the lateral direction of the lattice-like irregularities, Since the stability of alignment tends to be lowered due to the lattice-shaped irregularities, the performance is likely to be lowered as compared with the case where the liquid crystal is twisted.
[0048]
  Since the grating-like irregularities of the other substrate are less affected as the pitch is larger, it is usually preferable to be on the side of the diffraction grating for generating three beams, which may have a larger pitch. In particular, when this pitch is set to 30 μm or more, the influence is hardly generated.
[0049]
  In this case, the light emitted from the light source is incident on the polarization diffraction element 33 as P-polarized light, but the liquid crystal molecules exhibit ordinary refractive index with respect to P-polarized light as in the above case in the upper lattice-like unevenness. Therefore, it becomes equal to the refractive index of the projections and depressions of the projections and depressions, and the grating-like projections and depressions do not function as a diffraction grating.
[0050]
  The light incident on the liquid crystal layer is transmitted as it is, and is incident on the lower lattice-like irregularities as P-polarized light. Since the liquid crystal molecules are not twisted, the lower unevenness is aligned in the direction perpendicular to the paper surface. Since this liquid crystal molecule has an ordinary refractive index with respect to P-polarized light, it differs from the refractive index of the convex portion of the lower concave and convex portions, and this lattice-like concave and convex functions as a diffraction grating as in the above case. Therefore, the light is diffracted by the lower diffraction grating into three beams.
[0051]
  The light reflected and returned by the optical disk via a retardation plate such as a λ / 4 plate has a polarization direction rotated by 90 ° and is S-polarized light. In the lower lattice-like irregularities, the liquid crystal molecules (arranged in the direction perpendicular to the paper surface) show an extraordinary refractive index for S-polarized light, and therefore coincide with the refractive index of the convex portions of the lower irregularities. The grating-like irregularities do not function as a diffraction grating, and light passes through the lower diffraction grating as it is.
[0052]
  The light incident on the liquid crystal layer is transmitted as it is, and is incident on the upper lattice-shaped irregularities as S-polarized light. In the upper grid-like irregularities, the liquid crystal molecules exhibit an extraordinary refractive index with respect to S-polarized light, which is different from the refractive index of the irregularities, and this grid-like irregularity functions as a diffraction grating. Therefore, the light is diffracted by the upper diffraction grating and reaches the photodetector.
[0053]
  This example is only an example, and there is an embodiment as shown in Table 1. Note that the light from the light source is shown as P-polarized light (polarized light in a direction parallel to the paper surface in FIG. 5). In the case of S-polarized light, the same thing can be achieved if all of them are rotated 90 °. Further, it is assumed that the liquid crystal molecules are twisted by 90 °. As described above, this also functions in a similar manner even if the liquid crystal molecules are not twisted.
[0054]
  The purpose of each grating is “holo” means a hologram for diffraction of light to the photodetector, and “3B” means a grating that divides into three beams. In the longitudinal direction, “parallel” means a direction parallel to the paper surface of FIG. 5, and “vertical” means a direction perpendicular to the paper surface (depth). The convex refractive index means that the concave and convex convex portions of each substrate coincide with the ordinary light refractive index for “normal light” and the extraordinary light refractive index for “abnormal”.
[0055]
  The above example corresponds to Example 1 in Table 1. In the present invention, it is preferable that a hologram for diffracting light to the light detector is provided on the light source side, but it is preferable that the light is not diffracted excessively. It was found that higher efficiency can be obtained.
[0056]
  That is, higher efficiency can be obtained when the grating is arranged on the light source side and the hologram is arranged on the optical disk side. The cause of this is unknown, but it is presumed that some optical disturbance is caused when passing through the liquid crystal part in the return path.
[0057]
  In addition, the pitch of the concave and convex portions for hologram for diffraction of light to the light detector may be determined by the diffraction angle of light, but since the diffraction angle is often larger than that divided into three beams, The pitch is small. Specifically, the pitch may be about 3 to 20 μm. In addition, the pitch of the unevenness on the side divided into three beams may be specifically set to about 10 to 50 μm.
[0058]
[Table 1]
Figure 0003711652
[0059]
【Example】
"Example 1"
  A transparent material film such as SiON was formed on two transparent glass substrates so that the refractive indexes of the films were 1.52 and 1.80 by changing the composition of SiON. Photoresist is spin-coated on the transparent thin films of these two substrates, and the photoresist is irradiated with ultraviolet rays through a photomask, and then developed to form a lattice-like resist shape, which is used as a mask material. The resist shape was transferred by dry etching to form lattice-like irregularities on the transparent glass substrate.
[0060]
  Thereby, only the layer of the transparent material film was etched, and a substrate in which the convex portions of the transparent material film were formed in a lattice shape on the surface of the transparent glass substrate was produced. The grating formed at this time is a linear grating having a pitch of 15 μm and a refractive index of a convex portion of 1.80 for generating three beams, and a pitch of about 5 μm for a hologram for diffracting by a photodetector. Thus, a substantially linear grating having a refractive index of 1.52 was used. As the hologram grating, a lens effect was produced by slightly bending the grating.
[0061]
  Thereafter, polyimide was applied to the lattice forming surfaces of the two substrates, and further, a rubbing treatment was performed substantially parallel to the longitudinal direction of each lattice-like unevenness. These two substrates were bonded together with a gap of 8 μm between the convex portions so that the longitudinal directions of the lattice-shaped irregularities were almost orthogonal. A nematic liquid crystal having positive dielectric anisotropy was injected there to produce a cell twisted by 90 °. The liquid crystal used had an ordinary light refractive index of 1.52 and an extraordinary light refractive index of 1.80.
[0062]
  As shown in FIG. 5, the thus prepared polarization diffraction element was disposed in the same manner as in Example 1 in Table 1 so that the hologram grating would be on the light source 31 side. As shown in FIG. 5, when the device was irradiated with a P-polarized semiconductor laser (polarized light in a direction parallel to the paper surface), the light reached a hologram grating having a longitudinal direction perpendicular to the paper surface. At this time, since there was almost no difference between the convex portion of the SiON film having a refractive index of 1.52 on the substrate and the ordinary light refractive index of liquid crystal 1.52, light was transmitted without being diffracted by this grating.
