JP3509399B2 - Optical head device - Google Patents

Optical head device

Info

Publication number
JP3509399B2
JP3509399B2 JP16996696A JP16996696A JP3509399B2 JP 3509399 B2 JP3509399 B2 JP 3509399B2 JP 16996696 A JP16996696 A JP 16996696A JP 16996696 A JP16996696 A JP 16996696A JP 3509399 B2 JP3509399 B2 JP 3509399B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
light
refractive index
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16996696A
Other languages
Japanese (ja)
Other versions
JPH1021576A (en
Inventor
浩一 村田
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP16996696A priority Critical patent/JP3509399B2/en
Publication of JPH1021576A publication Critical patent/JPH1021576A/en
Application granted granted Critical
Publication of JP3509399B2 publication Critical patent/JP3509399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、CD(コンパクト
ディスク)、CD−ROM、ビデオディスク、光磁気デ
ィスク等の光学記録媒体に光学的情報を書き込んだり、
光学的情報を読み取るための光ヘッド装置に関する。
The present invention relates to writing optical information on an optical recording medium such as a CD (compact disc), a CD-ROM, a video disc, a magneto-optical disc, or the like.
The present invention relates to an optical head device for reading optical information.

【0002】[0002]

【従来の技術】従来、光ディスク、光磁気ディスク等の
光学記録媒体に光学的情報を書き込んだり、光学的情報
を読み取る光ヘッド装置としては、ディスクの記録面か
ら反射された信号光を検出部へ導光(ビームスプリッ
ト)する光学部品としてプリズム式ビームスプリッタを
用いたものと、回折格子又はホログラムを用いたものと
が知られていた。
2. Description of the Related Art Conventionally, as an optical head device for writing or reading optical information on an optical recording medium such as an optical disk or a magneto-optical disk, a signal light reflected from the recording surface of the disk is sent to a detecting section. It is known that an optical component that uses a prism type beam splitter and an optical component that uses a diffraction grating or a hologram are used as optical components for guiding light (beam splitting).

【0003】光ヘッド装置用の回折格子又はホログラム
は、ガラスやプラスチック基板上に矩形断面を有する矩
形格子(レリーフ型)をドライエッチング法、射出成形
法等よって形成し、これによって光を回折しビームスプ
リット機能を付与していた。
A diffraction grating or hologram for an optical head device is formed by forming a rectangular grating (relief type) having a rectangular cross section on a glass or plastic substrate by a dry etching method, an injection molding method or the like, and diffracting light by this beam. It had a split function.

【0004】また、光の利用効率が10%程度の等方性
回折格子よりも光の利用効率を上げようとした場合、偏
光を利用することが考えられる。偏光を利用しようとす
ると、プリズム式ビームスプリッタにλ/4板を組み合
わせて、往路(光源から記録面へ向かう方向)及び復路
(記録面から検出部へ向かう方向)の効率を上げて往復
効率を上げる方法があった。
Further, when it is attempted to improve the light utilization efficiency over the isotropic diffraction grating whose light utilization efficiency is about 10%, it is conceivable to use polarized light. When trying to use polarized light, by combining a prism type beam splitter with a λ / 4 plate, the efficiency of the forward path (the direction from the light source to the recording surface) and the return path (the direction from the recording surface to the detection section) is increased to improve the reciprocating efficiency. There was a way to raise it.

【0005】しかし、プリズム式偏光ビームスプリッタ
は高価であり、他の方式が模索されていた。一つの方式
としてLiNbO等の複屈折結晶の平板状の基板を用
い、表面に異方性回折格子を形成し偏光選択性をもた
方法が知られている。しかし、複屈折結晶自体が高価
であり、生産性が悪いので、民生分野への適用は困難で
あった。
However, the prism type polarization beam splitter is expensive, and another method has been sought. Using a flat substrate of a birefringent crystal such as LiNbO 3 as a method, forming an anisotropic diffraction grating on the surface to have a polarization selective
It is known how to However, since the birefringent crystal itself is expensive and the productivity is poor, it was difficult to apply it to the consumer field.

【0006】また、プロトン交換法によりLiNbO
基板上に格子を形成しようとすると、プロトン交換液中
のプロトンが基板中に拡散しやすいため、細かいピッチ
の格子を形成するのは困難であるという問題もあった。
In addition, LiNbO 3 is produced by the proton exchange method.
There is also a problem that it is difficult to form a lattice having a fine pitch when the lattice is formed on the substrate, because the protons in the proton exchange liquid easily diffuse into the substrate.

【0007】等方性回折格子は前述のように、往路の利
用効率が50%程度で、復路の利用効率が20%程度で
あるため、往復で10%程度が限界であった。
As described above, the isotropic diffraction grating has a utilization efficiency of about 50% on the outward path and a utilization efficiency of about 20% on the return path.

【0008】これに対して、第1の基板上に格子状の凸
部を形成し、第2の基板として平坦な基板を用い、その
間に液晶を充填することによって光学異方性回折格子を
形成し、さらに位相差素子を積層した、光利用効率の高
いホログラム(回折素子)を利用した光ヘッド装置が知
られている(特表昭63−503102)。
On the other hand, a lattice-shaped convex portion is formed on the first substrate, a flat substrate is used as the second substrate, and liquid crystal is filled between them to form an optically anisotropic diffraction grating. In addition, there is known an optical head device using a hologram (diffraction element) having a high light utilization efficiency in which a retardation element is further laminated (Japanese Patent Laid-Open No. 63-503102).

【0009】[0009]

【発明が解決しようとする課題】その場合、回折素子は
液晶セルであるので、通常、工業的に容易に製造でき
る。この場合、ガラス、プラスチック等からなる基板を
用いて光学異方性回折格子を形成すれば、その透明基板
の屈折率は1.5程度である。液晶の常光屈折率も1.
5程度であるため、透明基板の屈折率と液晶の常光屈折
率をほぼ同じにした構成が容易に実現しうる。逆に、液
晶の異常光屈折率(1.8程度)に近い基板としては特
殊な光学ガラス等が使用できる。
In this case, since the diffractive element is a liquid crystal cell, it can usually be easily manufactured industrially. In this case, if the optically anisotropic diffraction grating is formed using a substrate made of glass, plastic, or the like, the transparent substrate has a refractive index of about 1.5. The ordinary refractive index of liquid crystal is also 1.
Since it is about 5, it is possible to easily realize a structure in which the refractive index of the transparent substrate and the ordinary refractive index of the liquid crystal are substantially the same. On the contrary, a special optical glass or the like can be used as the substrate having a refractive index close to the extraordinary light refractive index of liquid crystal (about 1.8).

【0010】格子状の凸部を形成した基板の屈折率と液
晶の常光屈折率がほぼ等しい構成で光学異方性回折格子
を形成して、それにλ/4板等の位相差素子を組み合わ
せて回折素子を作製した場合、往路の透過率を高くし、
復路の回折効率を高くするためには、光源から回折素子
に入射する光の偏光方向が格子の凸部の長手方向に直交
する光(P波)である必要がある。
An optical anisotropic diffraction grating is formed with a structure in which the refractive index of the substrate on which the lattice-shaped convex portions are formed and the ordinary refractive index of the liquid crystal are substantially the same, and a retardation element such as a λ / 4 plate is combined therewith. When a diffractive element is manufactured, the forward transmittance is increased,
In order to increase the diffraction efficiency in the return path, the polarization direction of the light incident on the diffraction element from the light source needs to be light (P wave) orthogonal to the longitudinal direction of the convex portion of the grating.

