JPH1048588A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPH1048588A
JPH1048588A JP8201727A JP20172796A JPH1048588A JP H1048588 A JPH1048588 A JP H1048588A JP 8201727 A JP8201727 A JP 8201727A JP 20172796 A JP20172796 A JP 20172796A JP H1048588 A JPH1048588 A JP H1048588A
Authority
JP
Japan
Prior art keywords
substrate
light
optically anisotropic
diffraction
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8201727A
Other languages
Japanese (ja)
Inventor
Koichi Murata
浩一 村田
Takuji Nomura
琢治 野村
Yuzuru Tanabe
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP8201727A priority Critical patent/JPH1048588A/en
Publication of JPH1048588A publication Critical patent/JPH1048588A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to improve the efficiency of light in a backward path without degrading the light utilization efficiency in a forward path by arranging a first substrate forming rugged parts of optically anisotropic diffraction gratings on the side (optical recording medium side) opposite to a light source. SOLUTION: The optically anisotropic diffraction gratings 2 are formed of optically anisotropic materials, such as liquid crystals, held between the first substrate and a second substrate 9. At this time, the substrate 9 provided with the rugged parts is arranged on the light source 1 side. A phase difference plate 3 is thereafter laminated on the outside surface of the substrate 8. In such a case, the ordinary ray refractive indices of the grating part and the liquid crystal part are nearly equal with respect to the P waves (the light of a polarization direction parallel with the plane of Fig.) from the light source 1 and, therefore, the light transmits these parts in the forward path. In the backward path, the polarization direction is changed by the plate 3 and S waves (perpendicular to the plane of Fig.) are made incident so that the rugged parts function as diffraction gratings and the diffraction of the light takes place. In such a case, a significant difference is not admitted even if the gratings are formed at any of the substrates in the forward path, but the higher diffraction efficiency than the diffraction obtainable when the gratings are disposed on the lights source side is obtd, by providing the substrate 8 on the optical recording medium 6 side with the gratings in the backward path where the light diffracts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CD(コンパクト
・ディスク)、CD−ROM、ビデオディスク等の光デ
ィスク及び光磁気ディスク等に光学的情報を書き込んだ
り、光学的情報を読み取るための光ヘッド装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical head device for writing and reading optical information on optical disks such as CDs (compact disks), CD-ROMs and video disks and magneto-optical disks. About.

【0002】[0002]

【従来の技術】従来、光ディスク及び光磁気ディスク等
に光学的情報を書き込んだり、光学的情報を読み取る光
ヘッド装置としては、ディスクの記録面から反射された
信号光を検出部へ導光(ビームスプリット)する光学部
品としてプリズム式ビームスプリッタを用いたものと、
回折格子又はホログラム素子を用いたものとが知られて
いた。
2. Description of the Related Art Conventionally, as an optical head device for writing optical information on an optical disk or a magneto-optical disk or reading optical information, a signal light reflected from a recording surface of the disk is guided to a detection unit (beam). A prism type beam splitter as an optical component for splitting;
It has been known to use a diffraction grating or a hologram element.

【0003】従来、光ヘッド装置用の回折格子又はホロ
グラム素子は、ガラスやプラスチック基板上に、矩形の
断面を有する矩形格子(レリーフ型)をドライエッチン
グ法又は射出成形法よって形成し、これによって光を回
折しビームスプリット機能を付与していた。この等方性
回折格子は、往路(光源から光記録媒体へ向かう方向)
の利用効率が50%程度で、復路(光記録媒体から光検
出器へ向かう方向)の利用効率が20%程度であるた
め、往復で10%程度が限界である。
Conventionally, a diffraction grating or a hologram element for an optical head device has a rectangular grating (relief type) having a rectangular cross section formed on a glass or plastic substrate by dry etching or injection molding. To provide a beam splitting function. This isotropic diffraction grating has a forward path (a direction from a light source to an optical recording medium).
Is about 50%, and the return path (in the direction from the optical recording medium to the photodetector) is about 20%. Therefore, the round trip limit is about 10%.

【0004】このため、光の利用効率が10%程度の等
方性回折格子よりも光の利用効率を上げようとした場
合、偏光を利用することが考えられる。偏光を利用しよ
うとすると、プリズム式ビームスプリッタにλ/4板等
の位相差板を組み合わせて、往路(光源から光記録媒体
へ向かう方向)及び復路(光記録媒体から光検出器へ向
かう方向)の効率を上げて往復効率を上げる方法があっ
た。
[0004] For this reason, in order to increase the light use efficiency over an isotropic diffraction grating having a light use efficiency of about 10%, it is conceivable to use polarized light. In order to use polarized light, a prism type beam splitter is combined with a retardation plate such as a λ / 4 plate to form a forward path (a direction from a light source to an optical recording medium) and a return path (a direction from an optical recording medium to a photodetector). There was a method of increasing the efficiency of reciprocation to increase the reciprocating efficiency.

【0005】しかし、プリズム式偏光ビームスプリッタ
は高価であり、他の方式が模索されていた。一つの方式
としてLiNbO3 等の複屈折結晶の平板を用い、表面
に異方性回折格子を形成し偏向選択性をもたす方法が知
られている。しかし、複屈折結晶自体が高価であり量産
に適していないので、民生分野への適用は困難である。
またプロトン交換法によりLiNbO3 上に格子を形成
しようとすると、プロトン交換液中のプロトンが基板中
に拡散しやすいため、細かいピッチの格子を形成するの
は困難である。
However, the prism type polarizing beam splitter is expensive, and other methods have been sought. As one method, a method of using a flat plate of birefringent crystal such as LiNbO 3 and forming an anisotropic diffraction grating on the surface to have deflection selectivity is known. However, since the birefringent crystal itself is expensive and not suitable for mass production, it is difficult to apply it to the consumer field.
When a lattice is to be formed on LiNbO 3 by the proton exchange method, it is difficult to form a fine-pitch lattice because protons in the proton exchange solution are easily diffused into the substrate.

【0006】また、特表昭63−503102号には、
透明基板上に格子状の凹凸部を形成し、そこに液晶を充
填することによって光学異方性回折格子を形成し、さら
に位相差板を積層した、光利用効率の高いホログラム
(回折素子)を利用した光ヘッド装置が記載されてい
る。
[0006] Japanese Patent Publication No. 63-503102 discloses that
A hologram (diffraction element) with high light utilization efficiency is formed by forming a lattice-shaped uneven portion on a transparent substrate, filling it with liquid crystal to form an optically anisotropic diffraction grating, and further laminating a retardation plate. An optical head device used is described.

【0007】[0007]

【発明が解決しようとする課題】上記の構成において
は、凹凸部の形成される基板は、回折光が光検出器にま
っすぐ届くように従来は光源側に配置されていた。
In the above configuration, the substrate on which the uneven portions are formed has conventionally been arranged on the light source side so that the diffracted light reaches the photodetector straight.

【0008】こうすることにより、光の利用効率は向上
したが、より光の利用効率を向上させることが望まれて
いた。
Although the use efficiency of light is improved by doing so, it has been desired to further improve the use efficiency of light.

【0009】[0009]

【課題を解決するための手段】本発明は、前述の問題点
を解決すべくなされたものであり、光源からの光を回折
素子を通して光記録媒体上に照射することにより情報の
書き込み及び/又は情報の読み取りを行う光ヘッド装置
において、前記回折素子は、表面に格子状の凹凸部が形
成された第1の基板と平らな第2の基板との間に光学異
方性材料が充填されてなる光学異方性回折格子を備えて
なり、その第1の基板の凹凸部の屈折率を光学異方性材
料の常光屈折率あるいは異常光屈折率のいずれかにほぼ
等しくし、光源側に回折素子の第2の基板がくるように
配置したことを特徴とする光ヘッド装置を提供するもの
である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and writes and / or writes information by irradiating light from a light source onto an optical recording medium through a diffraction element. In the optical head device for reading information, the diffractive element is filled with an optically anisotropic material between a first substrate having a lattice-shaped uneven portion formed on a surface thereof and a flat second substrate. The optical anisotropic diffraction grating is provided, and the refractive index of the concave and convex portions of the first substrate is made substantially equal to one of the ordinary light refractive index and the extraordinary light refractive index of the optically anisotropic material. An optical head device is provided in which a second substrate of the element is arranged so as to come.

【0010】また、その光学異方性材料がネマチック液
晶であることを特徴とする光ヘッド装置、及び、それら
の回折素子が、光学異方性回折格子とその光記録媒体側
に積層された位相差板とからなることを特徴とする光ヘ
ッド装置を提供するものである。
An optical head device characterized in that the optically anisotropic material is a nematic liquid crystal, and an optical anisotropic diffraction grating and an optical anisotropic diffraction grating and a device in which the optically anisotropic material is laminated on the optical recording medium side. An optical head device comprising a retardation plate is provided.

【0011】[0011]

【発明の実施の形態】本発明では、光学異方性回折格子
を有しており、その光源側に回折素子の平らな第2の基
板が来るように配置している。それにより、光の利用効
率が向上する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, an optically anisotropic diffraction grating is provided, and a flat second substrate of a diffraction element is arranged on the light source side. Thereby, light use efficiency is improved.

【0012】図1は、本発明の光ヘッド装置の正面図で
ある。
FIG. 1 is a front view of an optical head device according to the present invention.

【0013】図1において、1は光源、2は光学異方性
回折格子、3は位相差板、4は光学異方性回折格子と位
相差板とを含めた回折素子、5は集光レンズ、6は光記
録媒体、7は光検出器、8は第1の基板、9は第2の基
板を示している。この第1の基板8は凹凸部を有する基
板であり、第2の基板は平らな基板である。
In FIG. 1, 1 is a light source, 2 is an optically anisotropic diffraction grating, 3 is a phase difference plate, 4 is a diffraction element including an optically anisotropic diffraction grating and a phase difference plate, and 5 is a condenser lens. , 6 denotes an optical recording medium, 7 denotes a photodetector, 8 denotes a first substrate, and 9 denotes a second substrate. The first substrate 8 is a substrate having an uneven portion, and the second substrate is a flat substrate.

【0014】図2は、この光学異方性回折格子2の断面
図である。
FIG. 2 is a sectional view of the optically anisotropic diffraction grating 2.

【0015】図2において、8は第1の基板、9は第2
の基板、11、12は基板、13は凸部、14は周辺を
シールするシール材、15は内部に封入された液晶を示
している。
In FIG. 2, reference numeral 8 denotes a first substrate, and 9 denotes a second substrate.
Reference numerals 11 and 12 denote substrates, 13 denotes a projection, 14 denotes a sealing material for sealing the periphery, and 15 denotes a liquid crystal sealed therein.

【0016】本発明では、基板はガラス、プラスチック
等からなる透明基板が用いられる。この基板の内、第1
の基板はその表面に凹凸部が設けられる。この凹凸部
は、基板自体をエッチングしたり、機械的に切削加工し
たり、プレス成形したりして形成すればよい。
In the present invention, a transparent substrate made of glass, plastic, or the like is used as the substrate. Of this substrate, the first
The substrate has an uneven portion on its surface. This uneven portion may be formed by etching, mechanically cutting, or press-forming the substrate itself.

【0017】また、この基板の上に所望の屈折率の透明
材料膜を所定の凹凸部を有するように形成してもよい。
具体的には、透明材料膜を全面に形成し、これをエッチ
ングや機械加工により凹凸部を形成してもよいし、印刷
その他の方法で所定の凹凸部を直接形成してもよい。
Further, a transparent material film having a desired refractive index may be formed on the substrate so as to have predetermined irregularities.
Specifically, a transparent material film may be formed over the entire surface, and the unevenness may be formed by etching or machining, or the predetermined unevenness may be directly formed by printing or other methods.

【0018】なお、通常のガラス、プラスチック等から
なる透明基板の屈折率は1.5程度であるので、光学異
方性材料の代表例である液晶の常光屈折率と合わせる場
合には、そのまま使用できる。基板を直接削る場合に
は、そのまま使用できるし、基板に透明材料膜を積層し
て用いる場合には、屈折率が基板とほぼ同じ透明材料膜
を形成すればよい。
The refractive index of a normal transparent substrate made of glass, plastic, or the like is about 1.5, so that it is used as it is when it is matched with the ordinary light refractive index of a liquid crystal, which is a typical example of an optically anisotropic material. it can. When the substrate is directly cut, it can be used as it is. When a transparent material film is laminated on the substrate, a transparent material film having a refractive index almost the same as that of the substrate may be formed.

【0019】基板の屈折率を液晶の異常光屈折率(1.
7〜1.8程度)に合わせる場合には、その屈折率に近
い透明基板を用いることもできるが、そのような高屈折
の透明材料膜を形成し凹凸を形成することが好ましい。
これは、高屈折の基板材料は特殊な光学ガラス等を用い
なければならなくなり、高価であり量産に適切ではない
が、透明材料膜であれば容易に種々の屈折率の膜が形成
できるためである。
The refractive index of the substrate is changed to the extraordinary light refractive index of the liquid crystal (1.
(Approximately 7 to 1.8), a transparent substrate having a refractive index close to the refractive index can be used. However, it is preferable to form such a high-refractive transparent material film to form irregularities.
This is because a special optical glass or the like must be used for a high refractive index substrate material, which is expensive and is not suitable for mass production, but a transparent material film can easily form films with various refractive indexes. is there.

【0020】これらの透明材料膜としては、SiOx
SiOxy が好ましく、蒸着又はスパッタの条件を適
宜設定することにより、x、yの値を変動させ、所望の
屈折率になるようにすればよい。特に、これらの膜はド
ライエッチングによって容易に微細加工することもでき
る。
These transparent material films are preferably made of SiO x or SiO x N y. By appropriately setting the conditions of vapor deposition or sputtering, the values of x and y are changed so that the desired refractive index is obtained. do it. In particular, these films can be easily finely processed by dry etching.

【0021】この場合、具体的には、たとえば、厚み1
〜2μm程度の透明材料膜を真空蒸着法、スパッタリン
グ法等により基板上に形成する。その後、フォトリソグ
ラフィ法及びドライエッチング法によって、屈折率1.
5程度の所定の周期の凸部からなる凹凸部とし、回折格
子パターンになるよう加工する。
In this case, specifically, for example,
A transparent material film of about 2 μm is formed on a substrate by a vacuum deposition method, a sputtering method, or the like. After that, the refractive index of 1. was obtained by photolithography and dry etching.
An uneven portion formed of convex portions having a predetermined period of about 5 is processed so as to have a diffraction grating pattern.

【0022】この凸部の長手方向に垂直な面における断
面形状は、長方形、正方形等の左右対称の矩形形状でも
よく、階段状、のこぎり状等の左右非対称の形状でもよ
い。左右非対称の形状の場合、光学異方性回折格子によ
る±1次回折光のうちいずれか一方の回折効率が高くな
り、回折効率の高い方の回折光のみを検出すればよく、
検出器が1つで高い光の利用効率が得られるため好まし
い。
The cross-sectional shape of the convex portion in a plane perpendicular to the longitudinal direction may be a symmetrical rectangular shape such as a rectangle or a square, or an asymmetrical shape such as a step shape or a saw shape. In the case of an asymmetric shape, the diffraction efficiency of one of the ± 1st-order diffracted lights by the optically anisotropic diffraction grating is increased, and only the diffracted light having the higher diffraction efficiency needs to be detected.
One detector is preferable because high light use efficiency can be obtained.

【0023】その液晶と接する側の面にポリイミド等の
配向膜を形成する。この配向膜はラビングを行うことが
好ましい。その場合には、配向膜のラビング方向を凸部
のストライプ方向に合わせる。
An alignment film such as polyimide is formed on the surface in contact with the liquid crystal. This alignment film is preferably rubbed. In that case, the rubbing direction of the alignment film is adjusted to the stripe direction of the projection.

【0024】次に、平らな基板である第2の基板を用意
する。この第2の基板は、その液晶と接する側の面にポ
リイミド等の配向膜を形成し、その配向膜をラビング等
により配向処理を行う。このラビング方向は、第1の基
板と重ねた時にその凸部のストライプ方向と平行になる
ようにラビングする。
Next, a second substrate, which is a flat substrate, is prepared. The second substrate has an alignment film such as polyimide formed on the surface in contact with the liquid crystal, and the alignment film is subjected to an alignment process by rubbing or the like. The rubbing direction is such that the rubbing direction is parallel to the stripe direction of the convex portion when the rubbing direction is superimposed on the first substrate.

【0025】そして、第2の基板を第1の基板に重ねあ
わせ周辺でシールして接着する。そして内部に液晶を封
入する。
Then, the second substrate is superimposed on the first substrate, and the peripheral substrate is sealed and adhered. Then, liquid crystal is sealed inside.

【0026】この液晶としては、高分子液晶、液晶モノ
マー、液晶組成物等が適宜使用できる。液晶として高分
子液晶を用いる場合は、液晶モノマーを注入後、配向し
た状態で紫外線を照射するか加熱して液晶モノマーを重
合させる。その場合には、凹凸部のみによっても高分子
液晶は配向できるので、配向膜は省略してもよい。高分
子化しない場合には、通常はネマチック液晶を用いれば
よい。
As the liquid crystal, a polymer liquid crystal, a liquid crystal monomer, a liquid crystal composition and the like can be appropriately used. When a polymer liquid crystal is used as the liquid crystal, after the liquid crystal monomer is injected, the liquid crystal monomer is polymerized by irradiating ultraviolet rays or heating in an aligned state. In this case, since the polymer liquid crystal can be aligned only by the concave and convex portions, the alignment film may be omitted. When the polymer is not polymerized, a nematic liquid crystal may be usually used.

【0027】本発明では、この第1の基板と第2の基板
とその基板間に挟持された液晶等の光学異方性材料によ
り、光学異方性回折格子を形成する。この際に、凹凸部
が設けられた第2の基板を光源側に配置する。
In the present invention, an optically anisotropic diffraction grating is formed from the first and second substrates and an optically anisotropic material such as a liquid crystal sandwiched between the substrates. At this time, the second substrate provided with the concave and convex portions is arranged on the light source side.

【0028】その後、第1の基板の外面(凹凸部が形成
された面と反対側の面)上に、ポリカーボネート、ポリ
ビニルアルコール等の材料からなる位相差板(λ/4
板)を積層する。
Thereafter, a retardation plate (λ / 4) made of a material such as polycarbonate or polyvinyl alcohol is formed on the outer surface of the first substrate (the surface opposite to the surface on which the uneven portions are formed).
Boards).

【0029】格子状の凹凸部の屈折率を液晶の常光屈折
率とほぼ一致するようにした例について説明する。この
場合、格子状の凹凸部が光源とは反対側にあるが、この
場合往路においては、光源からのP波(図1の紙面に平
行な偏光方向の光)に対して、格子部と液晶部の常光屈
折率はほぼ等しいため、そのまま光は透過する。
A description will be given of an example in which the refractive index of the lattice-shaped uneven portion is made to substantially match the ordinary light refractive index of the liquid crystal. In this case, the lattice-shaped uneven portion is on the opposite side to the light source. In this case, on the outward path, the lattice portion and the liquid crystal are exposed to P-waves (light having a polarization direction parallel to the plane of FIG. Since the ordinary light refractive indices of the portions are almost equal, light is transmitted as it is.

【0030】復路においては、位相差板によって偏光方
向は変化しS波で入射する。そのとき、S波に対応する
液晶の屈折率は1.7〜1.8(異常光屈折率)程度で
あり、前記凸部の屈折率はほぼ1.5であるため、回折
格子として機能し光の回折が起こる。
On the return path, the polarization direction changes due to the phase difference plate, and the light enters as an S-wave. At this time, the refractive index of the liquid crystal corresponding to the S wave is about 1.7 to 1.8 (an extraordinary light refractive index), and the refractive index of the convex portion is approximately 1.5, so that the liquid crystal functions as a diffraction grating. Light diffraction occurs.

【0031】このとき、往路においては、格子をどちら
の基板に形成しても有意な差は認められないが、回折す
る復路においては、光記録媒体側の基板に格子を設ける
ことにより、光源側に格子を設けるよりも高い回折効率
が得られる。
At this time, no significant difference is recognized on either substrate when the grating is formed on the forward path, but on the optical recording medium side, the grating is provided on the substrate on the optical recording medium side when diffracting on the return path. A higher diffraction efficiency can be obtained than when a grating is provided.

【0032】この理由は不明であるが、光源側に格子を
設けた場合、液晶(光学異方性材料)を通過して後に回
折部に到達することにより、その間に光が、何らかの光
学的変化(擾乱)を受けることに起因していることが推
定される。
Although the reason for this is unknown, when a grating is provided on the light source side, the light passes through the liquid crystal (optically anisotropic material) and then reaches the diffraction portion, during which light undergoes some optical change. (Disturbance).

【0033】格子状の凹凸部の屈折率を液晶の異常光屈
折率とほぼ一致するようにした場合には、光源からのS
波(図1の紙面に垂直な偏光方向の光)を入射させる
と、上記と同様往路では光は直進し、復路で回折する。
In the case where the refractive index of the lattice-shaped uneven portion is made to substantially match the extraordinary light refractive index of the liquid crystal, the S
When a wave (light having a polarization direction perpendicular to the plane of FIG. 1) is incident, light travels straight on the outward path and diffracts on the return path as described above.

【0034】本発明の回折素子は、光源側の面に他の回
折格子を形成してもよく、その場合3ビーム法によるト
ラッキングエラー検出ができ好ましい。
In the diffraction element of the present invention, another diffraction grating may be formed on the surface on the light source side. In this case, tracking errors can be detected by a three-beam method, which is preferable.

【0035】本発明における凹凸部のパターンは、光記
録媒体からの戻り光のビーム形状が所望の形状になるよ
うに、回折格子面内で曲率をつけたり、格子間隔に分布
をつけたりすることもできる。
In the present invention, the pattern of the concavo-convex portions can be given a curvature in the plane of the diffraction grating or a distribution of the lattice spacing so that the beam shape of the return light from the optical recording medium has a desired shape. .

【0036】本発明において、回折素子の光源側の面及
び/又は光記録媒体側の面に、UV硬化型アクリル樹脂
等の被膜を設けた場合、位相差板や基板の表面の凹凸に
起因する波面収差を低減でき好ましい。さらにそのUV
硬化型アクリル樹脂等の被膜の上に、平坦度のよいガラ
ス基板やプラスチック基板等を積層することにより、格
段に波面収差を低減でき好ましい。したがって、回折素
子の光の入出射面が平坦化されていることにより、結果
的に波面収差が低減される。
In the present invention, when a coating such as a UV-curable acrylic resin is provided on the surface of the diffraction element on the light source side and / or the surface of the optical recording medium side, it is caused by unevenness of the surface of the phase difference plate or the substrate. It is preferable because wavefront aberration can be reduced. And its UV
By laminating a glass substrate or a plastic substrate with good flatness on a film of a curable acrylic resin or the like, the wavefront aberration can be remarkably reduced, which is preferable. Therefore, since the light entrance / exit surface of the diffraction element is flattened, the wavefront aberration is reduced as a result.

【0037】また、回折素子の光の入射面には反射防止
コート層を設けることが好ましい。この反射防止コート
層は蒸着、スパッタ等で形成されればよく、通常は基板
単体の時に形成される。凹凸部を形成する基板は、その
凹凸部を形成する工程があるため、あらかじめ反射防止
コート層を形成してからそのような加工工程を通過させ
ると、表面に傷が付いたりするという問題を生じやす
い。
It is preferable to provide an antireflection coating layer on the light incident surface of the diffraction element. This antireflection coating layer may be formed by vapor deposition, sputtering, or the like, and is usually formed when the substrate is a single substrate. Since the substrate on which the uneven portion is formed has a process of forming the uneven portion, if the anti-reflection coating layer is formed in advance and then passed through such a processing step, there is a problem that the surface is damaged. Cheap.

【0038】本発明の場合には、凹凸部を形成する基板
は反光源側に配置され位相差板が積層されるため、この
基板自身には反射防止コート層を形成する必要がない。
このため、製造が容易になる。即ち、この光記録媒体側
の反射防止コート層は、位相差板表面又はそれに積層し
た第3の基板面に形成すればよく、これは凹凸化の工程
を経ないので、傷等の問題を生じにくい。
In the case of the present invention, since the substrate on which the uneven portions are formed is disposed on the side opposite to the light source and the retardation plate is laminated, it is not necessary to form an antireflection coating layer on the substrate itself.
For this reason, manufacture becomes easy. That is, the anti-reflection coating layer on the optical recording medium side may be formed on the surface of the phase difference plate or the third substrate surface laminated thereon, and this does not go through the step of making unevenness, and thus causes problems such as scratches. Hateful.

【0039】本発明における光源としては半導体レー
ザ、YAGレーザ等の固体レーザ、He−Ne等の気体
レーザ等の各種の固体、気体レーザが使用でき、半導体
レーザが小型軽量化、連続発振、保守点検等の点で好ま
しい。光源部に半導体レーザ等と非線形光学素子を組み
込んだ高調波発生装置(SHG)を使用し、青色レーザ
等の短波長レーザを用いると、高密度の光記録及び読み
取りが可能になる。
As the light source in the present invention, various solid and gas lasers such as a solid-state laser such as a semiconductor laser and a YAG laser, and a gas laser such as He-Ne can be used. It is preferable from the point of view. Using a harmonic generator (SHG) in which a semiconductor laser or the like and a non-linear optical element are incorporated in the light source section and using a short-wavelength laser such as a blue laser enables high-density optical recording and reading.

【0040】本発明の光記録媒体は、光により情報を記
録及び/又は読み取ることができる媒体である。その例
としてはCD(コンパクト ディスク)、CD−RO
M、DVD(デジタル ビデオ ディスク)等の光ディ
スク、及び光磁気ディスク、相変化型光ディスク等が挙
げられる。
The optical recording medium of the present invention is a medium on which information can be recorded and / or read by light. Examples are CDs (compact discs) and CD-ROs.
Optical disks such as M and DVD (digital video disk); magneto-optical disks; phase-change optical disks;

【0041】[0041]

【実施例】【Example】

実施例1 図2のような構造の光学異方性回折格子を作成し、それ
を用いて図1のような構成の光ヘッド装置を製造した。
10mm×10mm角、厚さ0.5mm、屈折率1.5
2のガラス製の基板11上に、反応性スパッタ法によっ
て屈折率1.52、深さ1.4μmのSiON系の透明
材料膜を形成した。
Example 1 An optical anisotropic diffraction grating having a structure as shown in FIG. 2 was prepared, and an optical head device having a structure as shown in FIG.
10mm x 10mm square, thickness 0.5mm, refractive index 1.5
An SiON-based transparent material film having a refractive index of 1.52 and a depth of 1.4 μm was formed on the glass substrate 11 of No. 2 by a reactive sputtering method.

【0042】その後フォトリソグラフィ法及びドライエ
ッチング法によって、SiONの透明材料膜をピッチ
(周期)が5μmの凸部とし、その結果長手方向に垂直
な面における断面形状が矩形状の格子状の凸部13を形
成した。その液晶15に接する側の面にポリイミド配向
膜を形成した。そのラビング方向が前記凹凸部のストラ
イプ方向に沿うようにして第1の基板8を製造した。
Thereafter, the transparent material film of SiON is formed into protrusions having a pitch (period) of 5 μm by photolithography and dry etching, and as a result, grid-like protrusions having a rectangular cross section in a plane perpendicular to the longitudinal direction are formed. 13 was formed. A polyimide alignment film was formed on the surface in contact with the liquid crystal 15. The first substrate 8 was manufactured such that the rubbing direction was along the stripe direction of the uneven portion.

【0043】10mm×10mm角、厚み0.5mm、
屈折率1.52のガラス製の第2の基板15を用意し、
その液晶15に接する側の面にポリイミド配向膜を形成
した。そのラビング方向は第1の基板と重ねあわせたと
きに、その凹凸部のストライプ方向と平行になるように
して第2の基板9を製造した。
10 mm × 10 mm square, 0.5 mm thick,
A second glass substrate 15 having a refractive index of 1.52 is prepared,
A polyimide alignment film was formed on the surface in contact with the liquid crystal 15. The second substrate 9 was manufactured so that the rubbing direction was parallel to the stripe direction of the uneven portion when the rubbing direction was superimposed on the first substrate.

【0044】その後、第1の基板8と、第2の基板9と
配向膜面が相対向するようにして配置し、周辺をシール
材でシールして空セルを形成した。この空セルに注入口
から正の誘電異方性のネマチック液晶(メルク社製「B
L009」、Δn=0.2915、常光屈折率=1.5
266、異常光屈折率=1.8181、固体液晶相への
相転移温度≦−20℃、アイソトロピック相への相転移
温度=108℃)を注入し、注入口を封止して光学異方
性回折格子を製造した。
Thereafter, the first substrate 8 and the second substrate 9 were arranged so that the alignment film surfaces face each other, and the periphery was sealed with a sealing material to form empty cells. A nematic liquid crystal having a positive dielectric anisotropy (“B” manufactured by Merck
L009 ", Δn = 0.2915, ordinary light refractive index = 1.5
266, extraordinary refractive index = 1.8181, phase transition temperature to solid liquid crystal phase ≦ −20 ° C., phase transition temperature to isotropic phase = 108 ° C.), sealing the injection port and optically anisotropic A diffraction grating was manufactured.

【0045】次いで、第1の基板8の外面(凹凸部と反
対側の面)に、透明接着剤を用いてポリカーボネート製
の位相差板3を接着した。さらにその上にUV硬化型ア
クリル樹脂を塗布した。さらにその上にガラス製の第3
の基板を載置し、紫外線を照射して第3の基板を積層接
着した。さらに素子全体について、光の入射面及び光の
出射面に反射防止膜を形成し、回折素子4を作製した。
Next, the retardation plate 3 made of polycarbonate was adhered to the outer surface of the first substrate 8 (the surface opposite to the uneven portion) using a transparent adhesive. Further, a UV curable acrylic resin was applied thereon. In addition, a third glass
The third substrate was placed, and the third substrate was laminated and bonded by irradiating ultraviolet rays. Further, with respect to the entire device, an antireflection film was formed on the light incident surface and the light output surface, and the diffraction element 4 was manufactured.

【0046】この回折素子4を、光源1側に第2の基板
がくるように配置し、集光レンズ5、光検出器7を設け
た。
This diffractive element 4 was arranged such that the second substrate was located on the light source 1 side, and a condenser lens 5 and a photodetector 7 were provided.

【0047】以上の結果、光源の半導体レーザからの波
長650nmのP波(図1の紙面に平行な偏光方向の
光)に対して往路で95.6%の透過率であった。光記
録媒体6からの戻り光は位相差板3を通過してS波(紙
面に垂直な偏光方向の光)になって光学異方性回折格子
に入射するが、この復路の光に対しては、1次と−1次
合わせて回折効率は78.5%であった。
As a result, the transmittance was 95.6% on the outward path with respect to the P-wave having a wavelength of 650 nm (light having a polarization direction parallel to the plane of FIG. 1) from the semiconductor laser as the light source. The return light from the optical recording medium 6 passes through the phase difference plate 3 and becomes an S-wave (light in a polarization direction perpendicular to the paper surface) and enters the optically anisotropic diffraction grating. The diffraction efficiency of the first and the first order was 78.5%.

【0048】比較例1 光学異方性回折格子は実施例1と同じ構成であるが、位
相差板を第2の基板側に積層し、凹凸部のある第1の基
板を光源側に配置する他は実施例1と同様にして光ヘッ
ド装置を製造した。
COMPARATIVE EXAMPLE 1 The optically anisotropic diffraction grating has the same structure as in Example 1, except that a retardation plate is laminated on the second substrate side and the first substrate having irregularities is disposed on the light source side. Otherwise, the optical head device was manufactured in the same manner as in Example 1.

【0049】この光ヘッド装置は、往路透過率は95.
5%と実施例1とほぼ等しかったが、復路での回折効率
は74.6%であり、実施例1に比して約4%程度の低
下が見られた。
In this optical head device, the outward transmittance is 95.
Although it was 5%, which was almost equal to that of Example 1, the diffraction efficiency on the return path was 74.6%, which was about 4% lower than that of Example 1.

【0050】[0050]

【発明の効果】本発明では、光学異方性回折格子の凹凸
部を形成した第1の基板を光源とは反対側(光記録媒体
側)に配置することにより、往路での光利用効率の低下
なしに、復路での光の効率が向上する。
According to the present invention, the first substrate on which the concave and convex portions of the optically anisotropic diffraction grating are formed is disposed on the side opposite to the light source (on the side of the optical recording medium), so that the light utilization efficiency on the outward path is reduced. The light efficiency on the return path is increased without reduction.

【0051】本発明は、本発明の効果を損しない範囲内
で、種々の応用が可能である。
The present invention can be applied to various applications within a range that does not impair the effects of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光ヘッド装置の正面図。FIG. 1 is a front view of an optical head device according to the present invention.

【図2】本発明で用いる光学異方性回折格子の断面図。FIG. 2 is a sectional view of an optically anisotropic diffraction grating used in the present invention.

【符号の説明】[Explanation of symbols]

1:光源 2:光学異方性回折格子 3:位相差板 4:回折素子 5:集光レンズ 6:光記録媒体 7:位相差板 8:第1の基板 9:第2の基板 1: light source 2: optically anisotropic diffraction grating 3: retardation plate 4: diffraction element 5: condenser lens 6: optical recording medium 7: retardation plate 8: first substrate 9: second substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光源からの光を回折素子を通して光記録媒
体上に照射することにより情報の書き込み及び/又は情
報の読み取りを行う光ヘッド装置において、前記回折素
子は、表面に格子状の凹凸部が形成された第1の基板と
平らな第2の基板との間に光学異方性材料が充填されて
なる光学異方性回折格子を備えてなり、その第1の基板
の凹凸部の屈折率を光学異方性材料の常光屈折率あるい
は異常光屈折率のいずれかにほぼ等しくし、光源側に回
折素子の第2の基板がくるように配置したことを特徴と
する光ヘッド装置。
1. An optical head device for writing and / or reading information by irradiating light from a light source onto an optical recording medium through a diffractive element, wherein the diffractive element has a grid-like uneven portion on its surface. An optically anisotropic diffraction grating filled with an optically anisotropic material is provided between a first substrate on which is formed and a flat second substrate, and the unevenness of the first substrate is refracted. An optical head device wherein the refractive index is made substantially equal to either the ordinary light refractive index or the extraordinary light refractive index of the optically anisotropic material, and the second substrate of the diffraction element is arranged on the light source side.
【請求項2】光学異方性材料がネマチック液晶であるこ
とを特徴とする請求項1記載の光ヘッド装置。
2. The optical head device according to claim 1, wherein the optically anisotropic material is a nematic liquid crystal.
【請求項3】回折素子が、光学異方性回折格子とその光
記録媒体側に積層された位相差板とからなることを特徴
とする請求項1又は2記載の光ヘッド装置。
3. The optical head device according to claim 1, wherein the diffraction element comprises an optically anisotropic diffraction grating and a phase difference plate laminated on the optical recording medium side.
JP8201727A 1996-07-31 1996-07-31 Optical head device Withdrawn JPH1048588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8201727A JPH1048588A (en) 1996-07-31 1996-07-31 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8201727A JPH1048588A (en) 1996-07-31 1996-07-31 Optical head device

Publications (1)

Publication Number Publication Date
JPH1048588A true JPH1048588A (en) 1998-02-20

Family

ID=16445941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8201727A Withdrawn JPH1048588A (en) 1996-07-31 1996-07-31 Optical head device

Country Status (1)

Country Link
JP (1) JPH1048588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917576B2 (en) 1999-08-26 2005-07-12 Asahi Glass Company, Limited Retarder and optical head device installing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917576B2 (en) 1999-08-26 2005-07-12 Asahi Glass Company, Limited Retarder and optical head device installing the same

Similar Documents

Publication Publication Date Title
US6118586A (en) Optical head device including an optically anisotropic diffraction grating and production method thereof
WO1999018459A1 (en) Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
WO1997027583A1 (en) Optical head, method of manufacturing the same, and diffraction element suitable therefor
JP3624561B2 (en) Optical modulation element and optical head device
JPH1164615A (en) Diffraction element
JP3994450B2 (en) Manufacturing method of optical diffraction grating and optical head device using the same
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3458895B2 (en) Phase difference element, optical element and optical head device
JP3509399B2 (en) Optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP3528381B2 (en) Optical head device
JP3550905B2 (en) Manufacturing method of diffraction element used for optical head device
JPH1048588A (en) Optical head device
JP2000249831A (en) Optical device and optical head device
JP3550873B2 (en) Optical head device
JP3829356B2 (en) Optical head device
JP3713778B2 (en) Optical head device
JPH09185837A (en) Optical head device
JPH1074333A (en) Optical head device and its production
JPH09161303A (en) Optical head device
JPH09127335A (en) Manufacture of optical head device and optical head device
JPH09180234A (en) Optical head device
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JPH09198698A (en) Production of optical head device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040615