JPH09185837A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPH09185837A
JPH09185837A JP8158579A JP15857996A JPH09185837A JP H09185837 A JPH09185837 A JP H09185837A JP 8158579 A JP8158579 A JP 8158579A JP 15857996 A JP15857996 A JP 15857996A JP H09185837 A JPH09185837 A JP H09185837A
Authority
JP
Japan
Prior art keywords
refractive index
light
liquid crystal
head device
optical head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8158579A
Other languages
Japanese (ja)
Inventor
Yuzuru Tanabe
譲 田辺
Hiromasa Sato
弘昌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP8158579A priority Critical patent/JPH09185837A/en
Priority to KR1019980702484A priority patent/KR19990064007A/en
Priority to US09/043,908 priority patent/US6118586A/en
Priority to KR1020047003501A priority patent/KR100642951B1/en
Priority to PCT/JP1996/002872 priority patent/WO1997013245A1/en
Publication of JPH09185837A publication Critical patent/JPH09185837A/en
Priority to US09/524,742 priority patent/US6271966B1/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make industrial production possible even with incident light of S waves and to provide a device having high light utilization efficiency. SOLUTION: A transparent thin film consisting of SiOx (x≈1.2) having as refractive index of 1.8 is formed on a first glass substrate 1 having a refractive index of 1.52. Projecting parts of 10μm are formed by a photolithography method and a dry etching method thereon, by which rectangular grid-like rugged parts 2 are formed. Liquid crystals 3 (nematic liquid crystal, ordinary refractive inde x=1.5266, extraordinary refractive inde x=1.8181) are implanted into these rugged parts 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、CD(コンパクト
ディスク)、CD−ROM、ビデオディスク等の光ディ
スク及び光磁気ディスク等に光学的情報を書き込んだ
り、光学的情報を読み取るための光ヘッド装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical head device for writing and reading optical information on an optical disk such as a CD (compact disk), a CD-ROM, a video disk and a magneto-optical disk. .

【0002】[0002]

【従来の技術】従来、光ディスク及び光磁気ディスク等
に光学的情報を書き込んだり、光学的情報を読み取る光
ヘッド装置としては、ディスクの記録面から反射された
信号光を検出部へ導光(ビームスプリット)する光学部
品としてプリズム式ビームスプリッタを用いたものと、
回折格子又はホログラム素子を用いたものとが知られて
いた。
2. Description of the Related Art Conventionally, as an optical head device for writing optical information on an optical disk or a magneto-optical disk or reading optical information, a signal light reflected from a recording surface of the disk is guided to a detection unit (beam). A prism type beam splitter as an optical component for splitting;
It has been known to use a diffraction grating or a hologram element.

【0003】従来、光ヘッド装置用の回折格子又はホロ
グラム素子は、ガラスやプラスチック基板上に、矩形の
断面を有する矩形格子(レリーフ型)をドライエッチン
グ法又は射出成形法よって形成し、これによって光を回
折しビームスプリット機能を付与していた。
Conventionally, a diffraction grating or a hologram element for an optical head device has a rectangular grating (relief type) having a rectangular cross section formed on a glass or plastic substrate by dry etching or injection molding. To provide a beam splitting function.

【0004】また、光の利用効率が10%程度の等方性
回折格子よりも光の利用効率を上げようとした場合、偏
光を利用することが考えられる。偏光を利用しようとす
ると、プリズム式ビームスプリッタにλ/4板を組み合
わせて、往路(光源から記録面へ向かう方向)及び復路
(記録面から検出部へ向かう方向)の効率を上げて往復
効率を上げる方法があった。
In order to increase the light use efficiency over an isotropic diffraction grating having a light use efficiency of about 10%, it is conceivable to use polarized light. When trying to use polarized light, a prism type beam splitter is combined with a λ / 4 plate to increase the efficiency of the forward path (direction from the light source to the recording surface) and the return path (direction from the recording surface to the detection unit), thereby improving the reciprocating efficiency. There was a way to raise it.

【0005】しかし、プリズム式偏光ビームスプリッタ
は高価であり、他の方式が模索されていた。一つの方式
としてLiNbO3 等の複屈折結晶の平板を用い、表面
に異方性回折格子を形成し偏向選択性をもたす方法が知
られている。しかし、複屈折結晶自体が高価であり、民
生分野への適用は困難である。またプロトン交換法によ
りLiNbO3 上に格子を形成しようとすると、プロト
ン交換液中のプロトンが基板中に拡散しやすいため、細
かいピッチの格子を形成するのは困難である。
However, the prism type polarizing beam splitter is expensive, and other methods have been sought. As one method, a method of using a flat plate of birefringent crystal such as LiNbO 3 and forming an anisotropic diffraction grating on the surface to have deflection selectivity is known. However, the birefringent crystal itself is expensive, and application to the consumer field is difficult. When a lattice is to be formed on LiNbO 3 by the proton exchange method, it is difficult to form a fine-pitch lattice because protons in the proton exchange solution are easily diffused into the substrate.

【0006】等方性回折格子は前述のように、往路の利
用効率が50%程度で、復路の利用効率が20%程度で
あるため、往復で10%程度が限界である。
As described above, the isotropic diffraction grating has a utilization efficiency of about 50% in the forward path and about 20% in the return path, so that the reciprocation limit is about 10%.

【0007】それに対して、透明基板上に格子状の凹凸
部を形成し、そこに液晶を充填することによって光学異
方性回折格子を形成し、さらに位相差フィルムを積層し
た、光利用効率の高いホログラム(回折素子)を利用し
た光ヘッド装置を、本出願人は提案した(特願平7−2
59961)。
On the other hand, a grating-shaped uneven portion is formed on a transparent substrate, and a liquid crystal is filled therein to form an optically anisotropic diffraction grating. Further, a retardation film is laminated to improve light utilization efficiency. The present applicant has proposed an optical head device using a high hologram (diffraction element) (Japanese Patent Application No. 7-2
59961).

【0008】その場合、通常工業的に容易に製造でき安
価に得られる、ガラス、プラスチック等からなる透明基
板を用いて光学異方性回折格子を形成しており、その透
明基板の屈折率は1.5程度である。液晶の常光屈折率
も1.5程度であるため、透明基板の屈折率と液晶の常
光屈折率をほぼ同じにした構成が容易に実現できた。液
晶の異常光屈折率(1.8程度)に近い透明基板として
は特殊な光学ガラス等が使用できるが、高価であり量産
に適切ではない。
In this case, the optically anisotropic diffraction grating is formed using a transparent substrate made of glass, plastic or the like, which is usually industrially easy to manufacture and inexpensive, and the refractive index of the transparent substrate is 1. It is about 0.5. Since the ordinary refractive index of the liquid crystal is also about 1.5, it was possible to easily realize a structure in which the refractive index of the transparent substrate and the ordinary refractive index of the liquid crystal were almost the same. Although a special optical glass or the like can be used as a transparent substrate having an extraordinary light refractive index (about 1.8) of liquid crystal, it is expensive and not suitable for mass production.

【0009】格子状の凹凸部を形成した透明基板の屈折
率と液晶の常光屈折率がほぼ等しい構成で光学異方性回
折格子を形成し、それにλ/4板等の位相差フィルムを
組み合わせて回折素子を作製した場合、往路の透過率を
高くし、復路の回折効率を高くするためには、光源から
回折素子に入射する光の偏光方向が凹凸部のストライプ
方向に直交する光(P波)である必要がある。
An optically anisotropic diffraction grating is formed by a structure in which the refractive index of a transparent substrate having a grid-like concavo-convex portion and the ordinary refractive index of liquid crystal are substantially equal to each other, and a retardation film such as a λ / 4 plate is combined therewith. When a diffractive element is manufactured, in order to increase the transmittance on the outward path and the diffractive efficiency on the return path, the polarization direction of the light incident on the diffractive element from the light source is orthogonal to the stripe direction of the uneven portion (P wave). ) Must be.

【0010】なぜならば、液晶は凹凸部のストライプ方
向に沿って配向するのが通常であり、ストライプ方向に
直交する偏光に対して液晶の常光屈折率が対応し、スト
ライプ方向に平行な偏光に対して液晶の異常光屈折率が
対応する。したがって、P波に対しては液晶の常光屈折
率と透明基板の屈折率がほぼ等しいため、ほぼ100%
光が透過する。S波に対しては液晶の異常光屈折率と透
明基板の屈折率が異なるため、光は回折する。
This is because the liquid crystal is usually oriented along the stripe direction of the concavo-convex portion, the ordinary refractive index of the liquid crystal corresponds to the polarized light orthogonal to the stripe direction, and the polarized light parallel to the stripe direction corresponds to the ordinary light refractive index of the liquid crystal. The refractive index of extraordinary light of the liquid crystal corresponds. Therefore, for P waves, the ordinary index of refraction of the liquid crystal and the index of refraction of the transparent substrate are almost the same, so that
Light is transmitted. Since the refractive index of extraordinary light of the liquid crystal and the refractive index of the transparent substrate are different for S waves, the light is diffracted.

【0011】なお、光源から入射したP波又はS波は光
学異方性回折格子を透過し、位相差フィルムで円偏光に
変換され、非球面レンズ(対物レンズ)を通り光記録媒
体に集光される。光記録媒体の記録面で反射した光は逆
回りの円偏光になり、再び非球面レンズを通り、位相差
フィルムを通過してS波又はP波へ変換され、光学異方
性回折格子を通過する。したがって、入射光がP波の場
合は戻り光はS波になっているため回折し、入射光がS
波の場合は戻り光はP波になっているため回折せず透過
する。
The P-wave or S-wave incident from the light source is transmitted through the optical anisotropic diffraction grating, converted into circularly polarized light by the phase difference film, and passed through the aspherical lens (objective lens) to be condensed on the optical recording medium. To be done. The light reflected by the recording surface of the optical recording medium becomes circularly polarized light in the reverse direction, passes through the aspherical lens again, passes through the retardation film, is converted into S waves or P waves, and passes through the optical anisotropic diffraction grating. To do. Therefore, when the incident light is the P wave, the return light is the S wave and is diffracted.
In the case of a wave, the return light is a P wave and is transmitted without being diffracted.

【0012】前記のことから、往路の透過率を上げて復
路の回折効率を上げるためには、入射光をP波にする必
要があった。一方、光源の半導体レーザの光の偏光方向
は、半導体のPN接合面に対してある決まった方向を有
し、また戻り光の回折方向は回折格子のストライプ方向
によって規定される。したがって、入射光がP波に限定
されると半導体レーザ及びディテクタの配置に大きな制
約を受け、設計上の自由度が制限されるという問題があ
った。
From the above, it was necessary to make the incident light a P wave in order to increase the transmittance of the forward path and the diffraction efficiency of the return path. On the other hand, the polarization direction of the light of the semiconductor laser of the light source has a certain direction with respect to the PN junction surface of the semiconductor, and the diffraction direction of the return light is defined by the stripe direction of the diffraction grating. Therefore, when the incident light is limited to the P wave, there is a problem that the arrangement of the semiconductor laser and the detector is greatly restricted and the degree of freedom in design is limited.

【0013】[0013]

【発明が解決しようとする課題】本発明は、前述の問題
点を解消し光学異方性回折格子のストライプ方向に平行
な偏光をもつ入射光に対しても、工業的生産が可能で高
い光利用効率を有する光ヘッド装置を提供することを目
的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems and can industrially produce high light even for incident light having polarized light parallel to the stripe direction of the optically anisotropic diffraction grating. An object is to provide an optical head device having utilization efficiency.

【0014】[0014]

【課題を解決するための手段】本発明は、光源からの光
を回折素子を通して光記録媒体上に照射することにより
情報の書き込み及び/又は情報の読み取りを行う光ヘッ
ド装置において、前記回折素子は、表面に格子状の凹凸
部が形成された第1の透明基板と第2の透明基板との間
に光学異方性を有する液晶が充填されてなる光学異方性
回折格子を備えてなり、前記凹凸部の凸部は前記第1の
透明基板上に透明材料からなる凸部を所定の周期で被覆
して形成してなり、前記第1の透明基板の屈折率は液晶
の常光屈折率にほぼ等しく、前記凸部の屈折率は液晶の
異常光屈折率にほぼ等しいことを特徴とする光ヘッド装
置を提供する。
The present invention provides an optical head device for writing information and / or reading information by irradiating an optical recording medium with light from a light source through a diffraction element, wherein the diffraction element is And an optical anisotropic diffraction grating in which a liquid crystal having optical anisotropy is filled between a first transparent substrate and a second transparent substrate on the surface of which a grid-like uneven portion is formed, The convex portion of the concave and convex portion is formed by coating the convex portion made of a transparent material on the first transparent substrate at a predetermined cycle, and the refractive index of the first transparent substrate is equal to the ordinary refractive index of liquid crystal. Provided is an optical head device, which is substantially equal to each other and the refractive index of the convex portion is substantially equal to the refractive index of extraordinary light of the liquid crystal.