【0011】なぜならば、液晶は格子の凸部の長手方向
に沿って配向するのが通常であり、その凸部の長手方向
に直交する偏光に対して液晶の常光屈折率が対応し、凸
部の長手方向に平行な偏光に対して液晶の異常光屈折率
が対応する。したがって、P波に対しては液晶の常光屈
折率と基板の凸部の屈折率がほぼ等しいため、ほぼ10
0%光が透過する。一方、S波に対しては液晶の異常光
屈折率と基板の凸部の屈折率が異なるため、光は回折す
ることになる。
This is because the liquid crystal is usually oriented along the longitudinal direction of the convex portion of the lattice, and the ordinary refractive index of the liquid crystal corresponds to the polarized light orthogonal to the longitudinal direction of the convex portion, and the convex portion The extraordinary refractive index of the liquid crystal corresponds to the polarized light parallel to the longitudinal direction of. Therefore, because for the P-wave ordinary refractive index and the refractive index of the convex portion of the substrate of the liquid crystal was approximately equal, about 10
0% light is transmitted. On the other hand, because for the S-wave liquid crystal extraordinary refractive index and the refractive index of the convex portion of the substrate is that Do different, so that the light is diffracted.

【0012】なお、光源から入射したP波又はS波は光
学異方性回折格子を透過し、位相差素子で円偏光に変換
され、集光レンズを通り光学記録媒体に集光される。
The P wave or S wave incident from the light source passes through the optical anisotropic diffraction grating, is converted into circularly polarized light by the phase difference element, and is condensed on the optical recording medium through the condenser lens.

【0013】光学記録媒体の記録面で反射した光は逆回
りの円偏光になり、再び集光レンズを通り、位相差素子
を通過してS波又はP波へ変換され、光学異方性回折格
子を通過する。したがって、入射光がP波の場合は戻り
光はS波になっているため回折し、入射光がS波の場合
は戻り光はP波になっているため回折せず透過する。
The light reflected by the recording surface of the optical recording medium becomes circularly polarized light in the reverse direction, passes through the condenser lens again, passes through the phase difference element, and is converted into S wave or P wave. Pass through the grid. Therefore, when the incident light is the P wave, the return light is the S wave and is diffracted. When the incident light is the S wave, the return light is the P wave and is not diffracted and is transmitted.

【0014】このことから、往路の透過率を上げて復路
の回折効率を上げるためには、入射光をP波にする必要
があった。一方、光源の半導体レーザの光の偏光方向
は、半導体のPN接合面に対してある決まった方向を有
し、また戻り光の回折方向は回折格子の凸部の長手方向
によって規定される。したがって、入射光がP波に限定
されると半導体レーザ及び光検出器の配置に大きな制約
を受け、設計上の自由度が制限される問題があった。
Therefore, in order to increase the transmittance on the outward path and the diffraction efficiency on the return path, it was necessary to make the incident light a P wave. On the other hand, the polarization direction of the light of the semiconductor laser of the light source has a certain direction with respect to the PN junction surface of the semiconductor, and the diffraction direction of the return light is defined by the longitudinal direction of the convex portion of the diffraction grating. Accordingly, incident light to be limited to the P-wave severely constrained to the semiconductor laser and the arrangement of the photodetector, there is problem that the degree of freedom in design Ru limited.

【0015】本発明は、前述の問題を解消し光学異方性
回折格子の長手方向に平行な偏光をもつ入射光に対して
も、あるいはさらに任意の偏光方向を持つ光に対して
も、工業的生産ができ高い光利用効率を有する光ヘッド
装置の提供を目的とする。
The present invention solves the above-mentioned problems and is industrially applicable to incident light having a polarization parallel to the longitudinal direction of the optically anisotropic diffraction grating, or to light having an arbitrary polarization direction. It is an object of the present invention to provide an optical head device which can be efficiently produced and has high light utilization efficiency.

【0016】[0016]

【課題を解決するための手段】本発明は、光源と光学記
録媒体との間に回折素子を配置した光ヘッド装置におい
て、回折素子が、位相差素子と、表面に格子状の凸部が
形成された第1の基板と平らな第2の基板との間に液晶
を充填してなる光学異方性回折格子とを備えており、光
学異方性回折格子の第1の基板の凸部の屈折率が、液晶
の常光屈折率又は異常光屈折率のいずれかにほぼ等し
く、凸部が形成された第1の基板上の液晶配向方向が格
子の長手方向に沿った方向であり、平らな第2の基板上
の液晶配向方向が第1の基板の液晶配向方向と平行でな
い回折素子であることを特徴とする光ヘッド装置を提供
する。
According to the present invention, in an optical head device in which a diffractive element is arranged between a light source and an optical recording medium, a diffractive element, a phase difference element and a lattice-shaped convex portion are formed on the surface. And an optically anisotropic diffraction grating formed by filling a liquid crystal between a flat first substrate and a flat second substrate, the convex portion of the first substrate of the optically anisotropic diffraction grating being provided. The refractive index is substantially equal to either the ordinary or extraordinary refractive index of the liquid crystal, and the liquid crystal alignment direction on the first substrate on which the convex portions are formed is the direction along the longitudinal direction of the lattice, and the flatness is flat. There is provided an optical head device characterized in that the liquid crystal alignment direction on the second substrate is a diffractive element which is not parallel to the liquid crystal alignment direction on the first substrate.

【0017】また、その回折素子が第2の基板上と第1
の基板上で液晶配向方向がほぼ直交していることを特徴
とする光ヘッド装置、及び、それらの回折素子の第1の
基板の表面に透明材料膜が積層されており、凸部が透明
材料膜で形成されていることを特徴とする光ヘッド装置
を提供する。さらに、その回折素子の第1の基板の表面
の透明材料膜が、SiO(0≦x<2、0≦y<
1.3)からなることを特徴とする光ヘッド装置を提供
する。
The diffractive element is arranged on the second substrate and on the first substrate.
The liquid crystal alignment directions are substantially orthogonal to each other on the substrate, and a transparent material film is laminated on the surface of the first substrate of those diffractive elements, and the convex portion is formed of the transparent material. An optical head device characterized by being formed of a film. Further, the transparent material film on the surface of the first substrate of the diffractive element is formed of SiO x N y (0 ≦ x <2, 0 ≦ y <
An optical head device comprising: 1.3).

【0018】[0018]

【発明の実施の形態】図1は、本発明の光ヘッド装置の
基本的な構成を示す模式図である。図1において、1は
半導体レーザのような光源、2は光学異方性回折格子、
3はλ/4板のような位相差素子である。4は回折素子
であり、この光学異方性回折格子2と位相差素子3とか
らなっている。5は光を集光する集光レンズ、6は光学
記録媒体、7は光検出器である。
1 is a schematic diagram showing the basic structure of an optical head device according to the present invention. In FIG. 1, 1 is a light source such as a semiconductor laser, 2 is an optical anisotropic diffraction grating,
Reference numeral 3 is a retardation element such as a λ / 4 plate. Reference numeral 4 denotes a diffractive element, which is composed of the optically anisotropic diffraction grating 2 and the phase difference element 3. Reference numeral 5 is a condenser lens for condensing light, 6 is an optical recording medium, and 7 is a photodetector.

【0019】図2は、本発明で用いられる光学異方性回
折格子の断面図である。図2において、11は凸部を設
けた第1の基板、12は平坦な第2の基板、13はその
凸部、14は周辺をシールするシール材、15はその間
に配置される液晶である。
FIG. 2 is a sectional view of the optically anisotropic diffraction grating used in the present invention. In FIG. 2, 11 is a first substrate provided with a convex portion, 12 is a flat second substrate, 13 is the convex portion, 14 is a sealing material for sealing the periphery, and 15 is a liquid crystal arranged between them. .