[0063]
  Thereafter, the light travels in the twisted liquid crystal and the polarization direction becomes perpendicular to the paper surface (S-polarized light). Then, it reached the grating for three beams, and light was diffracted by the grating almost parallel to the paper surface due to the difference between the convex portion of the SiON film having a refractive index of 1.80 on the substrate and the ordinary refractive index of liquid crystal 1.52. The intensities of ± 1st order diffracted light and 0th order transmitted light at this time were 15:70, and the desired three beams could be obtained.
[0064]
  Furthermore, these lights become circularly polarized light by passing through the λ / 4 plate, and when they reach the disk, are reflected, and pass through the λ / 4 plate again, the circularly polarized light has a polarization direction (P-polarized light) parallel to the paper surface. became.
[0065]
  The return light was transmitted without being diffracted because the convex portion of the SiON film having a refractive index of 1.80 and the extraordinary refractive index of 1.80 of the liquid crystal were approximately equal in the three-beam grating. After that, the liquid crystal traveled and the polarization direction was rotated almost perpendicular to the paper surface (S-polarized light). This light was diffracted by this hologram due to the difference between the convex portion of the SiON film having a refractive index of 1.52 and the extraordinary refractive index of liquid crystal of 1.80. The diffraction efficiency at this time was about 35% for both ± first order. This diffracted light reached the photodetector.
[0066]
  In this example, a transparent material film is formed on the surface of the substrate, and a convex portion is provided thereby. The refractive index of the convex portion is matched with the extraordinary refractive index of the liquid crystal on the hologram side substrate. Then, it was made to coincide with the ordinary refractive index of the liquid crystal.
[0067]
  Various combinations as described above can be used for the longitudinal direction of the grating of the convex portions, the refractive index, and the like.
[0068]
"Example 2"
  The three-beam grating is formed by the convex part of the SiON film having a refractive index of 1.52, the hologram grating is formed by the convex part of the SiON film having a refractive index of 1.80, and the convex part of the three-beam grating is formed on the light source side. A substrate provided with a portion was arranged. The longitudinal direction of the three-beam grating was arranged so as to be parallel to the paper surface of FIG. Other than that, an optical head device was fabricated in the same manner as in Example 1.
[0069]
  As shown in FIG. 5, when the device was irradiated with a P-polarized semiconductor laser (polarized light in a direction parallel to the paper surface), the light reached a grating grating having a longitudinal direction parallel to the paper surface. At this time, due to the difference between the convex part of the SiON film having a refractive index of 1.52 on the substrate and the extraordinary refractive index of 1.80 of the liquid crystal, it became a grating almost parallel to the paper surface and the light was diffracted. The intensities of ± 1st order diffracted light and 0th order transmitted light at this time were 15:70, and the desired three beams could be obtained.
[0070]
  Thereafter, the light travels in the twisted liquid crystal and the polarization direction becomes perpendicular to the paper surface (S-polarized light). The light reaches the hologram grating, and the light is diffracted by the grating because there is almost no difference between the convex portion of the SiON film having a refractive index of 1.80 on the substrate and the extraordinary refractive index of liquid crystal of 1.80. It penetrated without.
[0071]
  Furthermore, these lights become circularly polarized light by passing through the λ / 4 plate, and when they reach the disk, are reflected, and pass through the λ / 4 plate again, the circularly polarized light has a polarization direction (P-polarized light) parallel to the paper surface. became.
[0072]
  The return light reached the hologram grating and was diffracted by the hologram due to the difference between the convex portion of the SiON film having a refractive index of 1.80 on the substrate and the ordinary light refractive index of 1.52 of the liquid crystal. This diffracted light traveled in the liquid crystal, and the polarization direction was rotated almost perpendicular to the paper surface (S-polarized light). Since this light has almost no difference between the convex portion of the SiON film having a refractive index of 1.52 and the ordinary refractive index of liquid crystal of 1.52, the light was transmitted without being diffracted by this grating.
[0073]
  The diffraction efficiency at this time was 71.3% in total of ± 1st order. This diffracted light reached the photodetector.
[0074]
  In this example, a transparent material film is formed on the surface of the substrate, and a convex portion is provided thereby. The refractive index of the convex portion is matched with the extraordinary refractive index of the liquid crystal on the hologram side substrate. Then, it was made to coincide with the ordinary refractive index of the liquid crystal.
[0075]
  Various combinations as described above can be used for the longitudinal direction of the grating of the convex portions, the refractive index, and the like.
[0076]
【The invention's effect】
  In the polarization diffraction element of the present invention, each of the two substrates is a substrate in which a lattice-like unevenness is formed on the inner surface, and the longitudinal direction of the grating is different between the two substrates, preferably orthogonally Therefore, two types of diffraction can be generated. As a result, three beams can be generated on the forward path with a simple configuration, and can be diffracted to the photodetector on the return path, which is useful for reducing the size and weight of the optical head device.
[0077]
  In addition, since a polarization diffraction element using an optically anisotropic material typified by liquid crystal is used, the light utilization efficiency is high, a small amount of light is required, and low power consumption is achieved. The present invention can be applied in various ways as long as the effects of the present invention are not impaired.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a polarization diffraction element of the present invention.
2 is a plan view showing a state in which a substrate of the polarization diffraction element in FIG. 1 is shifted. FIG.
FIG. 3 is a cross-sectional view of an example of a conventional polarization diffraction element.
FIG. 4 is a schematic diagram of an optical head device using a conventional optical anisotropic diffraction grating and a simple diffraction grating in combination.
FIG. 5 is a schematic diagram of an optical head device using the polarization diffraction element of the present invention.
[Explanation of symbols]
1: First substrate
2: First unevenness
3: Second substrate
4: Second unevenness
5: Sealing material
6: Liquid crystal

Claims (5)

一対の基板間に光学異方性材料が充填された偏光回折素子において、2枚の基板がいずれもその内面に格子状の凹凸が形成された基板であって、一方の基板の凹凸の凸部の屈折率が光学異方性材料の常光屈折率にほぼ等しくされ、他方の基板の凹凸の凸部の屈折率が光学異方性材料の異常光屈折率にほぼ等しくされていることを特徴とする偏光回折素子。In the polarization diffraction element optically anisotropic material is filled between a pair of substrates, both the two substrates I lattice substrate der which irregularities are formed on the inner surface, the convex of the irregularity of one substrate refractive index parts are substantially equal to the ordinary refractive index of the optically anisotropic material, characterized Rukoto refractive index of the convex portion of the unevenness of the other substrate are substantially equal to the extraordinary refractive index of the optical anisotropic material A polarization diffraction element. 格子の長手方向が2枚の基板で異なっていることを特徴とする請求項1記載の偏光回折素子。  2. The polarization diffraction element according to claim 1, wherein the longitudinal direction of the grating differs between the two substrates. 少なくとも一方の基板の凹凸の凸部が基板の表面に形成された透明材料膜で形成されていることを特徴とする請求項1又は2記載の偏光回折素子。 3. The polarization diffraction element according to claim 1, wherein at least one of the substrates has a concavo-convex convex portion formed of a transparent material film formed on the surface of the substrate. 光学異方性材料が液晶であり、格子の長手方向が2枚の基板でほぼ直交しており、液晶のツイスト角が90°+180°×n(nは0以上の整数)とされていることを特徴とする請求項1、2又は3記載の偏光回折素子。The optically anisotropic material is liquid crystal, the longitudinal direction of the lattice is almost orthogonal between the two substrates, and the twist angle of the liquid crystal is 90 ° + 180 ° × n (n is an integer of 0 or more). The polarization diffraction element according to claim 1, 2, or 3 . 請求項1、2、3又は4記載の偏光回折素子を光源と光学ディスクとの間に配置したことを特徴とする光ヘッド装置。Optical head device being characterized in that disposed between the claims 1, 2, 3 or 4 light sources and an optical disk polarization diffraction element according.
JP24372496A 1996-06-18 1996-09-13 Polarization diffraction element and optical head device using the same Expired - Fee Related JP3711652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24372496A JP3711652B2 (en) 1996-06-18 1996-09-13 Polarization diffraction element and optical head device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-157223 1996-06-18
JP15722396 1996-06-18
JP24372496A JP3711652B2 (en) 1996-06-18 1996-09-13 Polarization diffraction element and optical head device using the same

Publications (2)

Publication Number Publication Date
JPH1068820A JPH1068820A (en) 1998-03-10
JP3711652B2 true JP3711652B2 (en) 2005-11-02

Family

ID=26484764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24372496A Expired - Fee Related JP3711652B2 (en) 1996-06-18 1996-09-13 Polarization diffraction element and optical head device using the same

Country Status (1)

Country Link
JP (1) JP3711652B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720028B2 (en) * 2001-06-15 2011-07-13 旭硝子株式会社 Diffraction element and optical head device
JP4561080B2 (en) * 2003-11-07 2010-10-13 旭硝子株式会社 Diffraction element and optical head device
WO2006011530A1 (en) * 2004-07-29 2006-02-02 Asahi Glass Company, Limited Polarized diffractive filter and layered polarized diffractive filter
TWI348061B (en) 2006-12-29 2011-09-01 Ind Tech Res Inst Polarizer-alignment dual function film, fabrication method thereof and lcd containing the polarizer-alignment films
JP7319106B2 (en) * 2019-06-28 2023-08-01 株式会社ミツトヨ Lattice part and its manufacturing method

Also Published As

Publication number Publication date
JPH1068820A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
US6118586A (en) Optical head device including an optically anisotropic diffraction grating and production method thereof
KR20060115733A (en) Polarizing diffraction element and optical head device
JPH09304748A (en) Liquid crystal lens and optical head device using the same
JP4560906B2 (en) Optical head device
JP4300784B2 (en) Optical head device
JP3624561B2 (en) Optical modulation element and optical head device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3994450B2 (en) Manufacturing method of optical diffraction grating and optical head device using the same
JP2003288733A (en) Aperture-limiting element and optical head device
JP2002357715A (en) Grating-integrated azimuth rotator and optical head device
JP4478398B2 (en) Polarizing optical element, optical element unit, optical head device, and optical disk drive device
JP5131244B2 (en) Laminated phase plate and optical head device
JP4599763B2 (en) Optical head device
JP4626026B2 (en) Optical head device
JPH1069673A (en) Optical head device and composite anisotropic diffraction element using therefor
JP3509399B2 (en) Optical head device
JP4427877B2 (en) Aperture limiting element and optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP4179645B2 (en) Optical head device and driving method thereof
JP3713778B2 (en) Optical head device
JP3550873B2 (en) Optical head device
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JPH09198698A (en) Production of optical head device
JPH09185837A (en) Optical head device
KR20050083794A (en) Phase plate and optical information recording/reproducing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees