JPH09180234A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPH09180234A
JPH09180234A JP8094406A JP9440696A JPH09180234A JP H09180234 A JPH09180234 A JP H09180234A JP 8094406 A JP8094406 A JP 8094406A JP 9440696 A JP9440696 A JP 9440696A JP H09180234 A JPH09180234 A JP H09180234A
Authority
JP
Japan
Prior art keywords
liquid crystal
phase
crystal composition
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8094406A
Other languages
Japanese (ja)
Inventor
Yuzuru Tanabe
譲 田辺
Tomonori Korishima
友紀 郡島
Hiromasa Sato
弘昌 佐藤
Hiroki Hodaka
弘樹 保高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP8094406A priority Critical patent/JPH09180234A/en
Publication of JPH09180234A publication Critical patent/JPH09180234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)
  • Optical Head (AREA)
  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high utilization efficiency stable to temp. by using a specific liquid crystal compsn. having a large difference between an ordinary index and extraordinary index as a nematic liquid crystal phase. SOLUTION: A glass substrate 3 having a polyimide oriented film 5 formed on a surface in contact with the liquid crystal compsn. 4 is adhered to a glass substrate 1 along the stripe direction of the grid-like rugged parts 2 of the substrate. For this purpose, an epoxy resin 8 is applied on the peripheral parts of the glass substrate 1 and the glass substrate 3 is placed thereon and pressed. At this time, a region not coated with the epoxy resin 8 is left as an aperture for injecting the liquid crystal compsn. 4. The liquid crystal compsn. 4 of 0.21 to 0.35 in the difference Δn between the ordinary index and extraordinary index at 20 deg.C and 589nm light wavelength and 80 deg.C in the phase transition temp. from a nematic phase to an isotropic phase is thereafter injected and sealed. Further, a phase difference film 6 and a glass substrate 7 are formed and in addition, light incident and exit surfaces 11, 12 are provided with antireflection films 13. As a result, the high transmittance and utilization efficiency stable to temp. are obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、CD(コンパクト
・ディスク)、CD−ROM、ビデオディスク等の光デ
ィスク及び光磁気ディスク等に光学的情報を書き込んだ
り、光学的情報を読み取るための光ヘッド装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical head device for writing and reading optical information on optical disks such as CDs (compact disks), CD-ROMs and video disks and magneto-optical disks. About.

【0002】[0002]

【従来の技術】従来、光ディスク及び光磁気ディスク等
に光学的情報を書き込んだり、光学的情報を読み取る光
ヘッド装置としては、ディスクの記録面から反射された
信号光を検出部へ導光(ビームスプリット)する光学部
品としてプリズム式ビームスプリッタを用いたものと、
回折格子又はホログラム素子を用いたものとが知られて
いた。
2. Description of the Related Art Conventionally, as an optical head device for writing optical information on an optical disk or a magneto-optical disk or reading optical information, a signal light reflected from a recording surface of the disk is guided to a detection unit (beam). A prism type beam splitter as an optical component for splitting;
It has been known to use a diffraction grating or a hologram element.

【0003】従来、光ヘッド装置用の回折格子又はホロ
グラム素子は、ガラスやプラスチック基板上に、矩形断
面を有する矩形格子(レリーフ型)をドライエッチング
法又は射出成形法よって形成し、これによって光を回折
しビームスプリット機能を付与していた。
Conventionally, in a diffraction grating or hologram element for an optical head device, a rectangular grating (relief type) having a rectangular cross section is formed on a glass or plastic substrate by a dry etching method or an injection molding method. It was diffracted and had a beam splitting function.

【0004】また、光の利用効率が10%程度の等方性
回折格子よりも光の利用効率を上げようとする場合、偏
光を利用することが考えられる。偏光を利用しようとす
ると、プリズム式ビームスプリッタにλ/4板を組み合
わせて、往き(光源から記録面へ向かう方向)及び帰り
(記録面から検出部へ向かう方向)の効率を上げて往復
効率を上げる方法があった。
Further, in order to improve the light utilization efficiency of an isotropic diffraction grating having a light utilization efficiency of about 10%, it is conceivable to use polarized light. When trying to use polarized light, a prism type beam splitter is combined with a λ / 4 plate to increase the efficiency of going (direction from the light source to the recording surface) and returning (direction from the recording surface to the detection section) to improve the round trip efficiency. There was a way to raise it.

【0005】しかし、プリズム式偏光ビームスプリッタ
は高価であり、他の方式が模索されていた。一つの方式
としてLiNbO3 等の複屈折結晶の平板を用い、表面
に異方性回折格子を形成し偏向選択性をもたす方法が知
られている。しかし、複屈折結晶自体が高価であり、民
生分野への適用は困難である。また通常、プロトン交換
法によって格子を形成するため、細かいピッチの格子を
形成するのが困難であるという問題もあった。
However, the prism type polarizing beam splitter is expensive, and other methods have been sought. As one method, a method of using a flat plate of birefringent crystal such as LiNbO 3 and forming an anisotropic diffraction grating on the surface to have deflection selectivity is known. However, the birefringent crystal itself is expensive, and application to the consumer field is difficult. Further, since the lattice is usually formed by the proton exchange method, it is difficult to form a lattice having a fine pitch.