【0015】また、前記凸部の屈折率が前記第1の透明
基板の屈折率より大きい光ヘッド装置、及び、前記凸部
がSiOxy (0≦x<2、0≦y<1.3)からな
る光ヘッド装置、及び、前記凸部が光感光性有機物から
なるの光ヘッド装置、及び、前記光感光性有機物が水平
配向処理されている光ヘッド装置を提供する。
Further, an optical head device in which the refractive index of the convex portion is higher than that of the first transparent substrate, and the convex portion is formed of SiO x N y (0 ≦ x <2, 0 ≦ y <1. 3) An optical head device comprising 3), an optical head device in which the convex portion is composed of a photosensitive organic material, and an optical head device in which the photosensitive organic material is horizontally aligned.

【0016】[0016]

【発明の実施の形態】本発明において前記凸部は、屈折
率1.5程度の第1のガラス基板(第1の透明基板)等
よりも屈折率が大きいものを用いる。具体的には、Si
xy (0≦x<2、0≦y<1.3、屈折率約1.
5〜1.9)、MgO(屈折率1.72)、PbF2
(屈折率1.75)、Y23 (屈折率1.87)、及
びAl23 とZrO2 との混合物(屈折率1.63〜
2.05)から選ばれるいずれかの透明材料、又は感光
性ポリイミド(屈折率1.78)等の光感光性有機物を
用いて形成する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the convex portion having a refractive index larger than that of a first glass substrate (first transparent substrate) having a refractive index of about 1.5 is used. Specifically, Si
O x N y (0 ≦ x <2, 0 ≦ y <1.3, refractive index about 1.
5 to 1.9), MgO (refractive index 1.72), PbF 2
(Refractive index 1.75), Y 2 O 3 (refractive index 1.87), and a mixture of Al 2 O 3 and ZrO 2 (refractive index 1.63 to
It is formed using any transparent material selected from 2.05) or a photosensitive organic material such as photosensitive polyimide (refractive index 1.78).

【0017】前記透明材料のうち、前記SiOxy
(0≦x<2、0≦y<1.3)(これにはSiOx
(1≦x<2)も含む)が、ドライエッチング法により
容易に微細加工できるので好ましい。
Of the transparent materials, the SiO x N y
(0 ≦ x <2, 0 ≦ y <1.3) (For this, SiO x
(Including 1 ≦ x <2) is preferable because fine processing can be easily performed by a dry etching method.

【0018】前記凸部の屈折率が1.7〜1.9程度で
あれば、液晶の異常光屈折率(1.8程度)とほぼ等し
くなり、S波に対する回折格子として効率よく機能し、
より好ましい。液晶の常光屈折率(1.5程度)にほぼ
等しい屈折率の第1の透明基板としては、ガラス基板、
プラスチック基板等が好ましく使用できる。
When the refractive index of the convex portion is about 1.7 to 1.9, it becomes almost equal to the extraordinary light refractive index of the liquid crystal (about 1.8), which effectively functions as a diffraction grating for S waves.
More preferable. As the first transparent substrate having a refractive index almost equal to the ordinary refractive index (about 1.5) of the liquid crystal, a glass substrate,
A plastic substrate or the like can be preferably used.

【0019】本発明の光学異方性回折格子は以下のよう
にして作製する。まず、厚み1〜2μm程度の被膜を真
空蒸着法、スパッタリング法等により形成する。その後
フォトリソグラフィ法及びドライエッチング法によっ
て、屈折率1.8程度の所定の周期の凸部からなる凹凸
部とし、回折格子パターンになるよう加工する。
The optically anisotropic diffraction grating of the present invention is manufactured as follows. First, a film having a thickness of about 1 to 2 μm is formed by a vacuum vapor deposition method, a sputtering method, or the like. Thereafter, by photolithography and dry etching, an uneven portion having convex portions with a refractive index of about 1.8 and having a predetermined period is formed, and processed into a diffraction grating pattern.

【0020】前記凹凸部の長手方向に垂直な面における
断面形状は、長方形、正方形等の左右対称の矩形形状で
もよく、階段状、のこぎり状等の左右非対称の形状でも
よい。左右非対称の形状の場合、光学異方性回折格子に
よる±1次回折光のうちいずれか一方の回折効率が高く
なり、回折効率の高い方の回折光のみを検出すればよ
く、検出器が1つで高い光の利用効率が得られるため好
ましい。
The cross-sectional shape of a plane perpendicular to the longitudinal direction of the concave-convex portion may be a symmetrical rectangular shape such as a rectangle or a square, or may be asymmetrical such as a step or a saw. In the case of a left-right asymmetrical shape, one of the ± 1st-order diffracted lights by the optically anisotropic diffraction grating has a higher diffraction efficiency, and only the diffracted light with the higher diffraction efficiency needs to be detected. Is preferable because high light utilization efficiency can be obtained.

【0021】さらに前記凹凸部については、凹凸部と凹
凸部の間隔に分布を付与する、左右対称のものと左右非
対称のものとを混在させる等の変更を行ってもよい。
Further, the uneven portion may be modified such that the interval between the uneven portion and the uneven portion is given a distribution, and the left and right symmetrical ones and the left and right asymmetrical ones are mixed.

【0022】次に、第2のガラス基板(第2の透明基
板)を用意し、その液晶と接する側の面にポリイミド配
向膜を形成し、前記ポリイミド配向膜のラビング方向を
前記凹凸部のストライプ方向に合わせて、第2のガラス
基板を第1のガラス基板に積層接着する。その際、第1
のガラス基板と第2のガラス基板の周辺部に、球状スペ
ーサを含んだエポキシ樹脂を、液晶注入用の開口部以外
の部分に塗布し接着する。そして、真空中で前記開口部
から液晶を注入し、前記開口部を封着用の樹脂で塞ぐ。
Next, a second glass substrate (second transparent substrate) is prepared, a polyimide alignment film is formed on the surface of the second glass substrate which is in contact with the liquid crystal, and the rubbing direction of the polyimide alignment film is the stripes of the uneven portion. The second glass substrate is laminated and adhered to the first glass substrate according to the direction. At that time, the first
The epoxy resin containing the spherical spacers is applied to the peripheral portions of the glass substrate and the second glass substrate except the opening for injecting the liquid crystal and adhered. Then, liquid crystal is injected from the opening in a vacuum, and the opening is closed with a sealing resin.

【0023】本発明の液晶としては、高分子液晶、液晶
モノマー、液晶組成物等が適宜使用できる。液晶として
高分子液晶を用いる場合は、液晶モノマーを注入後、配
向した状態で紫外線を照射するか加熱して液晶モノマー
を重合させる。その場合、凹凸部のみによっても高分子
液晶は配向できるので、配向膜は省略してもよい。
As the liquid crystal of the present invention, a polymer liquid crystal, a liquid crystal monomer, a liquid crystal composition and the like can be appropriately used. When a polymer liquid crystal is used as the liquid crystal, after the liquid crystal monomer is injected, the liquid crystal monomer is polymerized by irradiating ultraviolet rays or heating in an aligned state. In that case, since the polymer liquid crystal can be aligned only by the uneven portion, the alignment film may be omitted.

【0024】その後、第2のガラス基板の上に(前記凹
凸部と反対側の面に)、ポリカーボネート、ポリビニル
アルコール等の材料からなる位相差フィルム(λ/4
板)を積層する。
Then, a retardation film (λ / 4) made of a material such as polycarbonate or polyvinyl alcohol is formed on the second glass substrate (on the surface opposite to the concavo-convex portion).
Boards).

【0025】この場合往路(光源側から光記録媒体側へ
向かう方向)においては、下方から入射した半導体レー
ザからのS波に対応する液晶部の屈折率は1.8(異常
光屈折率)程度であり、前記凸部もほぼ1.8である。
そのため光は回折しないで上方に透過する。
In this case, in the outward path (direction from the light source side to the optical recording medium side), the refractive index of the liquid crystal portion corresponding to the S wave from the semiconductor laser incident from below is about 1.8 (extreme refractive index). And the convex portion is also approximately 1.8.
Therefore, the light passes upward without being diffracted.

【0026】復路(光記録媒体側から光源側へ向かう方
向)においては、位相差フィルムによって偏光方向は変
化しP波で入射する。そのとき、P波に対応する液晶の
屈折率は1.5(常光屈折率)程度であり、前記凸部の
屈折率はほぼ1.8であるため、回折格子として機能し
光の回折が起こる。
On the return path (direction from the side of the optical recording medium to the side of the light source), the polarization direction is changed by the retardation film and the P wave is incident. At that time, since the refractive index of the liquid crystal corresponding to the P wave is about 1.5 (ordinary light refractive index) and the refractive index of the convex portion is about 1.8, it functions as a diffraction grating to cause light diffraction. .

【0027】ここで、凸部及び液晶と、第1、2のガラ
ス基板との、屈折率の差0.3により、界面において反
射が起こる。前記界面における反射率は、1界面あたり
計算上0.8%程度である。その反射損を考慮に入れた
透過率は2面で98.4%となり、1.6%の損失とな
る。
Here, reflection occurs at the interface due to the difference in refractive index of 0.3 between the convex portion and the liquid crystal and the first and second glass substrates. The reflectance at the interface is approximately 0.8% per interface. The transmittance in consideration of the reflection loss is 98.4% on the two surfaces, which is a loss of 1.6%.

【0028】また、復路においても界面による反射が光
学異方性回折格子部において発生する。この反射損を正
確に見積もるのは困難であるが、凸部の面積がほぼ半分
であるとし、半分の光が2界面で反射するとして計算す
る。その場合、光の透過率は99.2%、反射損は0.
8%となる。以上、往路及び復路で合計すると透過率は
97.6%となり、反射損は2.4%と推定される。し
かし、上記のP波入力の場合でも1.6%の反射損は免
れないため、本発明のS波入力との差は軽微であると考
えられ、実用上問題ない程度である。
Also in the return path, reflection by the interface occurs in the optically anisotropic diffraction grating portion. Although it is difficult to accurately estimate this reflection loss, it is assumed that the area of the convex portion is almost half and half the light is reflected at the two interfaces. In that case, the light transmittance is 99.2% and the reflection loss is 0.
It will be 8%. As described above, the total transmittance in the forward and return paths is 97.6%, and the reflection loss is estimated to be 2.4%. However, even in the case of the P-wave input described above, a reflection loss of 1.6% is inevitable, so that the difference from the S-wave input of the present invention is considered to be slight, and there is no practical problem.

【0029】なお、製造上の理由で凹凸部の凹部の底に
透明材料の薄い膜が残存している場合があり、そのとき
の反射損は3.2%程度と推定されるが、このような構
成でも使用できる。
It should be noted that a thin film of a transparent material may remain on the bottom of the concave portion of the uneven portion for manufacturing reasons, and the reflection loss at that time is estimated to be about 3.2%. It can be used in various configurations.

【0030】本発明において、透明材料からなる凸部を
感光性ポリイミドを用いて形成してもよく、その場合回
折素子は以下のようにして作製する。屈折率1.5程度
の第1のガラス基板上に、屈折率が1.8程度の感光性
ポリイミドを厚み1〜2μm程度塗布する。その後、フ
ォトリソグラフィ法により露光、現像を行い、ピッチ
(周期)8μmの凸部を形成し、格子状の凹凸部とす
る。
In the present invention, the convex portion made of a transparent material may be formed by using photosensitive polyimide, in which case the diffractive element is manufactured as follows. A photosensitive polyimide having a refractive index of about 1.8 is applied on a first glass substrate having a refractive index of about 1.5 to a thickness of about 1 to 2 μm. After that, exposure and development are performed by a photolithography method to form convex portions with a pitch (cycle) of 8 μm to form a grid-shaped concave and convex portion.

【0031】次に、第2のガラス基板を用意し、その液
晶と接する側の面にポリイミド配向膜を形成し、前記ポ
リイミド配向膜のラビング方向を前記凹凸部のストライ
プ方向に合わせて、第2のガラス基板を第1のガラス基
板に積層接着する。その際、第1のガラス基板と第2の
ガラス基板の周辺部に、球状スペーサを含んだエポキシ
樹脂を、液晶注入用の開口部以外の部分に塗布し接着す
る。そして、真空中で前記開口部から液晶を注入し、前
記開口部を封着用の樹脂で塞ぐ。
Next, a second glass substrate is prepared, a polyimide alignment film is formed on the surface of the second glass substrate which is in contact with the liquid crystal, and the rubbing direction of the polyimide alignment film is aligned with the stripe direction of the concavo-convex portion to form the second glass substrate. The glass substrate of 1 is laminated and adhered to the first glass substrate. At that time, epoxy resin containing a spherical spacer is applied to the peripheral portions of the first glass substrate and the second glass substrate in a portion other than the opening for injecting the liquid crystal and adhered thereto. Then, liquid crystal is injected from the opening in a vacuum, and the opening is closed with a sealing resin.

【0032】前記感光性ポリイミドなどの光感光性有機
物に配向性を付与すると、第2のガラス基板のポリイミ
ド配向膜を省略でき、好ましい。配向性の付与はラビン
グ処理等の水平配向処理によって行う。その後、第2の
ガラス基板の上に(凹凸部と反対側の面に)、ポリカー
ボネート、ポリビニルアルコール等の材料からなる位相
差フィルム(λ/4板)を積層する。
It is preferable to provide the photo-sensitive organic material such as the photosensitive polyimide with the orientation because the polyimide orientation film of the second glass substrate can be omitted. The orientation is imparted by a horizontal orientation treatment such as a rubbing treatment. After that, a retardation film (λ / 4 plate) made of a material such as polycarbonate or polyvinyl alcohol is laminated on the second glass substrate (on the surface opposite to the uneven portion).

【0033】この場合往路(光源側から光記録媒体側へ
向かう方向)においては、下方から入射した半導体レー
ザからのS波に対応する液晶部の屈折率は1.8(異常
光屈折率)程度であり、前記凸部もほぼ1.8である。
そのため光は回折しないで上方に透過する。
In this case, in the forward path (direction from the light source side to the optical recording medium side), the refractive index of the liquid crystal portion corresponding to the S wave from the semiconductor laser incident from below is about 1.8 (extreme light refractive index). And the convex portion is also approximately 1.8.
Therefore, the light passes upward without being diffracted.

【0034】復路(光記録媒体側から光源側へ向かう方
向)においては、位相差フィルムによって偏光方向は変
化しP波で入射する。そのとき、P波に対応する液晶の
屈折率は1.5(常光屈折率)程度であり、前記凸部の
屈折率はほぼ1.8であるため、回折格子として機能し
光の回折が起こる。
On the return path (direction from the side of the optical recording medium to the side of the light source), the polarization direction is changed by the retardation film and the P-wave is incident. At that time, since the refractive index of the liquid crystal corresponding to the P wave is about 1.5 (ordinary light refractive index) and the refractive index of the convex portion is about 1.8, it functions as a diffraction grating to cause light diffraction. .

【0035】本発明の回折素子は、光源側の面に他の回
折格子を形成してもよく、その場合3ビーム法によるト
ラッキングエラー検出ができ好ましい。
In the diffractive element of the present invention, another diffractive grating may be formed on the surface on the light source side, in which case tracking error detection by the three-beam method is preferable.

【0036】本発明における凹凸部(光学異方性回折格
子)のパターンは、光記録媒体からの戻り光のビーム形
状が所望の形状になるように、回折格子面内で曲率をつ
けたり、格子間隔に分布をつけたりすることもできる。
The pattern of the concave-convex portion (optical anisotropic diffraction grating) in the present invention has a curvature in the diffraction grating plane or a grating interval so that the beam shape of the return light from the optical recording medium has a desired shape. You can also give a distribution to.

【0037】本発明において、回折素子の光源側の面及
び/又は光記録媒体側の面に、UV硬化型アクリル樹脂
等の被膜を設けた場合、λ/4板やガラス基板の表面の
凹凸に起因する波面収差を低減でき好ましい。さらに前
記UV硬化型アクリル樹脂等の被膜の上に、平坦度のよ
いガラス基板やプラスチック基板等を積層することによ
り、格段に波面収差を低減でき好ましい。したがって、
回折素子の光の入出射面が平坦化されていることによ
り、結果的に波面収差が低減される。
In the present invention, when a coating such as a UV curable acrylic resin is provided on the light source side surface of the diffraction element and / or the optical recording medium side surface, unevenness on the surface of the λ / 4 plate or the glass substrate is generated. This is preferable because the resulting wavefront aberration can be reduced. Further, by laminating a glass substrate or a plastic substrate having good flatness on the coating film of the UV-curable acrylic resin or the like, it is possible to significantly reduce the wavefront aberration, which is preferable. Therefore,
Since the light incident / exit surface of the diffraction element is flattened, the wavefront aberration is consequently reduced.

【0038】本発明における光源としては半導体レー
ザ、YAGレーザ等の固体レーザ、He−Ne等の気体
レーザ等の各種の固体、気体レーザが使用でき、半導体
レーザが小型軽量化、連続発振、保守点検等の点で好ま
しい。光源部に半導体レーザ等と非線形光学素子を組み
込んだ高調波発生装置(SHG)を使用し、青色レーザ
等の短波長レーザを用いると、高密度の光記録及び読み
取りが可能になる。
As the light source in the present invention, various solid and gas lasers such as a semiconductor laser, a solid-state laser such as a YAG laser, and a gas laser such as He-Ne can be used, and the semiconductor laser can be made smaller and lighter, continuous oscillation, and maintenance and inspection can be performed. Etc. are preferable. Using a harmonic generator (SHG) in which a semiconductor laser or the like and a non-linear optical element are incorporated in the light source section and using a short-wavelength laser such as a blue laser enables high-density optical recording and reading.

【0039】本発明の光記録媒体は、光により情報を記
録及び/又は読み取りができる媒体である。その例とし
てはCD、CD−ROM、DVD(デジタルビデオディ
スク)等の光ディスク、及び光磁気ディスク、相変化型
光ディスク等が挙げられる。
The optical recording medium of the present invention is a medium capable of recording and / or reading information by light. Examples include optical disks such as CDs, CD-ROMs, DVDs (digital video disks), magneto-optical disks, and phase-change optical disks.

【0040】[0040]

【実施例】【Example】

[例1]例1を図1に示す。10mm×10mm角、厚
さ0.5mm、屈折率1.52の第1のガラス基板1上
に、真空蒸着法によって屈折率1.8、深さ1.2μm
のSiOx (x≒1.2)の透明薄膜を形成した。その
後フォトリソグラフィ法及びドライエッチング法によっ
て、SiOx (x≒1.2)の透明薄膜をピッチ(周
期)が10μmの凸部とし、その結果長手方向に垂直な
面における断面形状が矩形状の格子状の凹凸部2を形成
した。
[Example 1] Example 1 is shown in FIG. On the first glass substrate 1 having a size of 10 mm × 10 mm, a thickness of 0.5 mm, and a refractive index of 1.52, a refractive index of 1.8 and a depth of 1.2 μm are formed by a vacuum deposition method.
A transparent thin film of SiO x (x≈1.2) was formed. Then, a transparent thin film of SiO x (x≈1.2) is formed into convex portions with a pitch (period) of 10 μm by photolithography and dry etching, and as a result, a lattice having a rectangular cross section in a plane perpendicular to the longitudinal direction. The concave-convex portion 2 was formed.

【0041】10mm×10mm角、厚み0.5mm、
屈折率1.52の第2のガラス基板5を用意し、その液
晶3に接する側の面にポリイミド配向膜4を形成した。
そのラビング方向が前記凹凸部2のストライプ方向に沿
うようにして、第1、2のガラス基板1、5を積層接着
した。このとき、2つのガラス基板の周辺部を、液晶注
入用の開口部を除いてシールした。
10 mm × 10 mm square, thickness 0.5 mm,
A second glass substrate 5 having a refractive index of 1.52 was prepared, and a polyimide alignment film 4 was formed on the surface of the second glass substrate 5 in contact with the liquid crystal 3.
The first and second glass substrates 1 and 5 were laminated and adhered so that the rubbing direction was along the stripe direction of the uneven portion 2. At this time, the peripheral portions of the two glass substrates were sealed except for the liquid crystal injection opening.

【0042】具体的には次のようにした。4μmの球状
スペーサを含むエポキシ樹脂(図1では図示せず)を第
1のガラス基板1の周辺部に塗布し、その上に第2のガ
ラス基板5を載置した。その後、減圧雰囲気中で液晶3
として混合液晶組成物(メルク社製商品名BL009、
ネマチック液晶、Δn=0.2915、常光屈折率=
1.5266、異常光屈折率=1.8181、固体液晶
相への相転移温度≦−20℃、アイソトロピック相への
相転移温度=108℃)を、前記凹凸部2に注入した。
前記開口部を封止用の樹脂で塞ぎ、光学異方性回折格子
を作製した。
Specifically, the following was done. An epoxy resin (not shown in FIG. 1) containing a spherical spacer of 4 μm was applied to the peripheral portion of the first glass substrate 1, and the second glass substrate 5 was placed thereon. After that, in a reduced pressure atmosphere, the liquid crystal 3
As a mixed liquid crystal composition (trade name BL009 manufactured by Merck,
Nematic liquid crystal, Δn = 0.915, ordinary light refractive index =
1.5266, extraordinary light refractive index = 1.8181, phase transition temperature to solid-state liquid crystal phase ≦ −20 ° C., phase transition temperature to isotropic phase = 108 ° C.) were injected into the uneven portion 2.
The opening was closed with a sealing resin to produce an optically anisotropic diffraction grating.

【0043】次いで、第2のガラス基板5の上(凹凸部
と反対側の面)に、透明接着剤6を用いてポリカーボネ
ート製の位相差フィルム7を接着した。さらにその上に
UV硬化型アクリル樹脂8を塗布した。さらにその上に
第3のガラス基板9を載置し、紫外線を照射して第3の
ガラス基板9を積層接着した。さらに素子全体につい
て、光の入射面及び光の出射面に反射防止膜を形成し、
回折素子を作製した。
Next, a retardation film 7 made of polycarbonate was adhered onto the second glass substrate 5 (the surface opposite to the concavo-convex portion) using a transparent adhesive 6. Further, a UV curable acrylic resin 8 was applied thereon. Further, the third glass substrate 9 was placed thereon, and ultraviolet rays were irradiated to laminate and adhere the third glass substrate 9. Furthermore, for the entire device, an antireflection film is formed on the light incident surface and the light emitting surface,
A diffractive element was produced.

【0044】以上の結果、半導体レーザ(図1で図示せ
ず)からの波長678nmのS波(図1において紙面に
垂直な偏光方向の光)に対して95%の透過率であっ
た。光ディスク(図1で図示せず)からのP波(紙面に
平行な偏光方向の光)に対しては、1次回折光の回折効
率が38.4%、−1次回折光の回折効率が35.4%
であった。P波の総透過率は96%であった。
As a result of the above, the transmittance was 95% for the S wave (light having a polarization direction perpendicular to the paper surface in FIG. 1) having a wavelength of 678 nm from the semiconductor laser (not shown in FIG. 1). With respect to P waves (light having a polarization direction parallel to the paper surface) from an optical disc (not shown in FIG. 1), the diffraction efficiency of the first-order diffracted light is 38.4%, and the diffraction efficiency of the -1st-order diffracted light is 35. 4%
Met. The total transmittance of P waves was 96%.

【0045】したがって往復効率は、0.95×0.9
6×0.738で計算すると67.3%となり、実用上
充分に高い効率が得られた。また透過光の波面収差は、
回折素子の光の入出射面の中心部(直径2mmの円形の
範囲)で、0.015λrms(自乗平均)以下であっ
た。
Therefore, the reciprocating efficiency is 0.95 × 0.9
When calculated with 6 × 0.738, it was 67.3%, which was a sufficiently high efficiency for practical use. The wavefront aberration of transmitted light is
It was 0.015λ rms (root mean square) or less at the center of the light entrance / exit surface of the diffractive element (circular area with a diameter of 2 mm).

【0046】[例2]例2を図2に示す。例1と同様の
部品については同じ符号を付している。10mm×10
mm角、厚さ0.5mm、屈折率1.52の第1のガラ
ス基板1上に、感光性ポリイミド(東レ社製商品名フォ
トニース、屈折率1.78)をスピンコート法により厚
さ1.3μmに塗布した。その後フォトリソグラフィ法
によって、感光性ポリイミドの膜をピッチ(周期)が8
μmの凸部とし、その結果長手方向に垂直な面における
断面形状が矩形状の格子状の凹凸部2を形成した。その
後、前記凹凸部2のストライプ方向にラビング処理を行
った。以後の工程は例1と同様にして行い、回折素子を
作製した。
Example 2 Example 2 is shown in FIG. The same parts as those in Example 1 are designated by the same reference numerals. 10 mm x 10
A photosensitive polyimide (trade name: Photo Nice, manufactured by Toray Industries, Inc., refractive index: 1.78) having a thickness of 1 mm was formed on a first glass substrate 1 having a square shape of 0.5 mm, a thickness of 0.5 mm and a refractive index of 1.52 by spin coating. It was applied to 0.3 μm. After that, the pitch (cycle) of the photosensitive polyimide film was set to 8 by photolithography.
As a result, projections and depressions of μm were formed, and as a result, projections and depressions 2 having a grid shape having a rectangular cross section in a plane perpendicular to the longitudinal direction were formed. Then, a rubbing process was performed in the stripe direction of the uneven portion 2. Subsequent steps were performed in the same manner as in Example 1 to manufacture a diffraction element.

【0047】以上の結果、半導体レーザ(図2で図示せ
ず)からの波長678nmのS波(図2で紙面に垂直な
偏光方向の光)に対して90%の透過率であった。光デ
ィスク(図2で図示せず)からのP波(図2で紙面に平
行な偏光方向の光)に対しては、1次回折光の回折効率
が38%、−1次回折光の回折効率が35%であった。
P波の総透過率は91%であった。
As a result of the above, the transmittance was 90% with respect to the S wave (light having a polarization direction perpendicular to the paper surface in FIG. 2) having a wavelength of 678 nm from the semiconductor laser (not shown in FIG. 2). The diffraction efficiency of the 1st-order diffracted light is 38% and the diffraction efficiency of the -1st-order diffracted light is 35% with respect to the P wave (light having a polarization direction parallel to the paper surface in FIG. 2) from the optical disc (not shown in FIG. 2). %Met.
The total transmittance of P waves was 91%.

【0048】したがって往復効率は、0.90×0.9
1×0.73で計算すると59.8%となり、実用上充
分に高い効率が得られた。また透過光の波面収差は、回
折素子の光の入出射面の中心部(直径2mmの円形の範
囲)で、0.015λrms 以下であった。
Therefore, the reciprocating efficiency is 0.90 × 0.9.
When calculated with 1 × 0.73, it was 59.8%, which was a sufficiently high efficiency for practical use. The wavefront aberration of the transmitted light was 0.015 λ rms or less at the center of the light entrance / exit surface of the diffractive element (circular range with a diameter of 2 mm).

【0049】[例3]例2と同様に図2の構成とした。
10mm×10mm角、厚さ0.5mm、屈折率1.5
2の第1のガラス基板1上に、反応性スパッタリングに
よりSiOxy (x=0.7、y=0.8)を厚さ
1.4μm成膜した。成膜条件は、基板温度200℃、
窒素ガス流量17.4SCCM、酸素ガス流量0.2S
CCMの混合ガスを用い、成膜時のガス圧は5×10-3
torrとした。
[Example 3] The configuration of FIG.
10mm x 10mm square, thickness 0.5mm, refractive index 1.5
On the first glass substrate 1 of No. 2, SiO x N y (x = 0.7, y = 0.8) was deposited to a thickness of 1.4 μm by reactive sputtering. The film forming conditions are a substrate temperature of 200 ° C.
Nitrogen gas flow rate 17.4SCCM, oxygen gas flow rate 0.2S
Using a mixed gas of CCM, the gas pressure during film formation is 5 × 10 -3
torr.

【0050】成膜した膜は、680nmで約1.8の屈
折率を持ち、600nm以上の波長に対してはほとんど
吸収はみられなかった。その後、フォトリソグラフィ法
及びドライエッチング法によって、SiOxy (x=
0.7、y=0.8)の透明薄膜をピッチ(周期)が1
0μmの凸部とし、その結果長手方向に垂直な面におけ
る断面形状が矩形状の格子状の凹凸部2を形成した。そ
の後、両方の基板にポリイミド膜を塗布し、凹凸部2の
ストライプ方向にラビング処理を行った。以後の工程は
例1と同様にして行い、回折素子を作製した。
The formed film had a refractive index of about 1.8 at 680 nm, and almost no absorption was observed at wavelengths of 600 nm or more. After that, SiO x N y (x =
0.7, y = 0.8) transparent thin film with a pitch (cycle) of 1
As a result, projections of 0 μm were formed, and as a result, projections and depressions 2 having a grid shape having a rectangular cross section in a plane perpendicular to the longitudinal direction were formed. After that, a polyimide film was applied to both substrates, and a rubbing process was performed in the stripe direction of the uneven portion 2. Subsequent steps were performed in the same manner as in Example 1 to manufacture a diffraction element.

【0051】以上の結果、半導体レーザ(図2で図示せ
ず)からの波長678nmのS波(図2で紙面に垂直な
偏光方向の光)に対して80%の透過率であった。光デ
ィスク(図2で図示せず)からのP波(図2で紙面に平
行な偏光方向の光)に対しては、1次回折光の回折効率
が37%、−1次回折光の回折効率が36%であった。
P波の総透過率は91%であった。
As a result of the above, the transmittance was 80% with respect to the S wave (light having a polarization direction perpendicular to the paper surface in FIG. 2) having a wavelength of 678 nm from the semiconductor laser (not shown in FIG. 2). The diffraction efficiency of the first-order diffracted light is 37% and the diffraction efficiency of the -1st-order diffracted light is 36% with respect to the P-wave (light having a polarization direction parallel to the paper surface in FIG. 2) from the optical disc (not shown in FIG. 2). %Met.
The total transmittance of P waves was 91%.

【0052】したがって往復効率は、0.80×0.9
1×0.73で計算すると53.1%となり、実用上充
分に高い効率が得られた。また透過光の波面収差は、回
折素子の光の入出射面の中心部(直径2mmの円形の範
囲)で、0.015λrms 以下であった。
Therefore, the reciprocating efficiency is 0.80 × 0.9.
When calculated with 1 × 0.73, it was 53.1%, which was a sufficiently high efficiency for practical use. The wavefront aberration of the transmitted light was 0.015 λ rms or less at the center of the light entrance / exit surface of the diffractive element (circular range with a diameter of 2 mm).

【0053】なお、このSiOxy (x=0.7、y
=0.8)膜は、SiH4 、N2 O、NH3 を用いたプ
ラズマCVD法でも、N2 OとNH3 の流量比を1:2
4程度にすることで成膜できる。
This SiO x N y (x = 0.7, y
= 0.8) film has a flow rate ratio of N 2 O and NH 3 of 1: 2 even in the plasma CVD method using SiH 4 , N 2 O and NH 3.
A film can be formed by setting it to about 4.

【0054】[0054]

【発明の効果】本発明によれば、光学異方性回折格子の
ストライプ方向に平行な偏光をもつ入射光(S波)に対
しても、往路では高い光透過率で透過し、復路では所望
の回折をする高い光利用効率を有する光ヘッド装置が容
易に得られる。また、これに用いる光学異方性回折格子
は、生産性良く工業的生産が可能である。
According to the present invention, even incident light (S wave) having a polarization parallel to the stripe direction of the optical anisotropic diffraction grating is transmitted with a high light transmittance in the outward path and is desired in the return path. It is possible to easily obtain an optical head device having a high light utilization efficiency that diffracts light. Further, the optically anisotropic diffraction grating used for this can be industrially produced with good productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】例1の光ヘッド装置の側断面図。FIG. 1 is a side sectional view of an optical head device of Example 1.

【図2】例2の光ヘッド装置の側断面図。FIG. 2 is a side sectional view of an optical head device of Example 2.

【符号の説明】[Explanation of symbols]

1:第1のガラス基板 2:凹凸部 3:液晶 4:ポリイミド配向膜 5:第2のガラス基板 6:透明接着剤 7:位相差フィルム 8:UV硬化型アクリル樹脂 9:第3のガラス基板 1: First Glass Substrate 2: Concavo-convex Part 3: Liquid Crystal 4: Polyimide Alignment Film 5: Second Glass Substrate 6: Transparent Adhesive 7: Phase Difference Film 8: UV Curable Acrylic Resin 9: Third Glass Substrate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】光源からの光を回折素子を通して光記録媒
体上に照射することにより情報の書き込み及び/又は情
報の読み取りを行う光ヘッド装置において、 前記回折素子は、表面に格子状の凹凸部が形成された第
1の透明基板と第2の透明基板との間に光学異方性を有
する液晶が充填されてなる光学異方性回折格子を備えて
なり、 前記凹凸部の凸部は前記第1の透明基板上に透明材料か
らなる凸部を所定の周期で被覆して形成してなり、 前記第1の透明基板の屈折率は液晶の常光屈折率にほぼ
等しく、前記凸部の屈折率は液晶の異常光屈折率にほぼ
等しいことを特徴とする光ヘッド装置。
1. An optical head device for writing information and / or reading information by irradiating an optical recording medium with light from a light source through a diffractive element, wherein the diffractive element has a grid-like uneven portion on its surface. An optically anisotropic diffraction grating filled with a liquid crystal having optical anisotropy between the first transparent substrate and the second transparent substrate on which the convex and concave portions are formed. The first transparent substrate is formed by coating convex portions made of a transparent material at a predetermined cycle. The refractive index of the first transparent substrate is substantially equal to the ordinary refractive index of liquid crystal, and An optical head device characterized in that the index is approximately equal to the extraordinary index of refraction of liquid crystal.
【請求項2】前記凸部の屈折率が前記第1の透明基板の
屈折率より大きい請求項1記載の光ヘッド装置。
2. The optical head device according to claim 1, wherein the convex portion has a refractive index higher than that of the first transparent substrate.
【請求項3】前記凸部がSiOxy (0≦x<2、0
≦y<1.3)からなる請求項1記載の光ヘッド装置。
3. The convex portion is SiO x N y (0 ≦ x <2, 0
The optical head device according to claim 1, wherein ≦ y <1.3).
【請求項4】前記凸部が光感光性有機物からなる請求項
1記載の光ヘッド装置。
4. The optical head device according to claim 1, wherein the convex portion is made of a photosensitive organic material.
【請求項5】前記光感光性有機物が水平配向処理されて
いる請求項4記載の光ヘッド装置。
5. The optical head device according to claim 4, wherein the photosensitive organic material is horizontally aligned.
JP8158579A 1995-10-03 1996-06-19 Optical head device Pending JPH09185837A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8158579A JPH09185837A (en) 1995-11-01 1996-06-19 Optical head device
KR1019980702484A KR19990064007A (en) 1995-10-03 1996-10-03 Optical head device and manufacturing method thereof
US09/043,908 US6118586A (en) 1995-10-03 1996-10-03 Optical head device including an optically anisotropic diffraction grating and production method thereof
KR1020047003501A KR100642951B1 (en) 1995-10-03 1996-10-03 Optical head device and production method thereof
PCT/JP1996/002872 WO1997013245A1 (en) 1995-10-03 1996-10-03 Optical head device and production method thereof
US09/524,742 US6271966B1 (en) 1995-10-03 2000-03-13 Optical head device including an optically anisotropic diffraction grating and process for its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28525595 1995-11-01
JP7-285255 1995-11-01
JP8158579A JPH09185837A (en) 1995-11-01 1996-06-19 Optical head device

Publications (1)

Publication Number Publication Date
JPH09185837A true JPH09185837A (en) 1997-07-15

Family

ID=26485648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8158579A Pending JPH09185837A (en) 1995-10-03 1996-06-19 Optical head device

Country Status (1)

Country Link
JP (1) JPH09185837A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310718A (en) * 1999-02-26 2000-11-07 Asahi Glass Co Ltd Phase shift element and optical element
JP2003139956A (en) * 1999-02-26 2003-05-14 Asahi Glass Co Ltd Phase retardation element, optical element and optical head device
US6917576B2 (en) 1999-08-26 2005-07-12 Asahi Glass Company, Limited Retarder and optical head device installing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310718A (en) * 1999-02-26 2000-11-07 Asahi Glass Co Ltd Phase shift element and optical element
JP2003139956A (en) * 1999-02-26 2003-05-14 Asahi Glass Co Ltd Phase retardation element, optical element and optical head device
US6917576B2 (en) 1999-08-26 2005-07-12 Asahi Glass Company, Limited Retarder and optical head device installing the same

Similar Documents

Publication Publication Date Title
KR100642951B1 (en) Optical head device and production method thereof
WO1999018459A1 (en) Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
JP4300784B2 (en) Optical head device
JP3624561B2 (en) Optical modulation element and optical head device
JP3978821B2 (en) Diffraction element
JPH09185837A (en) Optical head device
JP3509399B2 (en) Optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3528381B2 (en) Optical head device
JPH1010307A (en) Production of optical diffraction gating and optical head device formed by using the same
JP2000249831A (en) Optical device and optical head device
JP3982025B2 (en) Manufacturing method of diffraction element
JP3713778B2 (en) Optical head device
JP3550873B2 (en) Optical head device
JP3829356B2 (en) Optical head device
JPH1092004A (en) Optical head device and its manufacture
JPH09127335A (en) Manufacture of optical head device and optical head device
JPH1048588A (en) Optical head device
JPH09180234A (en) Optical head device
JP2002365416A (en) Polarization diffraction element and optical head device
JPH09161303A (en) Optical head device
JPH10188321A (en) Polarizing diffraction grating and optical head device using the same
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525