【0020】本発明において、第1の基板における凸部
は基板自体で形成されていてもよく、基板の表面に透明
材料膜を形成してそれを凸部に形成していてもよい。凸
部の屈折率を、液晶の常光屈折率と一致させる場合に
は、通常のガラス基板は屈折率が1.5程度であるので
通常はそのまま使用できる。また、この基板上に透明材
料膜を形成する場合には、やはりこのガラス基板にほぼ
屈折率が等しい屈折率が1.5程度のものが用いられ
る。
In the present invention, the protrusions on the first substrate may be formed by the substrate itself, or a transparent material film may be formed on the surface of the substrate to form the protrusions. When the refractive index of the convex portion is made to match the ordinary refractive index of the liquid crystal, the ordinary glass substrate has a refractive index of about 1.5, so that it can be usually used as it is. When a transparent material film is formed on this substrate, a glass substrate having a refractive index of about 1.5 and a refractive index substantially equal to that of the glass substrate is also used.

【0021】この透明材料膜としては、用いる液晶の常
光屈折率とほぼ一致する有機又は無機の各種の透明材料
膜が使用できる。それらのうち、SiO(0≦x
<2、0≦y<1.3)(これにはSiO(1≦x<
2)も含む)が、ドライエッチング法により容易に微細
加工できるので好ましい。
As the transparent material film, various organic or inorganic transparent material films having a refractive index of the ordinary liquid crystal to be used can be used. Among them, SiO x N y (0 ≦ x
<2, 0 ≦ y <1.3) (for this, SiO x (1 ≦ x <
(Including 2)) is preferable because fine processing can be easily performed by a dry etching method.

【0022】本発明の光学異方性回折格子では、この基
板自体又はその表面に形成された透明材料膜を、所定の
形状に加工して格子状の凸部を形成する。この場合、凸
部の深さ、ピッチ、形状は目的とする回折特性に応じて
決めればよい。この凸部の形成は、エッチングによって
彫り込んでもよく、所定の箇所に透明材料を堆積させて
形成してもよい。
In the optically anisotropic diffraction grating of the present invention, this substrate itself or the transparent material film formed on the surface thereof is processed into a predetermined shape to form a grid-shaped convex portion. In this case, the depth, pitch, and shape of the protrusions may be determined according to the desired diffraction characteristics. The convex portion may be formed by etching or may be formed by depositing a transparent material at a predetermined position.

【0023】本発明では、表面に形成された透明材料膜
を用いて凸部を形成する場合、例えば、以下のようにし
て作製する。まず、厚1〜2μm程度の基板に透明材
料膜を真空蒸着法、スパッタリング法等により形成す
る。その後フォトリソグラフィ法及びドライエッチング
法によって、屈折率1.5程度の所定の周期の凸部から
なる格子を形成し、回折格子パターンになるよう加工す
る。
In the present invention, when the convex portion is formed by using the transparent material film formed on the surface, it is produced, for example, as follows. First, a transparent material film is formed on a substrate having a thickness of about 1 to 2 μm by a vacuum deposition method, a sputtering method or the like. After that, a photolithography method and a dry etching method are used to form a grating having convex portions with a refractive index of about 1.5 and having a predetermined period, and processed to form a diffraction grating pattern.

【0024】この凸部の長手方向に垂直な面における断
面形状は、図2に示すような長方形、正方形等の左右対
称の矩形状でもよく、階段状、のこぎり状等の左右非対
称の形状でもよい。左右非対称の形状の場合、光学異方
性回折格子による±1次回折光のうちいずれか一方の回
折効率が高くなる。このため、回折効率の高い方の回折
光のみを検出すればよい場合、即ち、光検出器を1つと
する場合には、高い光の利用効率が得られるため好まし
い。
The cross-sectional shape in a plane perpendicular to the longitudinal direction of the convex portion can be rectangular as shown in FIG. 2 may also rectangular symmetrical shape, such as square, stepped, or in the form of asymmetrical saw-like shape . In the case of a left-right asymmetrical shape, the diffraction efficiency of any one of the ± first-order diffracted lights by the optically anisotropic diffraction grating is high. Therefore, the diffraction efficiency higher diffracted light only detecting them if yo have field coupling, i.e., in the case of one light detector, since the utilization efficiency of the high light can be obtained.

【0025】本発明では、通常、第1の基板の液晶と接
する側の面にポリイミド等の配向膜を形成し、この配向
膜の液晶配向方向を凸部の長手方向に合わせる。この液
晶の配向は、ラビングで行ってもよく、斜め蒸着等の他
の方法で行ってもよいが、ラビング法で行うことが生産
性がよい。
In the present invention, an alignment film of polyimide or the like is usually formed on the surface of the first substrate which is in contact with the liquid crystal, and the liquid crystal alignment direction of this alignment film is aligned with the longitudinal direction of the convex portion. The alignment of the liquid crystal may be performed by rubbing or another method such as oblique vapor deposition, but the rubbing method is preferable in terms of productivity.

【0026】次に、第2のガラス基板(第2の基板)を
用意し、やはりその液晶と接する側の面にもポリイミド
等の配向膜を形成し、この配向膜のラビング方向を第1
の基板のラビング方向と異なる方向にラビングする。こ
の場合、2枚の基板の液晶配向方向を異ならせるが、特
にそれを直交するようにすることが好ましい。
Next, a second glass substrate (second substrate) is prepared, an alignment film made of polyimide or the like is formed on the surface of the second glass substrate which is also in contact with the liquid crystal, and the rubbing direction of the alignment film is set to the first direction.
Rubbing is performed in a direction different from the rubbing direction of the substrate. In this case, the liquid crystal alignment directions of the two substrates are made different, but it is particularly preferable to make them orthogonal to each other.

【0027】このように液晶配向方向を異ならせて、第
2のガラス基板を第1のガラス基板に積層接着する。そ
の際、第1のガラス基板と第2のガラス基板の周辺部
に、スペーサを含んだエポキシ樹脂等のシール材を、液
晶注入用の開口部以外の部分に塗布し接着する。そし
て、真空中で前記開口部から液晶を注入し、前記開口部
を封着用の樹脂で塞ぐ。
In this way, the second glass substrate is laminated and adhered to the first glass substrate while making the liquid crystal orientation different. At that time, a sealing material such as an epoxy resin containing a spacer is applied to the peripheral portion of the first glass substrate and the second glass substrate at a portion other than the opening for injecting the liquid crystal and adhered thereto. Then, liquid crystal is injected from the opening in a vacuum, and the opening is closed with a sealing resin.

【0028】なお、このシール工程、液晶注入工程、開
口部封着工程は、上記の工程に限ら、液晶注入とシー
ル圧着を同時に行う工程とすることもできる。
[0028] In this sealing process, the liquid crystal injection step, the opening sealing step is not limited to the above process, it may be a more time-line cormorants Engineering liquid crystal injection and sealing bonding.

【0029】本発明で用いられる液晶としては、高分子
液晶、液晶モノマー、液晶組成物等が適宜使用できる。
通常の液晶組成物の場合、通常のTN型液晶で用いられ
ているネマチック液晶を使用すればよい。屈折率異方性
が大きい液晶を用いることが回折角を大きく取れるので
好ましい。具体的には、Δn≧2、特にはΔn≧2.
5、が好ましい。
As the liquid crystal used in the present invention, a polymer liquid crystal, a liquid crystal monomer, a liquid crystal composition and the like can be appropriately used.
In the case of an ordinary liquid crystal composition, a nematic liquid crystal used in an ordinary TN type liquid crystal may be used. It is preferable to use a liquid crystal having a large refractive index anisotropy because a large diffraction angle can be obtained. Specifically, Δn ≧ 2, particularly Δn ≧ 2.
5 is preferable.