【0006】等方性回折格子は前述のように、往き(光
源から記録面へ向かう方向)の利用効率が50%程度
で、帰り(記録面から検出部へ向かう方向)の利用効率
が20%程度であるため、往復で10%程度が限界であ
る。
As described above, the isotropic diffraction grating has a utilization efficiency of about 50% in the forward direction (direction from the light source to the recording surface) and 20% utilization efficiency in the return direction (direction from the recording surface to the detection portion). Since it is about 10%, the limit is about 10% in both directions.

【0007】それに対して、透明基板上に格子状凹凸部
を形成し、そこに液晶組成物を充填することによって光
の利用効率の高いホログラム(回折素子)を利用した光
ヘッド装置が、本出願人により提案されている。
On the other hand, an optical head device using a hologram (diffraction element) having a high light utilization efficiency by forming a grid-like uneven portion on a transparent substrate and filling the liquid crystal composition therein is the subject of the present application. Suggested by people.

【0008】しかし、液晶ディスプレイ等で工業的かつ
一般的に使用されている液晶組成物材料では、屈折率の
異方性が小さくかつ使用温度範囲が狭いという欠点があ
った。屈折率の異方性が小さいと、所望の回折効率を得
るために、格子深さを深くする必要があり、加工そのも
のがきわめて困難である。また、加工に多大の費用がか
かるという問題があった。
However, the liquid crystal composition materials that are industrially and commonly used in liquid crystal displays have the drawbacks that the anisotropy of the refractive index is small and the operating temperature range is narrow. If the anisotropy of the refractive index is small, it is necessary to deepen the grating depth in order to obtain the desired diffraction efficiency, and the processing itself is extremely difficult. In addition, there is a problem that processing costs a lot.

【0009】また高温側の相転移温度が低いと、光ヘッ
ド装置として使用する最高温度の60〜70℃で仮に液
晶性(光学異方性)を示しても、常温付近で回折効率が
大きく低下する問題があり、実用には適さなかった。ま
た高温での信頼性にも問題があった。
Further, if the phase transition temperature on the high temperature side is low, even if liquid crystallinity (optical anisotropy) is exhibited at the maximum temperature of 60 to 70 ° C. used as an optical head device, the diffraction efficiency is greatly reduced at around room temperature. However, it was not suitable for practical use. There was also a problem with reliability at high temperatures.

【0010】また低温側の相転移温度が高いと、光ヘッ
ド装置として使用する最低温度の0℃付近で仮に液晶性
を示しても、常温付近で大きく回折効率が低下するとい
う問題があり、実用には適さなかった。また低温での信
頼性にも問題があった。
Further, when the phase transition temperature on the low temperature side is high, there is a problem in that even if liquid crystallinity is exhibited near 0 ° C. which is the lowest temperature used as an optical head device, the diffraction efficiency is greatly reduced near room temperature, which is a practical problem. Was not suitable for. There was also a problem with reliability at low temperatures.

【0011】[0011]

【発明が解決しようとする課題】本発明は、前記問題を
解消し広い温度範囲で高い光利用効率を有する光ヘッド
装置を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and provide an optical head device having a high light utilization efficiency in a wide temperature range.

【0012】[0012]

【課題を解決するための手段】本発明は、光源からの光
を回折素子を通して光記録媒体上に照射することにより
情報の書き込み及び/又は情報の読み取りを行う光ヘッ
ド装置において、前記回折素子は、透明基板の表面に格
子状の凹凸部が形成され前記凹凸部に光学異方性を有す
る液晶組成物が充填されている光学異方性回折格子を備
えてなり、前記液晶組成物は、温度20℃、光波長58
9nmにおける常光屈折率と異常光屈折率との差Δnが
0.21〜0.35であり、ネマチック相からアイソト
ロピック相への相転移温度が80℃以上である、ネマチ
ック液晶組成物であることを特徴とする光ヘッド装置を
提供する。
The present invention provides an optical head device for writing information and / or reading information by irradiating an optical recording medium with light from a light source through a diffraction element, wherein the diffraction element is A transparent substrate having a concave-convex portion in a grid pattern, and the concave-convex portion is filled with a liquid crystal composition having optical anisotropy. 20 ° C, light wavelength 58
A nematic liquid crystal composition having a difference Δn between the ordinary refractive index and the extraordinary refractive index at 9 nm of 0.21 to 0.35 and a phase transition temperature from a nematic phase to an isotropic phase of 80 ° C. or higher. An optical head device is provided.

【0013】[0013]

【発明の実施の形態】本発明では、前記凹凸部は光学的
に等方的であってもよく、非等方的であってもよい。前
記凹凸部が光学的に等方的である場合、前記透明基板と
して、屈折率が1.5程度のガラス基板、プラスチック
基板等を使用し、その透明基板に前記凹凸部を直接形成
したものを使用でき好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the irregularities may be optically isotropic or anisotropic. When the uneven portion is optically isotropic, a glass substrate having a refractive index of about 1.5, a plastic substrate, or the like is used as the transparent substrate, and the transparent substrate is directly formed with the uneven portion. It can be used and is preferable.

【0014】また一般に液晶組成物の常光屈折率は異常
光屈折率より低く、常光屈折率が1.5付近のものが多
いため、基板の屈折率と液晶組成物の常光屈折率が等し
いという条件が実現しやすく、好ましい。
In general, the ordinary refractive index of the liquid crystal composition is lower than the extraordinary refractive index, and the ordinary refractive index is often around 1.5, so that the refractive index of the substrate and the ordinary refractive index of the liquid crystal composition are equal. Is easy to realize and is preferable.

【0015】液晶分子の長軸方向は、格子状の前記凹凸
部のストライプ方向(長手方向)に対して平行に配向す
ると考えられる。そのため、図1でみた場合紙面と平行
な方向に偏光した光(P波)に対しては液晶組成物の常
光屈折率が対応し、前記常光屈折率と透明基板の屈折率
はほぼ等しく、回折格子として機能しない。一方、紙面
と垂直に偏光した光(S波)に対しては液晶の異常光屈
折率が対応し、前記異常光屈折率と基板の屈折率は異な
り、回折格子として機能する。
It is considered that the major axis direction of the liquid crystal molecules is aligned parallel to the stripe direction (longitudinal direction) of the grid-shaped irregularities. Therefore, when viewed in FIG. 1, the ordinary refractive index of the liquid crystal composition corresponds to the light (P-wave) polarized in the direction parallel to the paper surface, and the ordinary refractive index and the transparent substrate have substantially the same refractive index. Does not work as a grid. On the other hand, the extraordinary refractive index of the liquid crystal corresponds to the light (S wave) polarized perpendicular to the paper surface, and the extraordinary refractive index of the liquid crystal and the refractive index of the substrate are different and function as a diffraction grating.

【0016】したがって、本発明の光学異方性回折格子
は、P波に対しては光学的に透明であり、S波に対して
は回折格子として機能する。
Therefore, the optically anisotropic diffraction grating of the present invention is optically transparent for P waves and functions as a diffraction grating for S waves.

【0017】前記光学異方性回折格子を設けた透明基板
の上に(光記録媒体側に)、ポリカーボネート、ポリビ
ニルアルコール等の材料からなる位相差フィルム(λ/
4板)を積層すると、下方(光源側)から入射したP波
は光学異方性回折格子をほぼ100%透過し、位相差フ
ィルムで円偏光となる。その後非球面レンズ(対物レン
ズ)を通過し、光記録媒体の記録面で反射し、再び非球
面レンズを透過し、再度位相差フィルムを透過するとS
波に変換され、光学異方性回折格子に入射する。S波に
対して光学異方性回折格子は回折格子として機能する。
On the transparent substrate provided with the optical anisotropic diffraction grating (on the side of the optical recording medium), a retardation film (λ /
When 4 plates are laminated, the P wave incident from the lower side (light source side) is transmitted through the optical anisotropic diffraction grating by almost 100% and becomes circularly polarized by the retardation film. After that, the light beam passes through the aspherical lens (objective lens), is reflected by the recording surface of the optical recording medium, is transmitted through the aspherical lens again, and is transmitted through the phase difference film again.
It is converted into a wave and enters the optically anisotropic diffraction grating. The optical anisotropic diffraction grating functions as a diffraction grating for S waves.

【0018】例えばその長手方向に垂直な断面において
左右対称な矩形状凹凸部とし、その深さが適切に設定さ
れた場合には、原理的には1次回折光方向に40%程度
の回折効率、−1次回折光方向に40%程度回折効率
で、光を回折できる。
For example, in the case where a rectangular concavo-convex portion which is bilaterally symmetric in a cross section perpendicular to its longitudinal direction and the depth thereof is appropriately set, in principle, a diffraction efficiency of about 40% in the first-order diffracted light direction, The light can be diffracted in the direction of the −1st order diffracted light with a diffraction efficiency of about 40%.

【0019】前記凹凸部の長手方向に垂直な面における
断面形状は、長方形、正方形等の左右対称の矩形形状で
もよく、階段状、のこぎり状等の左右非対称の形状でも
よい。左右非対称の形状の場合、光学異方性回折格子に
よる±1次回折光のうちいずれか一方の回折効率が高く
なり、回折効率の高い方の回折光のみを検出すればよ
く、検出器が1つで高い光の利用効率が得られるため好
ましい。
The cross-sectional shape of a plane perpendicular to the longitudinal direction of the concave-convex portion may be a symmetrical rectangular shape such as a rectangle or a square, or may be asymmetrical such as a step or a saw. In the case of a left-right asymmetrical shape, one of the ± 1st-order diffracted lights by the optically anisotropic diffraction grating has a higher diffraction efficiency, and only the diffracted light with the higher diffraction efficiency needs to be detected. Is preferable because high light utilization efficiency can be obtained.

【0020】さらに前記凹凸部については、凹凸部と凹
凸部の間隔に分布を付与する、左右対称のものと左右非
対称のものとを混在させる、凹凸部と凸部を混在させる
等の変更もできる。
Further, the uneven portion can be changed such that a distribution is given to the interval between the uneven portion, the symmetrical portion and the laterally asymmetrical portion are mixed, and the uneven portion and the convex portion are mixed. .

【0021】前記の構成及び作用効果からして、本発明
の回折素子は集積化が容易で高効率な偏光ビームスプリ
ッタとして機能する。このような回折素子の使用によ
り、光利用効率の高い光ピックアップを実現できる。
In view of the above-mentioned constitution and effect, the diffraction element of the present invention functions as a polarization beam splitter which is easy to integrate and has high efficiency. By using such a diffractive element, an optical pickup with high light utilization efficiency can be realized.

【0022】しかし、前記の格子状の凹凸部の深さは、
液晶組成物の異常光屈折率と基板の屈折率(ほぼ液晶組
成物の常光屈折率に等しい)の差に凹凸部の深さを乗じ
た値が、光波長の半分に等しいときに、原理的に最も高
い回折効率が得られる。
However, the depth of the above-mentioned grid-like uneven portion is
When the difference between the extraordinary index of refraction of the liquid crystal composition and the index of refraction of the substrate (which is almost equal to the ordinary index of refraction of the liquid crystal composition) multiplied by the depth of the irregularities is equal to half of the light wavelength, the The highest diffraction efficiency is obtained.

【0023】そのため量産上有利な比較的浅い凹凸部と
して、高い回折効率を実現するためには、基板の屈折率
と液晶組成物の異常光屈折率の差、実質的には液晶組成
物の常光屈折率と異常光屈折率との差であるΔnが大き
いことが必要となる。
Therefore, in order to realize a high diffraction efficiency as a relatively shallow uneven portion which is advantageous in mass production, the difference between the refractive index of the substrate and the extraordinary refractive index of the liquid crystal composition, or substantially the ordinary light of the liquid crystal composition. It is necessary that the difference Δn between the refractive index and the extraordinary light refractive index be large.

【0024】一方、液晶表示素子等で通常用いられてい
る液晶組成物材料では、液晶組成物の常光屈折率と異常
光屈折率との差が大きいと、表示素子としての特性が液
晶組成物が充填される空間(セルギャップ)の変動に対
して敏感になるため、必ずしも好まれない。そのため、
液晶表示素子用の液晶組成物としては、Δnが0.20
以下のものが通常使用されている。
On the other hand, in a liquid crystal composition material which is usually used in a liquid crystal display device or the like, when the difference between the ordinary light refractive index and the extraordinary light refractive index of the liquid crystal composition is large, the liquid crystal composition has characteristics as a display device. It is not always preferred because it is sensitive to variations in the filled space (cell gap). for that reason,
As a liquid crystal composition for a liquid crystal display device, Δn is 0.20.
The following are commonly used:

【0025】本発明では、Δnは0.21以上であるの
で、量産が容易な比較的浅い凹凸部とでき、また所望の
高い回折効率を実現できる。さらに、より浅い凹凸部で
高い回折効率が実現できるという理由で、Δnは0.2
7以上が好ましい。一方、Δnが0.36より大きい
と、液晶組成物自体が紫外線等に対して不安定になり信
頼性の点で問題となる。そのため、Δnは0.35以下
とする。
In the present invention, since Δn is 0.21 or more, it is possible to form a relatively shallow concave-convex portion which is easy to mass-produce, and a desired high diffraction efficiency can be realized. Furthermore, Δn is 0.2 because a high diffraction efficiency can be realized in a shallower uneven portion.
7 or more is preferable. On the other hand, when Δn is larger than 0.36, the liquid crystal composition itself becomes unstable with respect to ultraviolet rays and the like, which causes a problem in reliability. Therefore, Δn is set to 0.35 or less.

【0026】また液晶組成物としては、広い温度範囲で
高い屈折率差を保持でき、かつその変動率の小さい液晶
組成物が好ましい。また変動率とも関連して広い温度範
囲で液晶性を示す液晶組成物が好ましい。本発明におけ
る回折素子の場合、使用温度範囲は通常0〜60℃であ
る。したがって、液晶相であるネマチック相から非液晶
相であるアイソトロピック相への相転移温度が80℃以
上のときに、0〜60℃の範囲で特に異常光屈折率の変
動が小さく、回折効率の温度変化を小さくできる。
Further, as the liquid crystal composition, a liquid crystal composition which can maintain a high refractive index difference in a wide temperature range and has a small fluctuation rate is preferable. A liquid crystal composition that exhibits liquid crystallinity in a wide temperature range is also preferable in relation to the variation rate. In the case of the diffractive element of the present invention, the operating temperature range is usually 0 to 60 ° C. Therefore, when the phase transition temperature from the nematic phase, which is a liquid crystal phase, to the isotropic phase, which is a non-liquid crystal phase, is 80 ° C. or higher, the fluctuation of the extraordinary refractive index is particularly small in the range of 0 to 60 ° C. Temperature changes can be reduced.

【0027】また低温側では、最低0℃程度までの温度
で、安定した動作及びより低温での保存時の信頼性を確
保するために、ネマチック液晶相からスメクチック液晶
相又は固体液晶相への相転移温度は−10℃以下が好ま
しい。
On the low temperature side, at a temperature of at least about 0 ° C., a phase from a nematic liquid crystal phase to a smectic liquid crystal phase or a solid liquid crystal phase is obtained in order to ensure stable operation and reliability during storage at lower temperatures. The transition temperature is preferably -10 ° C or lower.

【0028】前記のような諸特性、すなわち高いΔn、
低い温度変化率、広いネマチック液晶相の温度範囲、高
い信頼性を実現する材料として、下記一般式で表される
化合物を60重量%以上含有してなる液晶組成物が好ま
しい。
The characteristics as described above, that is, high Δn,
A liquid crystal composition containing a compound represented by the following general formula in an amount of 60% by weight or more is preferable as a material that achieves a low temperature change rate, a wide temperature range of a nematic liquid crystal phase, and high reliability.

【0029】[0029]

【化2】 Embedded image

【0030】ただし、Aはフェニレン基(以下、−Ph
−と略記する)又はトランス−1,4−シクロヘキシレ
ン基(以下、−Ch−と略記する)、mは0又は1、X
はフッ素原子又は水素原子、Yはシアノ基、フッ素原子
又は塩素原子、Zはフッ素原子又は水素原子、Rは炭素
数2〜8の直鎖状アルキル基又は炭素数2〜8の直鎖状
アルコキシル基である。
However, A is a phenylene group (hereinafter referred to as -Ph
Abbreviated-) or trans-1,4-cyclohexylene group (hereinafter abbreviated as -Ch-), m is 0 or 1, X
Is a fluorine atom or a hydrogen atom, Y is a cyano group, a fluorine atom or a chlorine atom, Z is a fluorine atom or a hydrogen atom, R is a linear alkyl group having 2 to 8 carbon atoms or a linear alkoxy group having 2 to 8 carbon atoms. It is a base.

【0031】また前記液晶組成物には、4’−トランス
−n−プロピル−4−シクロヘキシル−1−シアノベン
ゼン、4’−トランス−n−プロピル−4−シクロヘキ
シル−1−フルオロベンゼン等を適宜混合してもよい。
Further, 4'-trans-n-propyl-4-cyclohexyl-1-cyanobenzene, 4'-trans-n-propyl-4-cyclohexyl-1-fluorobenzene and the like are appropriately mixed in the liquid crystal composition. You may.

【0032】本発明の回折素子は、さらに前記光源側の
面に他の回折格子を形成してもよく、その場合3ビーム
法によるトラッキングエラー検出ができ好ましい。
The diffraction element of the present invention may further have another diffraction grating formed on the surface on the light source side, in which case tracking error detection by the three-beam method is preferable.

【0033】本発明の凹凸部(光学異方性回折格子)の
パターンは、光記録媒体からの戻り光のビーム形状が所
望の形状になるように、回折格子面内で曲率をつけた
り、格子間隔に分布をつけたりすることもできる。
The pattern of the concavo-convex portion (optical anisotropic diffraction grating) of the present invention has a curvature in the diffraction grating plane or a grating interval so that the beam shape of the return light from the optical recording medium becomes a desired shape. You can also give a distribution to.

【0034】前記光学異方性回折格子は、表面に回折格
子パターンに形成された凹凸部を各々有する2枚の透明
基板を、前記凹凸部が対面した状態で凹凸部に液晶組成
物を充填し、積層して形成してもよい。その場合、各々
の凹凸部の深さは浅くてよく、そのため作製が容易にな
り好ましい。また、2つの対面する凹凸部により液晶組
成物の配向性が向上する点でも好ましい。
In the optically anisotropic diffraction grating, two transparent substrates each having an uneven portion formed in a diffraction grating pattern on the surface are filled with a liquid crystal composition in the uneven portion facing each other. Alternatively, they may be formed by stacking. In that case, the depth of each concavo-convex portion may be shallow, which is preferable because it facilitates production. It is also preferable in that the orientation of the liquid crystal composition is improved by the two concavo-convex portions facing each other.

【0035】前記2枚の透明基板に形成された凹凸部
が、積層面に対して非対称となるように積層されている
場合、断面形状が非対称な回折格子を容易に作製でき、
±1次回折光のいずれか一方の回折効率を大きくし、回
折効率の大きい方の光を1つの検出器で検出できるとい
う効果があり好ましい。
When the uneven portions formed on the two transparent substrates are laminated so as to be asymmetric with respect to the laminated surface, a diffraction grating having an asymmetric cross-sectional shape can be easily manufactured.
There is an effect that the diffraction efficiency of one of the ± first-order diffracted lights can be increased and the light with the higher diffraction efficiency can be detected by one detector, which is preferable.

【0036】本発明の回折素子の光源側の面か光記録媒
体側の面の少なくともいずれか一方の面に、UV硬化型
アクリル樹脂等の被膜を設けた場合、λ/4板やガラス
基板の表面の凹凸に起因する波面収差を低減でき好まし
い。さらに前記UV硬化型アクリル樹脂等の被膜の上
に、平坦度のよいガラス基板やプラスチック基板等を積
層することにより、格段に波面収差を低減でき好まし
い。したがって、回折素子の光の入出射面が平坦化され
ていることにより、結果的に波面収差が低減化される。
When at least one of the light source side surface and the optical recording medium side surface of the diffractive element of the present invention is provided with a coating such as a UV curable acrylic resin, a λ / 4 plate or a glass substrate is formed. It is preferable since the wavefront aberration caused by the unevenness of the surface can be reduced. Further, by laminating a glass substrate or a plastic substrate having good flatness on the coating film of the UV-curable acrylic resin or the like, it is possible to significantly reduce the wavefront aberration, which is preferable. Therefore, since the light entrance / exit surface of the diffractive element is flattened, the wavefront aberration is consequently reduced.

【0037】本発明の光源としては半導体レーザ、YA
Gレーザ等の固体レーザ、He−Ne等の気体レーザ等
の各種の固体、気体レーザが使用でき、半導体レーザが
小型軽量化、連続発振、保守点検等の点で好ましい。ま
た、光源部に半導体レーザ等と非線形光学素子を組み込
んだ高調波発生装置(SHG)を使用し、青色レーザ等
の短波長レーザを用いると、高密度の光記録及び読み取
りが可能になる。
As the light source of the present invention, a semiconductor laser, YA
Various solid and gas lasers such as solid-state lasers such as G lasers and gas lasers such as He-Ne can be used, and semiconductor lasers are preferable in terms of downsizing and weight reduction, continuous oscillation, maintenance and inspection. Further, by using a harmonic generator (SHG) in which a semiconductor laser or the like and a non-linear optical element are incorporated in the light source unit and a short wavelength laser such as a blue laser is used, high density optical recording and reading can be performed.

【0038】本発明における光記録媒体とは、光により
情報を記録及び/又は読み取ることができる媒体であ
る。光記録媒体の例としては、CD(コンパクト ディ
スク)、CD−ROM、DVD(デジタル ビデオ デ
ィスク)の光ディスク、及び光磁気ディスク、相変化型
光ディスク等が挙げられる。
The optical recording medium in the present invention is a medium capable of recording and / or reading information by light. Examples of the optical recording medium include a CD (compact disc), a CD-ROM, a DVD (digital video disc) optical disc, a magneto-optical disc, and a phase change type optical disc.

【0039】[0039]

【実施例】【Example】

実施例1 10mm×10mm角×0.5mm厚、屈折率1.52
の第1のガラス基板1上に、フォトリソグラフィ法及び
ドライエッチング法により、深さ1.2μm、ピッチ
(周期)10μmの矩形状断面を有する格子状の凹凸部
2を形成した。
Example 1 10 mm × 10 mm square × 0.5 mm thickness, refractive index 1.52
On the first glass substrate 1 of No. 3, a grid-like uneven portion 2 having a rectangular cross section with a depth of 1.2 μm and a pitch (cycle) of 10 μm was formed by photolithography and dry etching.

【0040】10mm×10mm角×0.5mm厚、屈
折率1.52の第2のガラス基板3を用意し、その液晶
組成物4と接する側の面にポリイミド配向膜5を形成し
た。前記ポリイミド配向膜5のラビング方向を前記凹凸
部2のストライプ方向に沿うようにして、第2のガラス
基板3を第1のガラス基板1に積層し接着した。
A second glass substrate 3 having a thickness of 10 mm × 10 mm × 0.5 mm and a refractive index of 1.52 was prepared, and a polyimide alignment film 5 was formed on the surface of the second glass substrate 3 in contact with the liquid crystal composition 4. The second glass substrate 3 was laminated and adhered to the first glass substrate 1 so that the rubbing direction of the polyimide alignment film 5 was along the stripe direction of the uneven portion 2.

【0041】2つのガラス基板の積層接着は具体的には
以下のように行った。直径4μmのの球状スペーサを含
むエポキシ樹脂8を第1のガラス基板1の周辺部に塗布
し、第2のガラス基板3を載置し、上部より押圧し接着
した。その際、2つのガラス基板の周辺部にはエポキシ
樹脂8を一部塗布しない領域を設けておき、液晶組成物
注入用の開口部とした。このとき、第1のガラス基板1
の前記凹凸部(液晶組成物充填部)2と、第2のガラス
基板3のポリイミド配向膜5とを対面させて接着した。
The laminating and adhering of the two glass substrates was specifically carried out as follows. Epoxy resin 8 including a spherical spacer having a diameter of 4 μm was applied to the peripheral portion of the first glass substrate 1, the second glass substrate 3 was placed, and pressed from the upper portion to adhere. At this time, a region where the epoxy resin 8 was not partially applied was provided in the peripheral portion of the two glass substrates to form an opening for injecting the liquid crystal composition. At this time, the first glass substrate 1
The uneven portion (liquid crystal composition filled portion) 2 and the polyimide alignment film 5 of the second glass substrate 3 were faced to each other and bonded.

【0042】その後、減圧した雰囲気中で混合液晶組成
物「BL009」(メルク社製ネマチック液晶組成物、
Δn=0.2915、常光屈折率=1.5266、固体
液晶相への相転移温度≦−20℃、アイソトロピック相
への相転移温度=108℃)を、前記開口部から注入し
た。前記開口部を封止用の樹脂で塞ぎ、シールを完了し
た。
Then, in a depressurized atmosphere, the mixed liquid crystal composition "BL009" (a nematic liquid crystal composition manufactured by Merck,
Δn = 0.2915, ordinary refractive index = 1.5266, phase transition temperature to solid liquid crystal phase ≦ −20 ° C., phase transition temperature to isotropic phase = 108 ° C.) was injected through the opening. The opening was closed with a sealing resin to complete the sealing.

【0043】第2のガラス基板3のポリイミド配向膜5
とは反対側の面に、透明接着剤を用いてポリカーボネー
ト製の位相差フィルム(λ/4板)6を接着した。さら
に位相差フィルム6の上部にUV硬化型アクリル樹脂を
塗布し、その上に第3のガラス基板7を押し当て紫外線
を照射して第3のガラス基板7を接着し、回折素子10
を作製した。回折素子10の光の入射面(第1のガラス
基板の凹凸部と反対側の面)11及び光の出射面(第3
のガラス基板のUV硬化型アクリル樹脂と反対側の面)
12には、それぞれ光源からの光に対する反射防止膜1
3を形成した。
Polyimide alignment film 5 on second glass substrate 3
A retardation film (λ / 4 plate) 6 made of polycarbonate was adhered to the surface opposite to the surface using a transparent adhesive. Further, a UV curable acrylic resin is applied to the upper part of the retardation film 6, a third glass substrate 7 is pressed on the retardation film 6 and irradiated with ultraviolet rays to adhere the third glass substrate 7, and the diffractive element 10
Was prepared. A light incident surface (a surface of the diffractive element 10 opposite to the concavo-convex portion of the first glass substrate) 11 and a light emitting surface (third surface)
(The surface of the glass substrate opposite to the UV curable acrylic resin)
Reference numeral 12 denotes an antireflection film 1 for the light from the light source, respectively.
3 was formed.

【0044】以上の結果、回折素子10は、半導体レー
ザ(図示せず)からの波長678nmのP波(図1にお
いて紙面に平行な偏光方向を持つ光)に対して97%の
透過率であった。光ディスク(図示せず)から反射して
きたS波(図1において紙面に垂直な偏光方向を持つ
光)に対しては、1次回折光の回折効率が40.4%
で、−1次回折光の回折効率が37.4%であった。し
たがって往復効率は75.4%となった。透過光の波面
収差は、回折素子の光の入出射面の中心部(直径2mm
の円形部)で0.015λrms (rms:自乗平均)以
下であった。
As a result, the diffractive element 10 has a transmittance of 97% with respect to the P-wave having a wavelength of 678 nm (light having a polarization direction parallel to the paper surface in FIG. 1) from the semiconductor laser (not shown). It was The diffraction efficiency of the first-order diffracted light is 40.4% with respect to the S wave (light having a polarization direction perpendicular to the paper surface in FIG. 1) reflected from the optical disk (not shown).
Then, the diffraction efficiency of the −1st order diffracted light was 37.4%. Therefore, the reciprocating efficiency was 75.4%. The wavefront aberration of the transmitted light is due to the central portion (diameter 2 mm) of the light entrance / exit surface of the diffraction element.
It was 0.015 λ rms (rms: root mean square) or less.

【0045】実施例2 実施例1の混合液晶組成物の代わりに、混合液晶組成物
(ネマチック液晶組成物、Δn=0.2900、常光屈
折率=1.5263、固体液晶相への相転移温度≦−2
0℃、アイソトロピック相への相転移温度=107℃)
を、前記開口部から注入した。前記開口部を封止用の樹
脂で塞ぎ、シールを完了した。前記混合液晶組成物は表
1に示すように、前記化2の一般式に含まれる5種類の
化合物を主成分(94重量%)として含む。その他の液
晶成分として、アルコキシシアノビフェニル系液晶及び
アルキルシアノターフェニル系液晶等を6重量%含む。
Example 2 Instead of the mixed liquid crystal composition of Example 1, a mixed liquid crystal composition (nematic liquid crystal composition, Δn = 0.2900, ordinary light refractive index = 1.5263, phase transition temperature to solid liquid crystal phase) ≤-2
(0 ℃, phase transition temperature to isotropic phase = 107 ℃)
Was injected through the opening. The opening was closed with a sealing resin to complete the sealing. As shown in Table 1, the mixed liquid crystal composition contains five kinds of compounds included in the general formula of Chemical Formula 2 as a main component (94% by weight). Other liquid crystal components include 6% by weight of alkoxycyanobiphenyl liquid crystal and alkylcyanoterphenyl liquid crystal.

【0046】実施例1と同様に、ポリカーボネート製の
位相差フィルム(λ/4板)6及び第3のガラス基板7
を接着し、反射防止膜13を形成した。
As in Example 1, a polycarbonate retardation film (λ / 4 plate) 6 and a third glass substrate 7 were used.
Was adhered to form an antireflection film 13.

【0047】以上の結果、回折素子10は、半導体レー
ザからの波長678nmのP波に対して97%の透過率
であった。光ディスクから反射してきたS波に対して
は、1次回折光の回折効率が40.2%で、−1次回折
光の回折効率が37.1%であった。したがって往復効
率は75%となった。透過光の波面収差は、回折素子の
光の入出射面の中心部で0.015λrms 以下であっ
た。
As a result of the above, the diffraction element 10 had a transmittance of 97% with respect to the P wave having a wavelength of 678 nm from the semiconductor laser. With respect to the S wave reflected from the optical disk, the diffraction efficiency of the first-order diffracted light was 40.2% and the diffraction efficiency of the -1st-order diffracted light was 37.1%. Therefore, the reciprocating efficiency was 75%. The wave aberration of the transmitted light was 0.015λ rms or less at the center of the light entrance / exit surface of the diffraction element.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【発明の効果】本発明の光ヘッド装置は、ネマチック液
晶相として存在する温度範囲が広く、Δnが大きい液晶
組成物を用いているため、温度変化に対して安定してお
り、また浅い格子状の凹凸部で高い光の利用効率を実現
できるという効果を有する。
Since the optical head device of the present invention uses a liquid crystal composition having a wide temperature range existing as a nematic liquid crystal phase and a large Δn, it is stable against temperature changes and has a shallow lattice shape. It has an effect that high light utilization efficiency can be realized in the uneven portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の光ヘッド装置の側断面図。FIG. 1 is a side sectional view of an optical head device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:第1のガラス基板 2:凹凸部 3:第2のガラス基板 4:液晶組成物 5:ポリイミド配向膜 6:位相差フィルム 7:第3のガラス基板 8:エポキシ樹脂 10:回折素子 11:入射面 12:出射面 13:反射防止膜 1: First glass substrate 2: Concavo-convex part 3: Second glass substrate 4: Liquid crystal composition 5: Polyimide alignment film 6: Phase difference film 7: Third glass substrate 8: Epoxy resin 10: Diffraction element 11: Incident surface 12: Emitting surface 13: Antireflection film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02F 1/13 505 G02F 1/13 505 (72)発明者 保高 弘樹 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location G02F 1/13 505 G02F 1/13 505 (72) Inventor Hiroki Hodaka Hazawa, Kanagawa-ku, Yokohama, Kanagawa 1150, Machi Asahi Glass Co., Ltd. Central Research Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光源からの光を回折素子を通して光記録媒
体上に照射することにより情報の書き込み及び/又は情
報の読み取りを行う光ヘッド装置において、前記回折素
子は、透明基板の表面に格子状の凹凸部が形成され前記
凹凸部に光学異方性を有する液晶組成物が充填されてい
る光学異方性回折格子を備えてなり、前記液晶組成物
は、温度20℃、光波長589nmにおける常光屈折率
と異常光屈折率との差Δnが0.21〜0.35であ
り、ネマチック相からアイソトロピック相への相転移温
度が80℃以上である、ネマチック液晶組成物であるこ
とを特徴とする光ヘッド装置。
1. An optical head device for writing information and / or reading information by irradiating an optical recording medium with light from a light source through a diffractive element, wherein the diffractive element has a grid pattern on a surface of a transparent substrate. And an optical anisotropic diffraction grating filled with a liquid crystal composition having optical anisotropy. The liquid crystal composition has an ordinary wavelength at a temperature of 20 ° C. and an optical wavelength of 589 nm. A nematic liquid crystal composition having a difference Δn between the refractive index and the extraordinary light refractive index of 0.21 to 0.35 and a phase transition temperature from a nematic phase to an isotropic phase of 80 ° C. or higher. Optical head device.
【請求項2】前記液晶組成物の温度20℃、光波長58
9nmにおけるΔnが0.27〜0.35である請求項
1記載の光ヘッド装置。
2. The liquid crystal composition has a temperature of 20 ° C. and a light wavelength of 58.
The optical head device according to claim 1, wherein Δn at 9 nm is 0.27 to 0.35.
【請求項3】前記液晶組成物のネマチック相からスメク
チック相又は固体液晶相への相転移温度が−10℃以下
である請求項1記載の光ヘッド装置。
3. The optical head device according to claim 1, wherein the liquid crystal composition has a phase transition temperature from a nematic phase to a smectic phase or a solid liquid crystal phase of −10 ° C. or lower.
【請求項4】前記液晶組成物が、下記一般式で表される
化合物を60重量%以上含有してなる請求項1記載の光
ヘッド装置。 【化1】 ただし、Aはフェニレン基又はトランス−1,4−シク
ロヘキシレン基、mは0又は1、Xはフッ素原子又は水
素原子、Yはシアノ基、フッ素原子又は塩素原子、Zは
フッ素原子又は水素原子、Rは炭素数2〜8の直鎖状ア
ルキル基又は炭素数2〜8の直鎖状アルコキシル基であ
る。
4. The optical head device according to claim 1, wherein the liquid crystal composition contains a compound represented by the following general formula in an amount of 60% by weight or more. Embedded image However, A is a phenylene group or trans-1,4-cyclohexylene group, m is 0 or 1, X is a fluorine atom or a hydrogen atom, Y is a cyano group, a fluorine atom or a chlorine atom, Z is a fluorine atom or a hydrogen atom, R is a linear alkyl group having 2 to 8 carbon atoms or a linear alkoxy group having 2 to 8 carbon atoms.
JP8094406A 1995-10-23 1996-04-16 Optical head device Pending JPH09180234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8094406A JPH09180234A (en) 1995-10-23 1996-04-16 Optical head device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-274457 1995-10-23
JP27445795 1995-10-23
JP8094406A JPH09180234A (en) 1995-10-23 1996-04-16 Optical head device

Publications (1)

Publication Number Publication Date
JPH09180234A true JPH09180234A (en) 1997-07-11

Family

ID=26435682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8094406A Pending JPH09180234A (en) 1995-10-23 1996-04-16 Optical head device

Country Status (1)

Country Link
JP (1) JPH09180234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189695A (en) * 2005-01-07 2006-07-20 Ricoh Co Ltd Liquid crystal diffraction optical element, optical head apparatus, and optical disk drive apparatus
JP2010237649A (en) * 2009-03-11 2010-10-21 Jsr Corp Polarizing diffraction element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189695A (en) * 2005-01-07 2006-07-20 Ricoh Co Ltd Liquid crystal diffraction optical element, optical head apparatus, and optical disk drive apparatus
JP2010237649A (en) * 2009-03-11 2010-10-21 Jsr Corp Polarizing diffraction element

Similar Documents

Publication Publication Date Title
US6271966B1 (en) Optical head device including an optically anisotropic diffraction grating and process for its production
EP1698917A1 (en) Polarizing diffraction element and optical head device
US6304312B1 (en) Optical head, method of manufacturing the same, and diffraction element suitable therefor
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
JP3624561B2 (en) Optical modulation element and optical head device
JP4387141B2 (en) Polarization diffraction grating
JPH09230300A (en) Optical modulation element and optical head device
JP3829356B2 (en) Optical head device
JPH09180234A (en) Optical head device
JP3528381B2 (en) Optical head device
JP3598703B2 (en) Optical head device and manufacturing method thereof
JP3509399B2 (en) Optical head device
JP2006189695A (en) Liquid crystal diffraction optical element, optical head apparatus, and optical disk drive apparatus
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP3713778B2 (en) Optical head device
JP3550873B2 (en) Optical head device
JPH09185837A (en) Optical head device
JPH09127335A (en) Manufacture of optical head device and optical head device
JP4364083B2 (en) Optical head device
JPH1048588A (en) Optical head device
JPH09198698A (en) Production of optical head device
JPH09161303A (en) Optical head device
JPH1092004A (en) Optical head device and its manufacture
JPH09197363A (en) Optical modulating element and optical head device
JP2006134504A (en) Polarized beam splitting element and its manufacturing method, optical head unit, and optical disk drive

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525