【0030】液晶として高分子液晶を用いる場合は、液
晶モノマーを注入後、配向した状態で紫外線を照射する
か加熱して液晶モノマーを重合させればよい。その場
合、凸部のみによっても高分子液晶は配向できるので、
液晶が特定の方向に配向していれば、配向膜は省略して
もよい。なお、この高分子液晶を用いる場合には、液晶
モノマーでの配向を維持して高分子化されていればよい
ので、高分子液晶になってからその配向が変化する必要
はない。
When a polymer liquid crystal is used as the liquid crystal, the liquid crystal monomer may be polymerized by injecting the liquid crystal monomer and then irradiating it with ultraviolet rays or heating it in an aligned state. In that case, since the polymer liquid crystal can be aligned only by the convex portion,
The alignment film may be omitted if the liquid crystal is aligned in a specific direction. When this polymer liquid crystal is used, it is sufficient that the polymer liquid crystal is polymerized while maintaining the orientation of the liquid crystal monomer, and thus the orientation does not need to change after the polymer liquid crystal is formed.

【0031】液晶は配向させられ、2枚の基板によりそ
の液晶配向方向が異なるようにされる。この場合、2枚
の基板液晶配向方向が相互にほぼ直交するようにされる
ことが好ましい。このため、用いられる液晶には90°
ツイスト、又は90°+180°×n(nは0以上の整
数)のツイストになるように、カイラル材料を混合する
ことが好ましい。
The liquid crystal is oriented so that the two substrates have different liquid crystal orientation directions. In this case, it is preferable that the liquid crystal alignment directions of the two substrates are substantially orthogonal to each other. Therefore, the liquid crystal used is 90 °
It is preferable to mix the chiral material so as to have a twist or a twist of 90 ° + 180 ° × n (n is an integer of 0 or more).

【0032】このようにして製造した光学異方性回折格
子に、λ/4板を代表とする位相差素子を積層して回折
素子を作製する。この位相差素子は、光学異方性回折格
子を通過してきた光を円偏光にする。この位相差素子は
光源とは反対側に、即ち、光学記録媒体側に配置され
る。この位相差素子としては、ポリカーボネート、ポリ
ビニルアルコール等の材料からなる公知の位相差フィル
ムが使用できる。
A retardation element typified by a λ / 4 plate is laminated on the optical anisotropic diffraction grating manufactured in this manner to manufacture a diffraction element. This retardation element converts light that has passed through the optically anisotropic diffraction grating into circularly polarized light. This retardation element is arranged on the side opposite to the light source, that is, on the optical recording medium side. As this retardation element, a known retardation film made of a material such as polycarbonate or polyvinyl alcohol can be used.

【0033】この場合、本発明では、光学異方性回折格
子は凸部を形成した第1のガラス基板が光源とは反対側
にきて、この第1のガラス基板に位相差素子が積層され
るようにする。
In this case, in the present invention, in the optically anisotropic diffraction grating, the first glass substrate on which the convex portion is formed is located on the side opposite to the light source, and the retardation element is laminated on the first glass substrate. To do so.

【0034】このように格子状の凸部(長手方向が図1
の奥行き方向)が光源とは反対側にあるとし、正の誘電
異方性のネマチック液晶を用い、液晶のツイスト角が9
0°とし、第1の基板の格子状の凸部の屈折率を液晶の
常光屈折率にほぼ等しくし、これに半導体レーザからの
S波(紙面に垂直な方向の偏光を持つ)が入射した場合
の動作を図1を参照しつつ説明する。
Thus, the lattice-shaped convex portions (the longitudinal direction is shown in FIG.
Depth direction) is on the side opposite to the light source, and nematic liquid crystal with positive dielectric anisotropy is used, and the twist angle of the liquid crystal is 9
The refractive index of the lattice-shaped convex portions of the first substrate is set to 0 °, and the refractive index of the ordinary liquid crystal is made substantially equal to that of the liquid crystal. The operation in this case will be described with reference to FIG.

【0035】往路(光源側から光学記録媒体側へ向かう
方向)においては、半導体レーザからのS波に対して、
光学異方性回折格子で偏光面は90°回転し、液晶層を
通過後の格子部(第1の基板の内面)ではP波(紙面に
平行な方向の偏光を持つ)になる。このとき、P波に対
しては、格子状の凸部の屈折率と液晶部の屈折率(液晶
分子の短軸方向になるので常光屈折率に相当)はほぼ等
しいので、回折格子として機能せずに、そのまま光は透
過する。
In the outward path (direction from the light source side to the optical recording medium side), with respect to the S wave from the semiconductor laser,
The plane of polarization is rotated by 90 ° by the optically anisotropic diffraction grating, and becomes a P wave (having polarization in a direction parallel to the paper surface) in the grating portion (inner surface of the first substrate) after passing through the liquid crystal layer. At this time, for the P wave, the refractive index of the grating-shaped convex portion and the refractive index of the liquid crystal portion (corresponding to the ordinary light refractive index because they are in the short axis direction of the liquid crystal molecules) are substantially equal to each other. Instead, light is transmitted as it is.

【0036】復路(光学記録媒体側から光源側へ向かう
方向)においては、位相差素子によって偏光方向は変化
し、光学異方性回折格子にS波で入射する。そのとき、
S波に対応する液晶の屈折率は異常光屈折率に相当する
ので、格子状の凸部の屈折率(ほぼ常光屈折率に等し
い)とは異なり、回折格子として機能し、光の回折が起
こる。
On the return path (direction from the side of the optical recording medium to the side of the light source), the polarization direction is changed by the phase difference element and the S-wave is incident on the optical anisotropic diffraction grating. then,
Since the refractive index of the liquid crystal corresponding to the S wave corresponds to the extraordinary light refractive index, unlike the refractive index of the grating-shaped convex portion (which is almost equal to the ordinary light refractive index), it functions as a diffraction grating to cause light diffraction. .

【0037】本発明のもう1つの形態として、第1の基
板の格子状の凸部の屈折率を液晶の異常光屈折率にほぼ
等しくするものがある。この場合も、回折光が光検知器
に到達するようにしなくてはならないので、図1で格子
状の凸部の長手方向は図1の紙面に垂直方向とされる。
これにより、従来の半導体レーザからのP波入力に、適
用できる。
Another aspect of the present invention is one in which the refractive index of the lattice-shaped convex portions of the first substrate is made substantially equal to the refractive index of extraordinary light of the liquid crystal. Also in this case, since the diffracted light must reach the photodetector, the longitudinal direction of the lattice-shaped convex portions in FIG. 1 is perpendicular to the paper surface of FIG.
This can be applied to P-wave input from a conventional semiconductor laser.

【0038】この場合、この凸部は液晶の異常光屈折率
(例えば、屈折率1.8程度)にほぼ等しくされる。こ
れは高屈折のガラス基板を直接加工してもよく、透明材
料膜を基板上に積層して形成してもよい。
In this case, this convex portion is made substantially equal to the extraordinary light refractive index of the liquid crystal (for example, a refractive index of about 1.8). This may be performed by directly processing a glass substrate having a high refraction, or by laminating a transparent material film on the substrate.

【0039】この透明材料膜としては、用いる液晶の異
常光屈折率とほぼ一致する有機又は無機の各種の透明材
料膜が使用できる。それらのうち、SiO(0≦
x<2、0≦y<1.3)(これにはSiO(1≦x
<2)も含む)が、ドライエッチング法により容易に微
細加工できるので好ましい。
As the transparent material film, various organic or inorganic transparent material films having a refractive index of extraordinary light of the liquid crystal to be used can be used. Among them, SiO x N y (0 ≦
x <2, 0 ≦ y <1.3 (for this, SiO x (1 ≦ x
<Including <2)) is preferable because fine processing can be easily performed by a dry etching method.

【0040】本発明の光学異方性回折格子は高屈折のガ
ラス基板を直接加工してもよいが、透明材料膜を基板上
に積層して形成することが好ましく、この場合、以下の
ようにして作製する。まず、厚1〜2μm程度屈折
率1.8程度の被膜を真空蒸着法、スパッタリング法等
により基板上に形成する。その後フォトリソグラフィ法
及びドライエッチング法によって、所定の周期の凸部か
らなる格子とし、回折格子パターンになるよう加工す
る。
The optically anisotropic diffraction grating of the present invention may be formed by directly processing a glass substrate having high refraction, but it is preferably formed by laminating a transparent material film on the substrate. In this case, the following process is performed. To make. First, a film having a thickness of 1 to 2 μm and a refractive index of about 1.8 is formed on a substrate by a vacuum vapor deposition method, a sputtering method or the like. After that, by photolithography and dry etching, a grating having convex portions with a predetermined period is formed, and processed into a diffraction grating pattern.

【0041】この凸部の短手方向の断面形状は、図2に
示すように長方形、正方形等の左右対称の矩形形状とし
てもよいが、階段状、のこぎり状等の左右非対称の形状
としてもよい。左右非対称の形状の場合、光学異方性回
折格子による±1次回折光のうちいずれか一方の回折効
率が高くなるので、検出器が1つで回折効率の高い方の
回折光のみを検出すればよい場合には、高い光の利用効
率が得られる。
The cross-sectional shape of the convex portion in the lateral direction may be a symmetrical rectangular shape such as a rectangle or a square as shown in FIG. 2, or may be a stepwise shape, a sawtooth shape or the like, which is asymmetrical. . In the case of a left-right asymmetrical shape, one of the ± 1st-order diffracted lights by the optically anisotropic diffraction grating has a higher diffraction efficiency. Therefore, if only one detector is used and only the diffracted light with the higher diffraction efficiency is detected. When good, high light utilization efficiency is obtained.

【0042】本発明では、前記の常光屈折率と合わせた
ときと同様に、通常、第1の基板の液晶と接する側の面
にポリイミド等の配向膜を形成し、この配向膜の液晶配
向方向を凸部の長手方向に合わせる。
In the present invention, an alignment film such as polyimide is usually formed on the surface of the first substrate which is in contact with the liquid crystal, and the liquid crystal alignment direction of this alignment film is the same as in the case of combining with the above ordinary refractive index. Are aligned with the longitudinal direction of the convex portion.

【0043】次に、第2のガラス基板(第2の基板)を
用意し、前記と同様にして配向膜を形成し、液晶を封入
して光学異方性回折格子を製造する。このようにして製
造した光学異方性回折格子に、λ/4板を代表とする位
相差素子を積層して回折素子を作製する。
Next, a second glass substrate (second substrate) is prepared, an alignment film is formed in the same manner as described above, and liquid crystals are sealed therein to manufacture an optical anisotropic diffraction grating. A diffractive element is manufactured by laminating a retardation element represented by a λ / 4 plate on the optical anisotropic diffraction grating manufactured in this manner.

【0044】この場合も、本発明では、光学異方性回折
格子は凸部を形成した第1のガラス基板が光源とは反対
側にきて、この第1のガラス基板に位相差素子が積層さ
れるようにする。
Also in this case, in the present invention, in the optical anisotropic diffraction grating, the first glass substrate on which the convex portion is formed is located on the side opposite to the light source, and the retardation element is laminated on the first glass substrate. To be done.

【0045】このように格子状の凸部(長手方向が図1
の奥行き方向)が光源とは反対側にあるとし、正の誘電
異方性のネマチック液晶を用い、液晶のツイスト角が9
0°とし、第1の基板の格子状の凸部の屈折率を液晶の
異常光屈折率にほぼ等しくし、これに半導体レーザから
のP波(紙面に平行な方向の偏光を持つ)が入射した場
合の動作を図1を参照しつつ説明する。
Thus, the grid-shaped convex portions (the longitudinal direction is shown in FIG.
Depth direction) is on the side opposite to the light source, and nematic liquid crystal with positive dielectric anisotropy is used, and the twist angle of the liquid crystal is 9
At 0 °, the refractive index of the lattice-shaped convex portions of the first substrate is made approximately equal to the refractive index of extraordinary light of the liquid crystal, and the P wave from the semiconductor laser (having a polarization in the direction parallel to the paper surface) is incident on this. The operation in that case will be described with reference to FIG.

【0046】往路(光源側から光学記録媒体側へ向かう
方向)においては、半導体レーザからのP波に対して、
光学異方性回折格子で偏光面は90°回転し、液晶層を
通過後の格子部(第1の基板の内面)ではS波(紙面に
垂直な方向の偏光を持つ)になる。このとき、S波に対
しては、格子状の凸部の屈折率と液晶部の屈折率(液晶
分子の長軸方向になるので異常光屈折率に相当)はほぼ
等しいので、回折格子として機能せずに、そのまま光は
透過する。
In the outward path (direction from the light source side to the optical recording medium side), with respect to the P wave from the semiconductor laser,
The plane of polarization is rotated by 90 ° in the optically anisotropic diffraction grating, and becomes an S wave (having a polarization in a direction perpendicular to the paper surface) at the grating portion (inner surface of the first substrate) after passing through the liquid crystal layer. At this time, with respect to the S wave, the refractive index of the grating-shaped convex portion and the refractive index of the liquid crystal portion (corresponding to extraordinary light refractive index because they are in the long axis direction of the liquid crystal molecules) are substantially equal, and thus function as a diffraction grating Without passing through, the light is transmitted as it is.

【0047】復路(光学記録媒体側から光源側へ向かう
方向)においては、位相差素子によって偏光方向は変化
し、光学異方性回折格子にP波で入射する。そのとき、
P波に対応する液晶の屈折率は常光屈折率に相当するの
で、格子状の凸部の屈折率(ほぼ異常光屈折率に等し
い)とは異なり、回折格子として機能し、光の回折が起
こる。
On the return path (direction from the optical recording medium side to the light source side), the polarization direction is changed by the phase difference element and the P-wave is incident on the optical anisotropic diffraction grating. then,
Since the refractive index of the liquid crystal corresponding to the P wave corresponds to the ordinary light refractive index, unlike the refractive index of the grating-shaped convex portion (which is almost equal to the extraordinary light refractive index), it functions as a diffraction grating, and light diffraction occurs. .

【0048】本発明において、上記の説明では、上下の
基板間の配向方向は、直交しているとして説明したが、
本発明では90°以外の角度にすることもできる。も
し、入射光の偏光方向が、格子の凸部の長手方向と例え
ば30°、45°、60°等の任意の角度を持つときに
は、同じ角度で液晶をツイストさせればよい。
In the present invention, in the above description, the alignment directions between the upper and lower substrates are orthogonal to each other.
In the present invention, an angle other than 90 ° can be used. If the polarization direction of the incident light has an arbitrary angle such as 30 °, 45 °, 60 ° with the longitudinal direction of the convex portion of the grating, the liquid crystal may be twisted at the same angle.

【0049】これにより、入射光の偏光面を回転させ、
格子形成面において常に格子の長手方向に直交又は平行
するように偏光面を持っていくことによって、任意の偏
光方向で入射する光に対して、往復効率の高い光ヘッド
装置を実現できる。
As a result, the plane of polarization of the incident light is rotated,
By bringing the polarization plane so that it is always orthogonal or parallel to the longitudinal direction of the grating on the grating formation surface, it is possible to realize an optical head device having high reciprocal efficiency with respect to light incident in an arbitrary polarization direction.

【0050】本発明の回折素子は、光源側の基板、即
ち、第2の基板側にも他の回折格子を形成してもよく、
その場合光検出器への回折と3ビーム法によるトラッキ
ングエラー検出のための回折の両方が1個の回折素子で
実現できる。
In the diffraction element of the present invention, another diffraction grating may be formed on the light source side substrate, that is, the second substrate side,
In that case, both diffraction for the photodetector and diffraction for tracking error detection by the three-beam method can be realized by one diffraction element.

【0051】本発明における光学異方性回折格子の凸部
のパターンは、光学記録媒体からの戻り光のビーム形状
が所望の形状になるように、回折格子面内で曲率をつけ
たり、格子間隔に分布をつけたりすることもできる。
The pattern of the convex portions of the optical anisotropic diffraction grating in the present invention has a curvature in the diffraction grating plane or a grating interval so that the beam shape of the return light from the optical recording medium has a desired shape. You can also add a distribution.

【0052】本発明において、回折素子の光源側の面及
び/又は光学記録媒体側の面に、UV硬化型アクリル樹
脂等の被膜を設けた場合、λ/4板やガラス基板の表面
の凹凸に起因する波面収差を低減でき好ましい。さらに
このUV硬化型アクリル樹脂等の被膜の上に、平坦度の
よいガラス基板やプラスチック基板等を積層することに
より、格段に波面収差を低減できる。回折素子の光の入
出射面が平坦化されていることにより、結果的に波面収
差が低減される。
In the present invention, when a coating such as a UV curable acrylic resin is provided on the light source side surface of the diffraction element and / or the optical recording medium side surface, unevenness on the surface of the λ / 4 plate or the glass substrate is generated. This is preferable because the resulting wavefront aberration can be reduced. Further, by laminating a glass substrate or a plastic substrate having a good flatness on the coating film of the UV curable acrylic resin or the like, the wavefront aberration can be remarkably reduced. Since the light entrance / exit surface of the diffractive element is flattened, the wavefront aberration is consequently reduced.

【0053】本発明における光源としては半導体レー
ザ、YAGレーザ等の固体レーザ、He−Ne等の気体
レーザが使用でき、半導体レーザが小型軽量化、連続発
振、保守点検等の点で好ましい。光源部に半導体レーザ
等と非線形光学素子を組み込んだ高調波発生装置(SH
G)を使用し、青色レーザ等の短波長レーザを用いる
と、高密度の光記録及び読み取りができる。
[0053] The semiconductor laser as the light source in the present invention, can be solid-state laser, using a gas <br/> lasers such as He-Ne, such as YAG laser, a semiconductor laser is smaller and lighter, continuous wave, terms of maintenance and inspection Is preferred. Harmonic generator (SH with a semiconductor laser etc. and a nonlinear optical element incorporated in the light source)
Using G), the use of short-wavelength laser such as a blue laser, Ru can high-density optical recording and reading.

【0054】本発明の光学記録媒体は、光により情報の
記録及び/又は読み取りができる媒体である。その例と
してはCD(コンパクトディスク)、CD−ROM、D
VD(デジタルビデオディスク)等の光ディスク、及び
光磁気ディスク、相変化型光ディスク等が挙げられる。
The optical recording medium of the present invention is a medium capable of recording and / or reading information by light. Examples are CD (Compact Disc), CD-ROM, D
Examples thereof include optical discs such as VD (digital video disc), magneto-optical discs, and phase change optical discs.

【0055】[0055]

【実施例】[例1] 10mm×10mm角、厚さ0.5mm、屈折率1.5
2の第1のガラス基板11上に、反応性スパッタ法によ
って屈折率1.52、厚さ1.4μmのSiO
(x≒1.8、y≒0.17)の透明材料膜を形成し
た。
[Example] [Example 1] 10 mm x 10 mm square, thickness 0.5 mm, refractive index 1.5
On the first glass substrate 11 of No. 2 by a reactive sputtering method, SiO x N having a refractive index of 1.52 and a thickness of 1.4 μm.
A transparent material film of y (x≈1.8, y≈0.17) was formed.

【0056】その後、フォトリソグラフィ法及びドライ
エッチング法によって、SiOの透明材料膜をピ
ッチ(周期)が10μmの凸部とし、その結果長手方向
に垂直な面における断面形状が矩形状格子状の凸部1
3を形成した。その液晶に接する側の面にポリイミドの
配向膜を形成した。そのラビング方向が前記凸部の長手
方向(図2の図に垂直方向)に沿うようにした。
[0056] Then, by photolithography and dry etching, lattice SiO x N transparent material film pitch of y (cycle) a convex portion of 10 [mu] m, resulting cross-sectional shape in a plane perpendicular to the longitudinal direction a rectangular -Shaped convex part 1
Formed 3. A polyimide alignment film was formed on the surface in contact with the liquid crystal. The rubbing direction was set to be along the longitudinal direction of the convex portion (the vertical direction in the drawing of FIG. 2).

【0057】10mm×10mm角、厚0.5mm、
屈折率1.52の第2のガラス基板12を用意し、その
液晶に接する側の面にポリイミドの配向膜を形成した。
そのラビング方向が前記凸部の長手方向と直交する(図
2の図に平行方向)ようにした。次いで、第1のガラス
基板と2のガラス基板とを相互の配向方向が直交する状
態で重ね合わせ、周辺部を液晶注入用の開口部を除いて
シールした。
[0057] 10mm × 10mm square, a thickness of 0.5mm,
A second glass substrate 12 having a refractive index of 1.52 was prepared, and a polyimide alignment film was formed on the surface of the second glass substrate 12 in contact with the liquid crystal.
The rubbing direction was orthogonal to the longitudinal direction of the convex portion (parallel direction to the drawing of FIG. 2). Next, the first glass substrate and the second glass substrate were overlapped with each other so that the orientation directions thereof were orthogonal to each other, and the peripheral portion was sealed except for the liquid crystal injection opening.

【0058】具体的には次のようにした。8μmの球状
スペーサを含むエポキシ樹脂を第2のガラス基板の周辺
部に塗布し、その上に第1のガラス基板を載置した。そ
の後、減圧雰囲気中で液晶として混合液晶組成物(メル
ク社製商品名「BL009」、ネマチック液晶、Δn=
0.2915、常光屈折率=1.5266、異常光屈折
率=1.8181、固体液晶相への相転移温度≦−20
℃、アイソトロピック相への相転移温度=108℃)
を、注入した。前記開口部を封止用の樹脂で塞ぎ、光学
異方性回折格子を作製した。
Specifically, the following was done. Epoxy resin containing a spherical spacer of 8 μm was applied to the peripheral portion of the second glass substrate, and the first glass substrate was placed thereon. Then, a mixed liquid crystal composition as a liquid crystal in a reduced pressure atmosphere (product name “BL009” manufactured by Merck & Co., nematic liquid crystal, Δn =
0.2915, ordinary light refractive index = 1.5266, extraordinary light refractive index = 1.1811, phase transition temperature to solid liquid crystal phase ≦ −20
℃, phase transition temperature to isotropic phase = 108 ℃)
Was injected. The opening was closed with a resin for sealing to produce an optically anisotropic diffraction grating.

【0059】次いで、第1のガラス基板の外面(凸部を
設けた面と反対側の面)に、透明接着剤を用いてポリカ
ーボネート製の位相差素子を接着した。さらにその上に
UV硬化型アクリル樹脂を塗布した。さらにその上に第
3のガラス基板を載置し、紫外線を照射して第3のガラ
ス基板を位相差素子に積層接着した。さらに素子全体に
ついて、光の入射面及び光の出射面に反射防止膜を形成
し、回折素子を作製した。
Then, a polycarbonate retardation element was adhered to the outer surface of the first glass substrate (the surface opposite to the surface provided with the convex portion) with a transparent adhesive. Further, a UV-curable acrylic resin was applied on it. Further, a third glass substrate was placed thereon and irradiated with ultraviolet rays to laminate and adhere the third glass substrate to the retardation element. Further, for the entire element, an antireflection film was formed on the light incident surface and the light emitting surface to fabricate a diffractive element.

【0060】この回折素子は、半導体レーザからの波長
678nmのS波(図1において紙面に垂直な偏光方向
の光)に対して85%の透過率であった。光ディスクか
らの復路でS波(紙面に垂直な偏光方向の光)に対して
は、1次回折光の回折効率が25%、−1次回折光の回
折効率が26%であった。
This diffractive element had a transmittance of 85% with respect to the S wave having a wavelength of 678 nm (light having a polarization direction perpendicular to the paper surface in FIG. 1) from the semiconductor laser. The diffraction efficiency of the first-order diffracted light was 25% and the diffraction efficiency of the -1st-order diffracted light was 26% for the S wave (light having a polarization direction perpendicular to the paper surface) on the return path from the optical disc.

【0061】したがって往復効率は、0.85×0.5
1で計算すると43%となり、実用上充分に高い効率が
得られた。また透過光の波面収差は、回折素子の光の入
出射面の中心部(直径2mmの円形の範囲)で、0.0
15λrms(自乗平均)以下であった。
Therefore, the reciprocating efficiency is 0.85 × 0.5.
When calculated with 1, it was 43%, which was a sufficiently high efficiency for practical use. The wavefront aberration of the transmitted light is 0.0 at the center of the light entrance / exit surface of the diffractive element (circular range with a diameter of 2 mm).
It was 15λ rms (root mean square) or less.

【0062】[例2] 第2の基板のラビング方向を第1の基板に対して45°
にし、液晶のツイスト角が45°にした他は、例1と同
様にして回折素子を作製した。
Example 2 The rubbing direction of the second substrate is 45 ° with respect to the first substrate.
A diffractive element was manufactured in the same manner as in Example 1 except that the liquid crystal twist angle was 45 °.

【0063】半導体レーザからの波長678nmのS波
とP波の中間の偏光方向(第2の基板のラビング方向に
は直交)を持つ入射光とした。この回折素子は、この入
射光に対して78%の透過率であった。光ディスクから
の復路でS波(紙面に垂直な偏光方向の光)に対して
は、1次回折光の回折効率が25%、−1次回折光の回
折効率が24%であった。
Incident light having a wavelength of 678 nm from the semiconductor laser and having an intermediate polarization direction between the S wave and the P wave (perpendicular to the rubbing direction of the second substrate) was used. The diffractive element had a transmittance of 78% with respect to the incident light. The diffraction efficiency of the first-order diffracted light was 25% and the diffraction efficiency of the -1st-order diffracted light was 24% with respect to the S wave (light having a polarization direction perpendicular to the paper surface) on the return path from the optical disk.

【0064】したがって往復効率は、0.78×0.4
9で計算すると38%となり、実用上充分に高い効率が
得られた。また透過光の波面収差は、回折素子の光の入
出射面の中心部(直径2mmの円形の範囲)で、0.0
15λrms以下であった。
Therefore, the reciprocating efficiency is 0.78 × 0.4.
When calculated with 9, it was 38%, which was a sufficiently high efficiency for practical use. The wavefront aberration of the transmitted light is 0.0 at the center of the light entrance / exit surface of the diffractive element (circular range with a diameter of 2 mm).
It was 15λ rms or less.

【0065】[例3] 10mm×10mm角、厚さ0.5mm、屈折率1.5
2の第1のガラス基板11上に、反応性スパッタリング
法によって屈折率1.8、厚さ1.4μmのSiO
(x≒0.7、y≒0.8)の透明材料膜を形成し
た。
Example 3 10 mm × 10 mm square, thickness 0.5 mm, refractive index 1.5
On the first glass substrate 11 of No. 2 by a reactive sputtering method, SiO x N having a refractive index of 1.8 and a thickness of 1.4 μm.
A transparent material film of y (x≈0.7, y≈0.8) was formed.

【0066】その後、フォトリソグラフィ法及びドライ
エッチング法によって、SiOの透明材料膜をピ
ッチ(周期)が10μmの凸部とし、その結果長手方向
に垂直な面における断面形状が矩形状の格子状の凸部1
3を形成した。その液晶に接する側の面にポリイミドの
配向膜を形成した。そのラビング方向が前記凸部の長手
方向(図2の図に垂直方向)に沿うようにした。
Then, a transparent material film of SiO x N y is formed into convex portions with a pitch (cycle) of 10 μm by photolithography and dry etching, and as a result, a lattice having a rectangular cross section in a plane perpendicular to the longitudinal direction is formed. -Shaped convex part 1
Formed 3. A polyimide alignment film was formed on the surface in contact with the liquid crystal. The rubbing direction was set to be along the longitudinal direction of the convex portion (the vertical direction in the drawing of FIG. 2).

【0067】10mm×10mm角、厚0.5mm、
屈折率1.52の第2のガラス基板12を用意し、その
液晶に接する側の面にポリイミドの配向膜を形成した。
そのラビング方向が前記凸部の長手方向と直交する(図
2の図に平行方向)ようにした。次いで、第1のガラス
基板と2のガラス基板とを相互の配向方向が直交する状
態で重ね合わせ、周辺部を液晶注入用の開口部を除いて
シールした。
[0067] 10mm × 10mm square, a thickness of 0.5mm,
A second glass substrate 12 having a refractive index of 1.52 was prepared, and a polyimide alignment film was formed on the surface of the second glass substrate 12 in contact with the liquid crystal.
The rubbing direction was orthogonal to the longitudinal direction of the convex portion (parallel direction to the drawing of FIG. 2). Next, the first glass substrate and the second glass substrate were overlapped with each other so that the orientation directions thereof were orthogonal to each other, and the peripheral portion was sealed except for the liquid crystal injection opening.

【0068】具体的には次のようにした。8μmの球状
スペーサを含むエポキシ樹脂を第2のガラス基板の周辺
部に塗布し、その上に第1のガラス基板を載置した。そ
の後、減圧雰囲気中で液晶として例1と同じ混合液晶組
成物を注入した。前記開口部を封止用の樹脂で塞ぎ、光
学異方性回折格子を作製した。
Specifically, the following was done. Epoxy resin containing a spherical spacer of 8 μm was applied to the peripheral portion of the second glass substrate, and the first glass substrate was placed thereon. Then, the same mixed liquid crystal composition as in Example 1 was injected as liquid crystal in a reduced pressure atmosphere. The opening was closed with a resin for sealing to produce an optically anisotropic diffraction grating.

【0069】次いで、第1のガラス基板の外面(凸部を
設けた面と反対側の面)に、透明接着剤を用いてポリカ
ーボネート製の位相差素子を接着した。さらにその上に
UV硬化型アクリル樹脂を塗布した。さらにその上に第
3のガラス基板を載置し、紫外線を照射して第3のガラ
ス基板を位相差素子に積層接着した。さらに素子全体に
ついて、光の入射面及び光の出射面に反射防止膜を形成
し、回折素子を作製した。
Then, a polycarbonate retardation element was adhered to the outer surface of the first glass substrate (the surface opposite to the surface provided with the protrusions) with a transparent adhesive. Further, a UV-curable acrylic resin was applied on it. Further, a third glass substrate was placed thereon and irradiated with ultraviolet rays to laminate and adhere the third glass substrate to the retardation element. Further, for the entire element, an antireflection film was formed on the light incident surface and the light emitting surface to fabricate a diffractive element.

【0070】この回折素子は、半導体レーザからの波長
678nmのP波(図1において紙面に平行な偏光方向
の光)に対して86%の透過率であった。光ディスクか
らの復路でP波(紙面に平行な偏光方向の光)に対して
は、1次回折光の回折効率が26%、−1次回折光の回
折効率が27%であった。
This diffractive element had a transmittance of 86% with respect to a P wave having a wavelength of 678 nm (light having a polarization direction parallel to the paper surface in FIG. 1) from a semiconductor laser. The diffraction efficiency of the first-order diffracted light was 26% and the diffraction efficiency of the -1st-order diffracted light was 27% for the P wave (light having a polarization direction parallel to the paper surface) on the return path from the optical disk.

【0071】したがって往復効率は、0.86×0.5
3で計算すると46%となり、実用上充分に高い効率が
得られた。また透過光の波面収差は、回折素子の光の入
出射面の中心部(直径2mmの円形の範囲)で、0.0
15λrms以下であった。
Therefore, the reciprocating efficiency is 0.86 × 0.5.
It was 46% when calculated by 3, and a sufficiently high efficiency was obtained in practical use. The wavefront aberration of the transmitted light is 0.0 at the center of the light entrance / exit surface of the diffractive element (circular range with a diameter of 2 mm).
It was 15λ rms or less.

【0072】[0072]

【発明の効果】本発明では、液晶をツイストしているの
で、半導体レーザからの入射光がP波でもS波でも、さ
らにはその間の任意の偏光方向の光に対しても、光ヘッ
ド装置として、高い光の利用効率が得られる。本発明
は、本発明の効果を損しない範囲内で、種々の応用がで
きる。
According to the present invention, since the liquid crystal is twisted, the incident light from the semiconductor laser can be used as an optical head device for P-waves and S-waves, and also for light having an arbitrary polarization direction therebetween. , High light utilization efficiency is obtained. The present invention can be applied in various ways within a range that does not impair the effects of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光ヘッド装置の基本的な構成を示す模
式図。
FIG. 1 is a schematic diagram showing a basic configuration of an optical head device of the present invention.

【図2】本発明で用いられる光学異方性回折格子の断面
図。
FIG. 2 is a sectional view of an optically anisotropic diffraction grating used in the present invention.

【符号の説明】[Explanation of symbols]

1:光源 2:光学異方性回折格子 3:位相差素子 4:回折素子 5:集光レンズ 6:光学記録媒体 7:光検出器 11:第1の基板 12:第2の基板 13:凸部 14:シール材 15:液晶 1: Light source 2: Optical anisotropic diffraction grating 3: Phase difference element 4: Diffraction element 5: Condensing lens 6: Optical recording medium 7: Photodetector 11: First substrate 12: second substrate 13: convex part 14: Seal material 15: Liquid crystal

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源と光学記録媒体との間に回折素子を配
置した光ヘッド装置において、回折素子が、位相差素子
と、表面に格子状の凸部が形成された第1の基板と平ら
な第2の基板との間に液晶を充填してなる光学異方性回
折格子とを備えており、光学異方性回折格子の第1の基
板の凸部の屈折率が、液晶の常光屈折率又は異常光屈折
率のいずれかにほぼ等しく、凸部が形成された第1の基
板上の液晶配向方向が格子の長手方向に沿った方向であ
り、平らな第2の基板上の液晶配向方向が第1の基板の
液晶配向方向と平行でない回折素子であることを特徴と
する光ヘッド装置。
1. An optical head device having a diffractive element disposed between a light source and an optical recording medium, wherein the diffractive element is flat with a retardation element and a first substrate having a lattice-shaped convex portion formed on the surface thereof. And an optical anisotropic diffraction grating filled with liquid crystal between the second substrate, and the refractive index of the convex portion of the first substrate of the optical anisotropic diffraction grating is the ordinary optical refraction of the liquid crystal. Index or extraordinary light refractive index, and the liquid crystal alignment direction on the first substrate on which the convex portions are formed is the direction along the longitudinal direction of the lattice, and the liquid crystal alignment on the flat second substrate. An optical head device characterized by being a diffractive element whose direction is not parallel to the liquid crystal alignment direction of the first substrate.
【請求項2】回折素子が第2の基板上と第1の基板上で
液晶配向方向がほぼ直交していることを特徴とする請求
項1記載の光ヘッド装置。
2. The optical head device according to claim 1, wherein the liquid crystal alignment directions of the diffractive element are substantially orthogonal to each other on the second substrate and the first substrate.
【請求項3】回折素子の第1の基板の表面に透明材料膜
が積層されており、凸部が透明材料膜で形成されている
ことを特徴とする請求項1又は2記載の光ヘッド装置。
3. The optical head device according to claim 1, wherein a transparent material film is laminated on the surface of the first substrate of the diffractive element, and the convex portion is formed of the transparent material film. .
【請求項4】回折素子の第1の基板の表面の透明材料膜
が、SiO(0≦x<2、0≦y<1.3)から
なることを特徴とする請求項3記載の光ヘッド装置。
4. The transparent material film on the surface of the first substrate of the diffractive element is made of SiO x N y (0 ≦ x <2, 0 ≦ y <1.3). Optical head device.
JP16996696A 1996-06-28 1996-06-28 Optical head device Expired - Fee Related JP3509399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16996696A JP3509399B2 (en) 1996-06-28 1996-06-28 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16996696A JP3509399B2 (en) 1996-06-28 1996-06-28 Optical head device

Publications (2)

Publication Number Publication Date
JPH1021576A JPH1021576A (en) 1998-01-23
JP3509399B2 true JP3509399B2 (en) 2004-03-22

Family

ID=15896126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16996696A Expired - Fee Related JP3509399B2 (en) 1996-06-28 1996-06-28 Optical head device

Country Status (1)

Country Link
JP (1) JP3509399B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3400939B2 (en) 1998-02-03 2003-04-28 富士通株式会社 Information reading / writing device for optical disk
EP1385026B1 (en) 1999-08-26 2007-01-24 Asahi Glass Co., Ltd. Optical head comprising a broadband retarder
JP4561080B2 (en) * 2003-11-07 2010-10-13 旭硝子株式会社 Diffraction element and optical head device

Also Published As

Publication number Publication date
JPH1021576A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
US6271966B1 (en) Optical head device including an optically anisotropic diffraction grating and process for its production
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
WO1997027583A1 (en) Optical head, method of manufacturing the same, and diffraction element suitable therefor
JP3624561B2 (en) Optical modulation element and optical head device
JP4300784B2 (en) Optical head device
JP3509399B2 (en) Optical head device
JPH1164615A (en) Diffraction element
JPH09230300A (en) Optical modulation element and optical head device
JP3994450B2 (en) Manufacturing method of optical diffraction grating and optical head device using the same
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3528381B2 (en) Optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JPH09185837A (en) Optical head device
JP3713778B2 (en) Optical head device
JP3550873B2 (en) Optical head device
JP3550905B2 (en) Manufacturing method of diffraction element used for optical head device
JP3829356B2 (en) Optical head device
JPH1074333A (en) Optical head device and its production
JPH09161303A (en) Optical head device
US20090268585A1 (en) Wavelength selecting wavelength plate and optical head device using it
JPH09127335A (en) Manufacture of optical head device and optical head device
JPH09180234A (en) Optical head device
JPH1048588A (en) Optical head device
JPH09198698A (en) Production of optical head device
JP2002365416A (en) Polarization diffraction element and optical head device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees