JP3550905B2 - Manufacturing method of diffraction element used for optical head device - Google Patents

Manufacturing method of diffraction element used for optical head device Download PDF

Info

Publication number
JP3550905B2
JP3550905B2 JP24648696A JP24648696A JP3550905B2 JP 3550905 B2 JP3550905 B2 JP 3550905B2 JP 24648696 A JP24648696 A JP 24648696A JP 24648696 A JP24648696 A JP 24648696A JP 3550905 B2 JP3550905 B2 JP 3550905B2
Authority
JP
Japan
Prior art keywords
refractive index
liquid crystal
glass
film
diffraction element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24648696A
Other languages
Japanese (ja)
Other versions
JPH1092004A (en
Inventor
弘樹 保高
勉 丸山
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP24648696A priority Critical patent/JP3550905B2/en
Publication of JPH1092004A publication Critical patent/JPH1092004A/en
Application granted granted Critical
Publication of JP3550905B2 publication Critical patent/JP3550905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CD(コンパクトディスク)、CD−ROM、ビデオディスク等の光ディスク及び光磁気ディスク等に光学的情報を書き込んだり、光学的情報を読み取るための光ヘッド装置及びその製造方法に関する。
【0002】
【従来の技術】
従来、光ディスク及び光磁気ディスク等に光学的情報を書き込んだり、光学的情報を読み取る光ヘッド装置としては、ディスクの記録面から反射された信号光を検出部へ導光(ビームスプリット)する光学部品としてプリズム式ビームスプリッタを用いたものと、回折格子又はホログラム素子を用いたものとが知られていた。
【0003】
光ヘッド装置用の回折格子又はホログラム素子は、ガラスやプラスチック基板上に、矩形の断面を有する矩形格子(レリーフ型)をドライエッチング法又は射出成形法によって形成し、これによって光を回折しビームスプリット機能を付与していた。
【0004】
また、光の利用効率が10%程度の等方性回折格子よりも光の利用効率を上げようとした場合、偏光を利用することが考えられる。偏光を利用しようとすると、プリズム式ビームスプリッタにλ/4板を組み合わせて、往路(光源から記録面へ向かう方向)及び復路(記録面から検出部へ向かう方向)の効率を上げて往復効率を上げる方法があった。
【0005】
しかし、プリズム式偏光ビームスプリッタは高価であり、他の方式が模索されていた。一つの方式としてLiNbO3 等の複屈折結晶の平板を用い、表面に異方性回折格子を形成し偏光選択性をもたす方法が知られている。しかし、複屈折結晶自体が高価であり、生産性が悪いので、民生分野への適用は困難であった。またプロトン交換法によりLiNbO3 上に格子を形成しようとすると、プロトン交換液中のプロトンが基板中に拡散しやすいため、細かいピッチの格子を形成するのは困難である問題もあった。
【0006】
【発明が解決しようとする課題】
これを解決するために、基板に凹凸形状を形成し、これと液晶とを組合せて異方性回折格子を形成することも知られている。これは、通常基板をエッチングしたり、切削したりして基板に凹凸形状を形成することが考えられる。
【0007】
しかし、ガラス基板はウエットエッチングでは、精密な凹凸の加工が難しく、ドライエッチングも簡単ではない。このため、本発明者らはこれを生産しやすくするために、ガラス基板上にSiO膜やSiON膜を形成し、これをドライエッチングする方法も提案している。
【0008】
このような透明な膜を形成しておきエッチングする場合も、ドライエッチングというエッチングを行う必要があるため、より生産性が高く、かつ精密な凹凸形状が容易に作成できる製造方法が望まれていた。
【0009】
【課題を解決するための手段】
本発明は、前述の問題点を解決すべくなされたものであり、光源と光学記録媒体との間に回折素子を配置した光ヘッド装置に用いられる回折素子であって、2枚の基板間に光学異方性材料を充填されてなり、その2枚の基板の少なくとも一方の基板表面に格子状のガラス製凸部が形成されており、その凸部の屈折率が、光学異方性材料の常光屈折率又は異常光屈折率のいずれかにほぼ等しい屈折率である、光学異方性を有する回折素子の製造方法において、そのガラス製凸部を形成する方法が、ガラス基板上にガラスフリット膜を形成し、焼成した後、プレス成形する工程を備えていることを特徴とする回折素子の製造方法を提供する。
【0010】
また、その光ヘッド装置の回折素子の基板のガラス製凸部を形成する方法、ガラス基板上にゾルゲル法によりガラス質膜を形成し、そのガラス質膜をゲル状態でプレス成形し、その後焼成する工程を備えていることを特徴とする回折素子の製造方法を提供する。
【0011】
【発明の実施の形態】
図1は、本発明の回折格子が用いられる光ヘッド装置の基本的な構成を示す模式図である。図1において、1は半導体レーザのような光源、2は光学異方性回折格子、3はλ/4板のような位相差素子である。4は回折素子であり、この光学異方性回折格子2と位相差素子3からなる。5は光を集光する集光レンズ、6は光学記録媒体、7は検出器である。
【0012】
図2は、光学異方性回折格子の参考例の断面図であり、ガラス基板自体に凸部を形成した例を示す。図2において、11は凸部を設けた第1の基板、12は平坦な第2の基板、13はその凸部、14は周辺をシールするシール材、15はその間に配置される光学異方性材料である液晶である。本発明では、この基板の凸部はガラス基板上に形成した透明材料膜の型による成形によって形成されているが、図2の参考例ではガラス基板である第1の基板11自体の材料で凸部13が形成されている。
【0013】
図3は、本発明で用いられる光学異方性回折格子の他の例の断面図であり、ガラス基板上に透明材料膜による凸部を形成した例を示す。図3において、21は凸部を設けた第1の基板、22は平坦な第2の基板、23はその凸部、24は周辺をシールするシール材、25はその間に配置される光学異方性材料である液晶である。本発明では、この基板の凸部は型による成形によって形成されており、図3の例ではガラス基板上に積層されたガラスによる透明材料層で凸部23が形成されている。
【0014】
図4及び図5は、別の参考例及び本発明で用いられる光学異方性回折格子の他の例の断面図であり、凸部がブレーズ形状にされた例を示す。図4はガラス基板自体に凸部を形成した参考例を、図5はガラス基板上に透明材料膜による凸部を形成した例を示す。
【0015】
図4及び図5において、31、41は凸部を設けた第1の基板、32、42は平坦な第2の基板、33、43はその凸部、34、44は周辺をシールするシール材、35、45はその間に配置される光学異方性材料である液晶である。図4の参考例ではガラス基板である第1の基板31自体の材料でブレーズ状の凸部33が形成されている。図5の例ではガラス基板上に積層されたガラスによる透明材料層でブレーズ状の凸部43が形成されている。
【0016】
本発明においては、凸部はガラスで形成されており、凸部は型による成形によって形成される。具体的には、プレス成形が行われる。このプレス成形はバッチのプレスでもよく、連続したプレスでもよい。
【0017】
第1の基板におけるガラス製の凸部は、基板の表面に、ガラス製の透明材料膜を形成してそれを凸部に形成する。本発明では、この基板と組合せて使用される光学異方性材料としては、液晶が代表的な材料として使用される。
【0018】
板上に形成する透明材料膜は、この基板に屈折率がほぼ等しい屈折率が1.5程度のものが用いられる。また凸部の屈折率を、液晶の異常光屈折率と一致させることもできる。通常液晶の異常光屈折率は1.6〜1.8程度であるので、基板及び透明材料膜の屈折率が異常光屈折率に合うように材料を選択する。
【0019】
本発明の光学異方性回折格子では、この基板の表面に形成された透明材料膜を、所定の形状に加工して格子状の凸部を形成する。この場合、凸部の深さ、ピッチ、形状は目的とする回折形状に応じて決めればよい。この凸部の形成は、型による成形により行う。型による成形の方法としては、以下のものが挙げられる。
【0020】
ガラス基板上にガラス製の透明材料膜を形成し、この透明材料膜に凸部をプレス成形する。透明材料膜は、フリットペースト法、ゾルゲル法により基板上に形成され
【0021】
ガラス基板を直接プレス成形する方法に比べて、フリットペースト法では、低温でのプレス成形が容易になり、型の寿命、熱変形の点で有利である。すなわち、フリットペースト法では、ガラスフリット膜を形成し、これを焼成してガラス製の透明材料膜とするので、比較的軟化点が低い透明材料膜を容易に形成でき、低温プレスが可能になる。
【0022】
また、ゾルゲル法では、ガラス基板上にゾルゲル法によりガラス質膜を形成し、そのガラス質膜をゲル状態でプレス成形し、その後焼成して形成する。この方法では、ガラス質膜をゲル状態でプレスすることにより、ガラスフリット膜に比してさらに低温でプレス成形ができ、有利である。
【0023】
本発明では、凸部は液晶の常光屈折率か異常光屈折率に屈折率を合わせる。ガラス基板を直接型によって成形する場合には、そのガラス基板の屈折率がそれに合っていること及び比較的低い温度で成形できることという2つの制約を受ける。そして、ガラスは量産では窯で溶解しており、組成を簡単には変えられないので、逆に液晶を選択して使用せざるをえない。
【0024】
これに対し、このガラスフリット膜やゾルゲル法を用いる製造方法では、比較的屈折率を変化させるのが容易である。このため、液晶との屈折率のマッチングを取るのが容易になる。この場合、下地のガラス基板は、通常の液晶表示素子に用いられているようなガラス基板が使用できる。このため、安価に凸部付きの基板が得られる。
【0025】
本発明の光学異方性回折格子は、以下のようにして作製する。
まず第1のガラス基板(第1の基板)について、前記のような型による成形法により基板上に積層した透明材料膜に凸部を形成する。前記凹凸部の長手方向に垂直な面における断面形状は、長方形、正方形等の左右対称の矩形状でもよく、階段状、のこぎり状等の左右非対称の形状でもよい。
【0026】
この凸部が、左右非対称の形状の場合には、光学異方性回折格子による±1次回折光のうちいずれか一方の回折効率が高くなり、回折効率の高い方の回折光のみを検出すればよく、検出器が1つで高い光の利用効率が得られる。
【0027】
本発明では、通常、第1の基板の液晶と接する側の面にポリイミド等の配向膜を形成し、この配向膜の液晶配向方向を凸部の長手方向に合わせる。この液晶の配向は、ラビングで行ってもよく、斜め蒸着等の他の方法で行ってもよいが、ラビング法で行うことが生産性がよい。
【0028】
次に第2のガラス基板(第2の基板)を用意し、やはりその液晶と接する側の面にもポリイミド配向膜を形成し、この配向膜のラビング方向を第1の基板のラビング方向と同一方向にラビングする。
【0029】
このように液晶配向方向を同一にして、第2のガラス基板を第1のガラス基板に積層接着する。その際、第1のガラス基板と第2のガラス基板の周辺部に、シール材を、液晶注入用の開口部以外の部分に塗布し接着する。このシール材には、エポキシ樹脂等の樹脂やガラスフリットに必要に応じてスペーサを混入したものを用いればよい。そして、真空中で前記開口部から液晶を注入し、前記開口部を封着用の樹脂で塞ぐ。
【0030】
なお、このシール工程、液晶注入工程、開口部封止工程は、上記工程に限られず、液晶注入とシール圧着を同時に行うような工程とすることもできる。
【0031】
本発明で用いられる液晶としては、高分子液晶、液晶モノマー、液晶組成物等が適宜使用できる。通常の液晶組成物の場合、通常のTN型液晶で用いられているネマチック液晶を使用すればよい。屈折率異方性が大きい液晶を用いることが回折角を大きく取れるので好ましい。具体的には、△n≧0.2、特には△n≧0.25が好ましい。
【0032】
液晶として高分子液晶を用いる場合は、液晶モノマーを注入後、配向した状態で紫外線を照射するか加熱して液晶モノマーを重合させればよい。その場合、凸部のみによっても高分子液晶は配向できるので、液晶が特定の方向に配向していれば、配向膜は省略してもよい。なお、この高分子液晶を用いる場合には、液晶モノマーでの配向を維持して高分子化されていればよいので、高分子液晶になってからその配向が変化する必要はない。
【0033】
このようにして製造した光学異方性回折格子に、λ/4板を代表とする位相差素子を積層して回折素子を作製する。この位相差素子は、光学異方性回折格子を通過してきた光を円偏光にする。この位相差素子は光源とは反対側に、すなわち、光学記録媒体側に配置される。この位相差素子としては、ポリカーボネート、ポリビニルアルコール等の材料からなる公知の位相差フィルムが使用できる。
【0034】
この場合、本発明では、光学異方性回折格子は凸部を形成した第1のガラス基板が光源とは反対側にきて、この第1のガラス基板に位相差素子が積層されるようにする。
【0035】
このように格子状の凸部(長手方向が図1の奥行き方向)が光源とは反対にあるとし、正の誘電異方性ネマチック液晶を用い、第1の基板の格子状の凸部の屈折率を液晶の常光屈折率にほぼ等しくし、これに半導体レーザからのP波(紙面に平行な方向の偏光を持つ)が入射した場合の動作を図1を参照しつつ説明する。
【0036】
往路においては、半導体レーザから入射したP波に対して、異方性回折格子は、格子状の凸部の屈折率と液晶部の屈折率はほぼ等しいので、回折格子として機能せずにそのまま光は透過する。
【0037】
復路においては、位相差フィルムによって偏光方向は変化し、異方性回折格子にS波で入射する。そのとき、S波に対応する液晶の屈折率は異常光屈折率に相当するので、格子状凸部の屈折率(ほぼ常光屈折率に等しい)とは異なり、回折格子として機能し光の回折が起こる。
【0038】
本発明のもう一つの形態として、第1の基板の格子状の凸部の屈折率を液晶の異光屈折率にほぼ等しくするものがある。この場合も、回折光が光検知器に到達するようにしなくてはならないので、図1で格子状の凸部の長手方向は図1の紙面に奥行き方向とされる。これにより、半導体レーザからのS波入力素子に、適用できる。
【0039】
この場合も、本発明では、光学異方性回折格子は凸部を形成した第1のガラス基板が光源とは反対側にきて、この第1のガラス基板に位相差素子が積層されるようにする。
【0040】
このように格子状の凸部(長手方向が図1の奥行き方向)が光源とは反対にあるとし、正の誘電異方性ネマチック液晶を用い、第1の基板の格子状の凸部の屈折率を液晶の異常光屈折率にほぼ等しくし、これに半導体レーザからのS波(紙面に垂直な方向の偏向を持つ)が入射した場合の動作を図1を参照しつつ説明する。
【0041】
往路においては、半導体レーザから入射したS波に対して、異方性回折格子は、格子状の凸部の屈折率と液晶部の屈折率はほぼ等しいので、回折格子として機能せずにそのまま光は透過する。
【0042】
復路においては、位相差フィルムによって偏光方向は変化し、異方性回折格子にP波で入射する。そのとき、P波に対応する液晶の屈折率は常光屈折率に相当するので、格子状凸部の屈折率(ほぼ異常光屈折率に等しい)とは異なり、回折格子として機能し光の回折が起こる。
【0043】
本発明の回折素子は、光源側の基板表面、すなわち、第2の基板側にも他の回折格子を形成してもよく、その場合光検出器への回折と3ビーム法によるトラッキングエラー検出のための回折の両方が1個の素子で実現できる。
【0044】
本発明における光学異方性回折格子の凸部のパターンは、光学記録媒体からの戻り光のビーム形状が所望の形状になるように、回折格子面内で曲率をつけたり、格子間隔に分布をつけたりすることもできる。
【0045】
上記の説明では、液晶はねじれていない例について説明したが、本発明では液晶はねじれていてもよい。液晶をねじらせるには、配向膜の配向処理方向をそれに合わせて配置し、必要に応じて液晶にねじれを起こさせる成分を添加する。この場合、格子を形成する凸部の長手方向は、ねじれて伝搬してきた偏光が往路では回折を生じなく、復路で回折を生じるように、それに合わせて配置する。
【0046】
本発明において、回折素子の光源側の面及び/又は光学記録媒体側の面に、UV硬化型アクリル樹脂等の被膜を設けた場合、λ/4板やガラス基板の表面の凹凸に起因する波面収差を低減でき好ましい。さらにこのUV硬化型アクリル樹脂等の被膜の上に、平坦度のよいガラス基板やプラスチック基板等を積層することにより、格段に波面収差を低減でき好ましい。したがって、回折素子の光の入出射面が平坦化されていることにより、結果的に波面収差が低減される。
【0047】
本発明における光源としては半導体レーザ、YAGレーザ等の固体レーザ、He−Ne等の気体レーザが使用でき、半導体レーザが小型軽量化、連続発振、保守点検等の点で好ましい。光源部に半導体レーザ等と非線形光学素子を組み込んだ高調波発生装置(SHG)を使用し、青色レーザ等の短波長レーザを用いると、高密度の光記録及び読み取りが可能になる。
【0048】
本発明の光学記録媒体は、光により情報を記録及び/又は読み取ることができる媒体である。その例としてはCD、CD−ROM、DVD(デジタルビデオディスク)等の光ディスク、及び光磁気ディスク、相変化型光ディスク等が挙げられる。
【0049】
【実施例】
「例1」
メチルトリメトキシシランを主成分とし、氷酢酸、コロイダルシリカ、テトライソプロピルチタネートを含む混合液を室温で8時間撹拌し、10mm×10mm×厚さ0.5mm、屈折率1.52のガラス基板上に塗布した。室温で放置し、ゲル化させた後、これを400℃でプレス成形し、450℃で30分焼成した。
【0050】
その結果、屈折率が1.52、長手方向に垂直な面における断面形状が矩形状の格子状の凸部13を形成した。このときの凸部のピッチは13μm、深さは1.4μmであった。その液晶に接する側の面にポリイミド配向膜を形成した。そのラビング方向が前記凸部の長手方向(図2の図に垂直方向)に沿うようにした。
【0051】
縦10mm×横10mm×厚さ0.5mm、屈折率1.52の第2のガラス基板を用意し、その液晶に接する側の面にポリイミド配向膜を形成した。そのラビング方向が前記凸部の長手方向と同一方向となるようにした。次いで、第1のガラス基板と、第2のガラス基板とを相互の配向方向が平行になる状態で重ね合わせ、周辺部を液晶注入用の開口部を除いてシールした。
【0052】
具体的には次のようにした。8μmの球状スペーサを含むエポキシ樹脂を第2のガラス基板の周辺部に塗布し、その上に第1のガラス基板を載置した。その後、減圧雰囲気中で液晶として混合液晶組成物(メルク社製商品名「BL009」、ネマチック液晶、Δn=0.28、常光屈折率=1.52、異常光屈折率=1.80、固体液晶相への相転移温度≦−20℃、アイソトロピック相への相転移温度=108℃)を注入した。前記開口部を封止用の樹脂で塞ぎ、光学異方性回折格子を作製した。
【0053】
次いで、第1のガラス基板の外面(凸部を設けた面と反対側の面)に、透明接着剤を用いてポリカーボネート製の位相差フィルムを接着した。さらにその上にUV硬化型アクリル樹脂を塗布した。さらにその上に第3のガラス基板を載置し、紫外線を照射して第3のガラス基板を積層接着した。さらに素子全体について、光の入射面及び光の出射面に反射防止膜を形成し、回折素子を作製した。
【0054】
この回折素子は、半導体レーザからの波長650nmのP波(図1において紙面に平行な偏光方向の光)に対して90%の透過率であった。光ディスクからのS波(紙面に垂直な偏光方向の光)に対しては、1次回折光の回折効率が25%、−1次回折光の回折効率が26%であった。
【0055】
したがって往復効率は、0.90×0.51で計算すると45.9%となり、実用上充分に高い効率が得られた。また透過光の波面収差は、回折素子の光の入出射面の中心部(直径2mmの円形の範囲)で、0.015λrms(自乗平均)以下であった。
【0056】
「例2」
PbOを多量に含む屈折率1.79、ガラス転移点380℃、屈伏点460℃のガラスフリットを、α−テルピネオールにエチルセルロースを溶解したバインダと混練してペースト状にし、縦10mm×横10mm×厚さ0.5mm、屈折率1.80のガラス基板上に印刷した後、550℃で減圧、焼成し、膜厚20μmの透明な薄膜にした。
【0057】
これを400℃でプレス成形し、その結果、長手方向に垂直な面における断面形状がブレーズ状の格子状の凸部43を形成した。このときの凸部のピッチは13μm、深さは2μmであった。その液晶に接する側の面にポリイミド配向膜を形成した。そのラビング方向が前記凸部の長手方向(図5の図に垂直方向)に沿うようにした。
【0058】
縦10mm×横10mm×厚さ0.5mm、屈折率1.80の第2のガラス基板を用いた他は例1と同様にして、配向膜を形成し、第1のガラス基板と重ね合わせシールし、同じ液晶を注入して光学異方性回折格子を作製した。さらに例1と同様に位相差フィルムを接着し、UV硬化型アクリル樹脂で第3のガラス基板を積層接着し、光の入射面及び光の出射面に反射防止膜を形成し、回折素子を作製した。
【0059】
この回折素子は、半導体レーザからの波長678nmのS波(図1において紙面に垂直な偏光方向の光)に対して90%の透過率であった。光ディスクからのP波(紙面に平行な偏光方向の光)に対しては、1次回折光の回折効率が65%、−1次回折光の回折効率が5%であった。
【0060】
したがって往復効率は、1次回折光のみの場合は0.90×0.65で計算すると58%となり、実用上充分に高い効率が得られた。また透過光の波面収差は、回折素子の光の入出射面の中心部(直径2mmの円形の範囲)で、0.015λrms(自乗平均)以下であった。
【0061】
「例3(参考例)
縦10mm×横10mm×厚さ0.5mm、屈折率1.79、ガラス転移点455℃、屈伏点475℃の光学ガラス(オハラ社製「SF6」)を、480℃でプレス成形し、その結果、長手方向に垂直な面における断面形状がブレーズ状の格子状の凸部33を形成した。このときの凸部のピッチは13μm、深さは2μmであった。その液晶に接する側の面にポリイミド配向膜を形成した。そのラビング方向が前記凸部の長手方向(図4の図に垂直方向)に沿うようにした。
【0062】
縦10mm×横10mm×厚さ0.5mm、屈折率1.79の第2のガラス基板を用いた他は例1と同様にして、配向膜を形成し、第1のガラス基板と重ね合わせシールし、同じ液晶を注入して光学異方性回折格子を作製した。さらに例1と同様に位相差フィルムを接着し、UV硬化型アクリル樹脂で第3のガラス基板を積層接着し、光の入射面及び光の出射面に反射防止膜を形成し、回折素子を作製した。
【0063】
この回折素子は、半導体レーザからの波長678nmのS波(図1において紙面に垂直な偏光方向の光)に対して90%の透過率であった。光ディスクからのP波(紙面に平行な偏光方向の光)に対しては、1次回折光の回折効率が63%、−1次回折光の回折効率が5%であった。
【0064】
したがって往復効率は、1次回折光のみの場合は0.90×0.63で計算すると56.7%となり、実用上充分に高い効率が得られた。また透過光の波面収差は、回折素子の光の入出射面の中心部(直径2mmの円形の範囲)で、0.016λrms(自乗平均)以下であった。
【0065】
【発明の効果】
本発明では、型による成形により表面に格子状のガラス製凸部が形成された基板と光学異方性材料とを用いて光学異方性回折格子を形成しているので、精密な回折格子形状が容易に得られる。また、型による成形なので、生産性が極めて高い。さらに、ドライエッチングでは難しいブレーズ形状も容易に得られる。
【0066】
特に、その回折素子の基板のガラス製凸部を、ガラス基板上にガラスフリット膜を形成し、焼成した後、プレス成形して形成することにより、低温で成形ができ、型の損耗が減少する。
【0067】
また、ガラス基板上にゾルゲル法によりガラス質膜を形成し、そのガラス質膜をゲル状態でプレス成形し、その後焼成して形成することにより、より低温で成形が可能になり、型の損耗が減少する。
【0068】
本発明は、本発明の効果を損しない範囲内で種々の応用が可能である。
【図面の簡単な説明】
【図1】本発明の光ヘッド装置の基本的な構成を示す模式図。
【図2】学異方性回折格子の参考例の断面図。
【図3】本発明で用いられる光学異方性回折格子の他の例の断面図。
【図4】学異方性回折格子の他の参考例の断面図。
【図5】本発明で用いられる光学異方性回折格子の他の例の断面図。
【符号の説明】
1:光源
2:光学異方性回折格子
3:位相差素子
4:回折素子
5:集光レンズ
6:光学記録媒体
7:光検出器
11:第1の基板
12:第2の基板
13:凸部
14:シール材
15:液晶
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical head device for writing and reading optical information on optical disks such as CDs (compact disks), CD-ROMs, video disks, and magneto-optical disks, and a method of manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as an optical head device for writing optical information on an optical disk or a magneto-optical disk or reading optical information, an optical component for guiding (beam splitting) signal light reflected from a recording surface of the disk to a detection unit. And those using a prism type beam splitter and those using a diffraction grating or a hologram element have been known.
[0003]
A diffraction grating or a hologram element for an optical head device forms a rectangular grating (relief type) having a rectangular cross section on a glass or plastic substrate by a dry etching method or an injection molding method. Function was given.
[0004]
In addition, when trying to increase the light use efficiency over an isotropic diffraction grating having a light use efficiency of about 10%, it is conceivable to use polarized light. When trying to use polarized light, a prism type beam splitter is combined with a λ / 4 plate to increase the efficiency of the forward path (the direction from the light source to the recording surface) and the return path (the direction from the recording surface to the detection unit) to reduce the reciprocation efficiency. There was a way to raise it.
[0005]
However, the prism type polarizing beam splitter is expensive, and other methods have been sought. As one method, a method of using a flat plate of birefringent crystal such as LiNbO 3 and forming an anisotropic diffraction grating on the surface to have polarization selectivity is known. However, since the birefringent crystal itself is expensive and the productivity is poor, it has been difficult to apply it to the consumer field. Also, when a lattice is formed on LiNbO 3 by the proton exchange method, there is a problem that it is difficult to form a lattice having a fine pitch because protons in the proton exchange solution are easily diffused into the substrate.
[0006]
[Problems to be solved by the invention]
In order to solve this problem, it is also known to form an uneven shape on a substrate and form an anisotropic diffraction grating by combining this with a liquid crystal. This can be considered that the substrate is usually etched or cut to form an uneven shape on the substrate.
[0007]
However, it is difficult to precisely process unevenness of a glass substrate by wet etching, and dry etching is not easy. For this reason, the present inventors have also proposed a method of forming a SiO 2 film or a SiON film on a glass substrate and dry-etching the SiO 2 film or SiON film in order to facilitate the production.
[0008]
Even in the case where such a transparent film is formed and etched, it is necessary to perform dry etching, so that a manufacturing method that has higher productivity and can easily create a precise uneven shape has been desired. .
[0009]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problem, and is a diffraction element used for an optical head device in which a diffraction element is arranged between a light source and an optical recording medium, wherein the diffraction element is provided between two substrates. it is filled with an optically anisotropic material, that is the two least one surface of the substrate of the substrate is glass protrusions of the grid-shaped formation, the refractive index of the convex portions, optically anisotropic material In the method for producing a diffractive element having optical anisotropy, which has a refractive index substantially equal to either the ordinary refractive index or the extraordinary refractive index, the method of forming the glass convex portion includes forming a glass frit on a glass substrate. A method for producing a diffraction element, comprising a step of forming a film, firing the film, and then press-molding the film .
[0010]
Further, the method of forming a glass convex portion of the substrate of the diffractive element of the optical head device, a glassy film formed by the sol-gel method on the glass substrate, and press molding the glass membrane in the gel state, then Provided is a method for manufacturing a diffraction element , comprising a step of firing.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic diagram showing a basic configuration of an optical head device using the diffraction grating of the present invention. In FIG. 1, reference numeral 1 denotes a light source such as a semiconductor laser, 2 denotes an optically anisotropic diffraction grating, and 3 denotes a phase difference element such as a λ / 4 plate. Reference numeral 4 denotes a diffraction element, which includes the optically anisotropic diffraction grating 2 and the retardation element 3. 5 is a condenser lens for condensing light, 6 is an optical recording medium, and 7 is a detector.
[0012]
Figure 2 is a cross-sectional view of a reference example of the optical anisotropic diffraction grating, illustrating an example of forming a convex portion in the glass substrate itself. In FIG. 2, reference numeral 11 denotes a first substrate provided with a convex portion, 12 denotes a flat second substrate, 13 denotes a convex portion, 14 denotes a sealing material for sealing the periphery, and 15 denotes an optically anisotropic member disposed therebetween. It is a liquid crystal which is a conductive material. In the present invention, the convex portion of the substrate is formed by molding using a mold of a transparent material film formed on the glass substrate, but in the reference example of FIG. 2, the convex portion is formed of the material of the first substrate 11 itself which is a glass substrate. A part 13 is formed.
[0013]
FIG. 3 is a cross-sectional view of another example of the optically anisotropic diffraction grating used in the present invention, showing an example in which a projection made of a transparent material film is formed on a glass substrate. In FIG. 3, reference numeral 21 denotes a first substrate provided with a convex portion, 22 denotes a flat second substrate, 23 denotes a convex portion thereof, 24 denotes a sealing material for sealing the periphery, and 25 denotes an optically anisotropic member disposed therebetween. It is a liquid crystal which is a conductive material. In the present invention, the convex portion of the substrate is formed by molding with a mold, and in the example of FIG. 3, the convex portion 23 is formed of a transparent material layer of glass laminated on a glass substrate.
[0014]
4 and 5 are cross-sectional views of another reference example and another example of the optically anisotropic diffraction grating used in the present invention, and show an example in which a convex portion is formed in a blazed shape. FIG. 4 shows a reference example in which a convex portion is formed on a glass substrate itself, and FIG. 5 shows an example in which a convex portion made of a transparent material film is formed on a glass substrate.
[0015]
4 and 5, reference numerals 31 and 41 denote a first substrate provided with projections, 32 and 42 denote flat second substrates, 33 and 43 denote projections thereof, and 34 and 44 denote sealing materials for sealing the periphery. , 35 and 45 are liquid crystals which are optically anisotropic materials disposed therebetween. In the reference example of FIG. 4, the blazed convex portion 33 is formed of the material of the first substrate 31 itself, which is a glass substrate. In the example of FIG. 5, a blazed convex portion 43 is formed of a transparent material layer made of glass laminated on a glass substrate.
[0016]
In the present invention, the convex portion is formed of glass, and the convex portion is formed by molding with a mold. Specifically, press molding is performed. This press molding may be a batch press or a continuous press.
[0017]
The convex portion of the glass in the first substrate, the surface of the substrate, by forming a glass transparent material film to form it into a convex portion. In the present invention, as an optically anisotropic material used in combination with this substrate, liquid crystal is used as a typical material.
[0018]
Transparent material film formed on the base plate, the refractive index of the substrate of this is nearly equal refractive index is of about 1.5 is used. Also, the refractive index of the convex portion can be made to match the extraordinary light refractive index of the liquid crystal. Usually, the extraordinary light refractive index of the liquid crystal is about 1.6 to 1.8, so the material is selected so that the refractive indices of the substrate and the transparent material film match the extraordinary light refractive index.
[0019]
The optically anisotropic grating of the present invention, a transparent material film formed on the surface of the base plate, and processed into a predetermined shape to form a grid-shaped convex portions. In this case, the depth, pitch, and shape of the projections may be determined according to the desired diffraction shape. The projection is formed by molding with a mold. The following is mentioned as a molding method using a mold.
[0020]
On a glass board to form a glass transparent material film, to press forming the projections on the transparent material layer. Transparency material film, a frit paste method, Ru is formed on a substrate by a sol-gel method.
[0021]
Compared with the method of directly press-molding a glass substrate, the frit paste method facilitates press-forming at a low temperature, and is advantageous in terms of mold life and thermal deformation. That is, in the frit paste method, since a glass frit film is formed and baked to form a glass transparent material film, a transparent material film having a relatively low softening point can be easily formed, and low-temperature pressing becomes possible. .
[0022]
In the sol-gel method, a vitreous film is formed on a glass substrate by a sol-gel method, and the vitreous film is press-molded in a gel state and then fired. In this method, by pressing the vitreous film in a gel state, press molding can be performed at a lower temperature than the glass frit film, which is advantageous.
[0023]
In the present invention, the convex part adjusts the refractive index to the ordinary light refractive index or the extraordinary light refractive index of the liquid crystal . When shaped by direct the glass substrate is subjected to two constraints that can be molded by and relatively low temperatures refractive index of the glass substrate are matched to it. And since glass is melted in a kiln in mass production and the composition cannot be easily changed, conversely, liquid crystals must be selected and used.
[0024]
On the other hand, in the manufacturing method using the glass frit film or the sol-gel method, it is relatively easy to change the refractive index. Therefore, it is easy to match the refractive index with the liquid crystal. In this case, as the base glass substrate, a glass substrate used in a normal liquid crystal display element can be used. For this reason, a substrate with projections can be obtained at low cost.
[0025]
The optically anisotropic diffraction grating of the present invention is manufactured as follows.
For first first glass substrate (first substrate), forming a protrusion in the transparent material film laminated on the I Rimoto plate molding method using such type as described above. The cross-sectional shape of the uneven portion in a plane perpendicular to the longitudinal direction may be a symmetrical rectangular shape such as a rectangle or a square, or an asymmetrical shape such as a step shape or a saw shape.
[0026]
In the case where the convex portion has an asymmetric shape, the diffraction efficiency of one of the ± 1st-order diffracted lights by the optically anisotropic diffraction grating is increased, and if only the diffracted light having the higher diffraction efficiency is detected. Often, a single detector can provide high light use efficiency.
[0027]
In the present invention, usually, an alignment film such as polyimide is formed on the surface of the first substrate in contact with the liquid crystal, and the liquid crystal alignment direction of the alignment film is aligned with the longitudinal direction of the projection. The alignment of the liquid crystal may be performed by rubbing or another method such as oblique evaporation, but the rubbing method has good productivity.
[0028]
Next, a second glass substrate (a second substrate) is prepared, and a polyimide alignment film is also formed on the surface in contact with the liquid crystal, and the rubbing direction of the alignment film is the same as the rubbing direction of the first substrate. Rub in the direction.
[0029]
As described above, the second glass substrate is laminated and bonded to the first glass substrate with the liquid crystal alignment directions being the same. At that time, a sealing material is applied to and adhered to the peripheral portions of the first glass substrate and the second glass substrate in portions other than the opening for liquid crystal injection. The sealing material may be a resin such as an epoxy resin or a glass frit mixed with a spacer as necessary. Then, liquid crystal is injected from the opening in a vacuum, and the opening is closed with a sealing resin.
[0030]
Note that the sealing step, the liquid crystal injection step, and the opening sealing step are not limited to the above steps, and may be steps in which liquid crystal injection and seal pressure bonding are performed simultaneously.
[0031]
As the liquid crystal used in the present invention, a polymer liquid crystal, a liquid crystal monomer, a liquid crystal composition and the like can be appropriately used. In the case of a normal liquid crystal composition, a nematic liquid crystal used in a normal TN type liquid crystal may be used. It is preferable to use a liquid crystal having a large refractive index anisotropy since a large diffraction angle can be obtained. Specifically, Δn ≧ 0.2, particularly Δn ≧ 0.25 is preferable.
[0032]
When a high-molecular liquid crystal is used as the liquid crystal, after the liquid crystal monomer is injected, the liquid crystal monomer may be polymerized by irradiating ultraviolet rays or heating in an aligned state. In that case, the polymer liquid crystal can be oriented only by the convex portion, and therefore, the orientation film may be omitted if the liquid crystal is oriented in a specific direction. In the case of using the polymer liquid crystal, it is only necessary to maintain the orientation of the liquid crystal monomer and polymerize the polymer liquid crystal. Therefore, it is not necessary to change the orientation after the polymer liquid crystal is formed.
[0033]
A retardation element typified by a λ / 4 plate is laminated on the optically anisotropic diffraction grating manufactured as described above to produce a diffraction element. This phase difference element converts light passing through the optically anisotropic diffraction grating into circularly polarized light. This phase difference element is arranged on the side opposite to the light source, that is, on the optical recording medium side. As the retardation element, a known retardation film made of a material such as polycarbonate and polyvinyl alcohol can be used.
[0034]
In this case, in the present invention, the optically anisotropic diffraction grating is configured such that the first glass substrate having the convex portion is on the opposite side to the light source, and the phase difference element is laminated on the first glass substrate. I do.
[0035]
As described above, it is assumed that the lattice-shaped protrusions (the longitudinal direction is the depth direction in FIG. 1) are opposite to the light source, and a positive dielectric anisotropic nematic liquid crystal is used, and the lattice-shaped protrusions of the first substrate are refracted. The operation in the case where the refractive index is made substantially equal to the ordinary light refractive index of the liquid crystal and a P-wave (having a polarization in a direction parallel to the paper surface) from the semiconductor laser is incident thereon will be described with reference to FIG.
[0036]
On the outward path, for the P-wave incident from the semiconductor laser, the anisotropic diffraction grating does not function as a diffraction grating because the refractive index of the lattice-shaped convex portion is substantially equal to the refractive index of the liquid crystal portion. Is transmitted.
[0037]
On the return path, the polarization direction is changed by the retardation film, and the S-wave is incident on the anisotropic diffraction grating. At this time, since the refractive index of the liquid crystal corresponding to the S-wave corresponds to the extraordinary light refractive index, unlike the refractive index of the lattice-like convex portion (substantially equal to the ordinary light refractive index), the liquid crystal functions as a diffraction grating and diffracts light. Occur.
[0038]
Another embodiment of the present invention, are those substantially equal a grid refractive index of the convex portion of the first substrate to the abnormal light refractive index of the liquid crystal. Also in this case, since the diffracted light must reach the photodetector, the longitudinal direction of the lattice-shaped protrusions in FIG. 1 is the depth direction on the paper of FIG. Thereby, it can be applied to an S-wave input element from a semiconductor laser.
[0039]
Also in this case, in the present invention, the optically anisotropic diffraction grating is configured such that the first glass substrate on which the convex portion is formed comes to the opposite side to the light source, and the phase difference element is laminated on the first glass substrate. To
[0040]
As described above, it is assumed that the lattice-shaped protrusions (the longitudinal direction is the depth direction in FIG. 1) are opposite to the light source, and a positive dielectric anisotropic nematic liquid crystal is used, and the lattice-shaped protrusions of the first substrate are refracted. The operation in the case where the refractive index is made substantially equal to the extraordinary light refractive index of the liquid crystal and an S-wave (having a deflection in a direction perpendicular to the paper surface) from the semiconductor laser is incident on the liquid crystal will be described with reference to FIG.
[0041]
On the outward path, the S-wave incident from the semiconductor laser does not function as a diffraction grating because the anisotropic diffraction grating does not function as a diffraction grating because the refractive index of the lattice-shaped convex portion and the refractive index of the liquid crystal portion are almost equal. Is transmitted.
[0042]
On the return path, the polarization direction changes due to the retardation film, and the P-wave is incident on the anisotropic diffraction grating. At this time, since the refractive index of the liquid crystal corresponding to the P wave corresponds to the ordinary light refractive index, unlike the refractive index of the lattice-shaped convex portion (substantially equal to the extraordinary light refractive index), the liquid crystal functions as a diffraction grating and diffracts light. Occur.
[0043]
In the diffraction element of the present invention, another diffraction grating may be formed on the substrate surface on the light source side, that is, on the second substrate side. In this case, diffraction to the photodetector and tracking error detection by the three-beam method are performed. Diffraction can be realized by one element.
[0044]
The pattern of the convex portions of the optically anisotropic diffraction grating according to the present invention may have a curvature in the diffraction grating plane or a distribution of the grating interval so that the beam shape of the return light from the optical recording medium has a desired shape. You can also.
[0045]
In the above description, an example in which the liquid crystal is not twisted has been described, but in the present invention, the liquid crystal may be twisted. In order to twist the liquid crystal, the alignment treatment direction of the alignment film is arranged according to the twist, and a component that causes the liquid crystal to twist is added as necessary. In this case, the longitudinal direction of the convex portion forming the grating is arranged in accordance with the twisted and propagated polarized light so that it does not cause diffraction on the outward path but causes diffraction on the return path.
[0046]
In the present invention, when a coating such as a UV-curable acrylic resin is provided on the surface of the diffraction element on the light source side and / or the surface on the optical recording medium side, the wavefront caused by the unevenness of the surface of the λ / 4 plate or the glass substrate This is preferable because aberration can be reduced. Further, by laminating a glass substrate, a plastic substrate, or the like with good flatness on the coating of the UV-curable acrylic resin or the like, the wavefront aberration can be remarkably reduced, which is preferable. Therefore, since the light entrance / exit surface of the diffraction element is flattened, the wavefront aberration is consequently reduced.
[0047]
As the light source in the present invention, a solid-state laser such as a semiconductor laser or a YAG laser, or a gas laser such as He-Ne can be used, and a semiconductor laser is preferable in terms of reduction in size and weight, continuous oscillation, maintenance and inspection, and the like. Using a harmonic generator (SHG) in which a semiconductor laser or the like and a non-linear optical element are incorporated in the light source section and using a short wavelength laser such as a blue laser enables high-density optical recording and reading.
[0048]
The optical recording medium of the present invention is a medium on which information can be recorded and / or read by light. Examples thereof include optical disks such as CDs, CD-ROMs, DVDs (digital video disks), magneto-optical disks, and phase-change optical disks.
[0049]
【Example】
"Example 1"
A mixed solution containing methyltrimethoxysilane as a main component and containing glacial acetic acid, colloidal silica and tetraisopropyl titanate is stirred at room temperature for 8 hours, and placed on a glass substrate having a size of 10 mm × 10 mm × 0.5 mm and a refractive index of 1.52. Applied. After standing at room temperature and gelling, it was press-molded at 400 ° C and baked at 450 ° C for 30 minutes.
[0050]
As a result, a lattice-shaped projection 13 having a refractive index of 1.52 and a rectangular cross section in a plane perpendicular to the longitudinal direction was formed. The pitch of the projections at this time was 13 μm, and the depth was 1.4 μm. A polyimide alignment film was formed on the surface in contact with the liquid crystal. The rubbing direction was set along the longitudinal direction of the convex portion (the direction perpendicular to the drawing of FIG. 2).
[0051]
A second glass substrate having a length of 10 mm, a width of 10 mm, a thickness of 0.5 mm, and a refractive index of 1.52 was prepared, and a polyimide alignment film was formed on a surface in contact with the liquid crystal. The rubbing direction was the same as the longitudinal direction of the projection. Next, the first glass substrate and the second glass substrate were overlapped with each other in a state where their orientation directions were parallel to each other, and the peripheral portion was sealed except for an opening for injecting liquid crystal.
[0052]
Specifically, it was as follows. An epoxy resin containing an 8 μm spherical spacer was applied to the periphery of the second glass substrate, and the first glass substrate was mounted thereon. Thereafter, a mixed liquid crystal composition (trade name “BL009” manufactured by Merck, nematic liquid crystal, Δn = 0.28, refractive index of ordinary light = 1.52, refractive index of extraordinary light = 1.80, solid liquid crystal) Phase transition temperature to phase ≦ −20 ° C., phase transition temperature to isotropic phase = 108 ° C.). The opening was closed with a sealing resin to produce an optically anisotropic diffraction grating.
[0053]
Next, a retardation film made of polycarbonate was bonded to the outer surface of the first glass substrate (the surface opposite to the surface provided with the convex portions) using a transparent adhesive. Further, a UV curable acrylic resin was applied thereon. Further, a third glass substrate was placed thereon, and the third glass substrate was laminated and bonded by irradiating ultraviolet rays. Further, with respect to the entire device, an anti-reflection film was formed on a light incident surface and a light output surface to produce a diffraction device.
[0054]
This diffractive element had a transmittance of 90% with respect to a P-wave having a wavelength of 650 nm from a semiconductor laser (light in a polarization direction parallel to the paper surface in FIG. 1). With respect to the S-wave (light in the polarization direction perpendicular to the paper surface) from the optical disk, the diffraction efficiency of the first-order diffracted light was 25% and the diffraction efficiency of the -1st-order diffracted light was 26%.
[0055]
Therefore, the reciprocating efficiency was 45.9% when calculated by 0.90 × 0.51, and a practically high efficiency was obtained. The wavefront aberration of the transmitted light was 0.015λ rms (root mean square) or less at the center of the light entrance / exit surface of the diffractive element (circular range having a diameter of 2 mm).
[0056]
"Example 2"
A glass frit containing a large amount of PbO and having a refractive index of 1.79, a glass transition point of 380 ° C., and a sag point of 460 ° C. is kneaded with a binder obtained by dissolving ethyl cellulose in α-terpineol to form a paste, which is 10 mm long × 10 mm wide × thick. After printing on a glass substrate having a thickness of 0.5 mm and a refractive index of 1.80, the resultant was baked at 550 ° C. under reduced pressure to form a transparent thin film having a thickness of 20 μm.
[0057]
This was press-formed at 400 ° C., and as a result, a lattice-shaped convex portion 43 having a blazed cross-sectional shape in a plane perpendicular to the longitudinal direction was formed. The pitch of the projections at this time was 13 μm, and the depth was 2 μm. A polyimide alignment film was formed on the surface in contact with the liquid crystal. The rubbing direction was set to be along the longitudinal direction of the projection (the direction perpendicular to the drawing of FIG. 5).
[0058]
An alignment film was formed in the same manner as in Example 1 except that a second glass substrate having a length of 10 mm, a width of 10 mm, a thickness of 0.5 mm, and a refractive index of 1.80 was used, and was overlaid and sealed with the first glass substrate. Then, the same liquid crystal was injected to produce an optically anisotropic diffraction grating. Further, a retardation film is adhered in the same manner as in Example 1, a third glass substrate is laminated and adhered with a UV-curable acrylic resin, and an anti-reflection film is formed on a light incident surface and a light exit surface to produce a diffraction element. did.
[0059]
This diffractive element had a transmittance of 90% with respect to an S-wave (light having a polarization direction perpendicular to the paper surface in FIG. 1) having a wavelength of 678 nm from a semiconductor laser. For a P wave (light in a polarization direction parallel to the paper surface) from the optical disc, the diffraction efficiency of the first-order diffracted light was 65% and the diffraction efficiency of the -1st-order diffracted light was 5%.
[0060]
Therefore, the reciprocating efficiency was 58% when calculated with 0.90 × 0.65 for only the first-order diffracted light, and a sufficiently high efficiency for practical use was obtained. The wavefront aberration of the transmitted light was 0.015λ rms (root mean square) or less at the center of the light entrance / exit surface of the diffractive element (circular range having a diameter of 2 mm).
[0061]
"Example 3 (Reference example) "
Optical glass ("SF6" manufactured by Ohara) having a length of 10 mm, a width of 10 mm, a thickness of 0.5 mm, a refractive index of 1.79, a glass transition point of 455 ° C, and a deformation point of 475 ° C is press-molded at 480 ° C. A lattice-shaped convex portion 33 having a blazed cross section in a plane perpendicular to the longitudinal direction was formed. The pitch of the projections at this time was 13 μm, and the depth was 2 μm. A polyimide alignment film was formed on the surface in contact with the liquid crystal. The rubbing direction was set along the longitudinal direction of the convex portion (the direction perpendicular to the drawing of FIG. 4).
[0062]
An alignment film was formed in the same manner as in Example 1 except that a second glass substrate having a length of 10 mm, a width of 10 mm, a thickness of 0.5 mm, and a refractive index of 1.79 was used, and was overlaid and sealed with the first glass substrate. Then, the same liquid crystal was injected to produce an optically anisotropic diffraction grating. Further, a retardation film is adhered in the same manner as in Example 1, a third glass substrate is laminated and adhered with a UV-curable acrylic resin, and an anti-reflection film is formed on a light incident surface and a light exit surface to produce a diffraction element. did.
[0063]
This diffractive element had a transmittance of 90% with respect to an S-wave (light having a polarization direction perpendicular to the paper surface in FIG. 1) having a wavelength of 678 nm from a semiconductor laser. For a P-wave (light in a polarization direction parallel to the paper surface) from the optical disk, the diffraction efficiency of the first-order diffracted light was 63% and the diffraction efficiency of the -1st-order diffracted light was 5%.
[0064]
Therefore, the reciprocating efficiency was 56.7% when calculated with 0.90 × 0.63 for only the first-order diffracted light, and a sufficiently high efficiency for practical use was obtained. The wavefront aberration of the transmitted light was 0.016λ rms (root mean square) or less at the center of the light entrance / exit surface of the diffraction element (circular range having a diameter of 2 mm).
[0065]
【The invention's effect】
In the present invention, since the optically anisotropic diffraction grating is formed using the optically anisotropic material and the substrate having the lattice-shaped glass convex portions formed on the surface by molding with a mold, the precise diffraction grating shape is obtained. Can be easily obtained. In addition, productivity is extremely high because of molding by a mold. Furthermore, a blaze shape that is difficult to obtain by dry etching can be easily obtained.
[0066]
In particular, by forming the glass convex portion of the substrate of the diffraction element by forming a glass frit film on a glass substrate, baking, and then press forming, molding can be performed at a low temperature, and wear of the mold is reduced. .
[0067]
Also, by forming a vitreous film on a glass substrate by a sol-gel method, press-forming the vitreous film in a gel state, and then sintering it, it is possible to form at a lower temperature, and wear of the mold is reduced. Decrease.
[0068]
The present invention can be applied to various applications within a range that does not impair the effects of the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a basic configuration of an optical head device according to the present invention.
2 is a cross-sectional view of a reference example of the optical anisotropic diffraction grating.
FIG. 3 is a sectional view of another example of the optically anisotropic diffraction grating used in the present invention.
4 is a cross-sectional view of another reference example of the optical anisotropic diffraction grating.
FIG. 5 is a sectional view of another example of the optically anisotropic diffraction grating used in the present invention.
[Explanation of symbols]
1: light source 2: optically anisotropic diffraction grating 3: phase difference element 4: diffraction element 5: condenser lens 6: optical recording medium 7: photodetector 11: first substrate 12: second substrate 13: convex Part 14: sealing material 15: liquid crystal

Claims (2)

光源と光学記録媒体との間に回折素子を配置した光ヘッド装置に用いられる回折素子であって
2枚の基板間に光学異方性材料を充填されてなり、前記2枚の基板の少なくとも一方の基板表面に格子状のガラス製凸部が形成されており、その凸部の屈折率が、光学異方性材料の常光屈折率又は異常光屈折率のいずれかにほぼ等しい屈折率である、光学異方性を有する回折素子の製造方法において、
前記ガラス製凸部を形成する方法が、ガラス基板上にガラスフリット膜を形成し、焼成した後、プレス成形する工程を備えていることを特徴とする回折素子の製造方法
A diffraction element used in an optical head device in which a diffraction element is arranged between a light source and an optical recording medium,
An optically anisotropic material is filled between two substrates, and at least one of the two substrates has a lattice-shaped glass projection formed on a surface thereof, and the refractive index of the projection is reduced. In the method for manufacturing a diffraction element having optical anisotropy, which has a refractive index substantially equal to either the ordinary refractive index or the extraordinary refractive index of the optically anisotropic material ,
The method of manufacturing a diffraction element, wherein the method of forming the glass protrusion includes a step of forming a glass frit film on a glass substrate, firing the glass frit film, and then press-molding the glass frit film .
光源と光学記録媒体との間に回折素子を配置した光ヘッド装置に用いられる回折素子であって、
2枚の基板間に光学異方性材料を充填されてなり、前記2枚の基板の少なくとも一方の基板の表面に格子状のガラス製凸部が形成されており、その凸部の屈折率が、光学異方性材料の常光屈折率又は異常光屈折率のいずれかにほぼ等しい屈折率である、光学異方性を有する回折素子の製造方法において、
前記ガラス製凸部を形成する方法が、ガラス基板上にゾルゲル法によりガラス質膜を形成し、そのガラス質膜をゲル状態でプレス成形し、その後焼成する工程を備えていることを特徴とする回折素子の製造方法。
A diffraction element used in an optical head device in which a diffraction element is arranged between a light source and an optical recording medium,
An optically anisotropic material is filled between two substrates, and at least one of the two substrates has a lattice-shaped glass projection formed on a surface thereof, and the refractive index of the projection is reduced. In the method for manufacturing a diffraction element having optical anisotropy, which has a refractive index substantially equal to either the ordinary refractive index or the extraordinary refractive index of the optically anisotropic material,
The method of forming the glass convex portion includes a step of forming a vitreous film on a glass substrate by a sol-gel method, pressing the vitreous film in a gel state, and then firing. A method for manufacturing a diffraction element .
JP24648696A 1996-09-18 1996-09-18 Manufacturing method of diffraction element used for optical head device Expired - Fee Related JP3550905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24648696A JP3550905B2 (en) 1996-09-18 1996-09-18 Manufacturing method of diffraction element used for optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24648696A JP3550905B2 (en) 1996-09-18 1996-09-18 Manufacturing method of diffraction element used for optical head device

Publications (2)

Publication Number Publication Date
JPH1092004A JPH1092004A (en) 1998-04-10
JP3550905B2 true JP3550905B2 (en) 2004-08-04

Family

ID=17149123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24648696A Expired - Fee Related JP3550905B2 (en) 1996-09-18 1996-09-18 Manufacturing method of diffraction element used for optical head device

Country Status (1)

Country Link
JP (1) JP3550905B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1126291B1 (en) 1999-08-26 2004-10-27 Asahi Glass Company Ltd. Phase shifter and optical head device mounted with the same
JP4622160B2 (en) * 2001-05-31 2011-02-02 旭硝子株式会社 Diffraction grating integrated optical rotator and optical head device
JP2006047385A (en) * 2004-07-30 2006-02-16 Ricoh Co Ltd Polarization splitting element, polarization splitting device, and optical pickup apparatus
JP2012212696A (en) * 2009-08-20 2012-11-01 Asahi Glass Co Ltd Fresnel lens structure, light condensing device, fresnel lens for solar cells with cover glass, and manufacturing method of the fresnel lens for the solar cells with the cover glass

Also Published As

Publication number Publication date
JPH1092004A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
US6271966B1 (en) Optical head device including an optically anisotropic diffraction grating and process for its production
US7710536B2 (en) Liquid crystal diffraction lens element and optical head device
US6304312B1 (en) Optical head, method of manufacturing the same, and diffraction element suitable therefor
JP2006252638A (en) Polarization diffraction element and optical head apparatus
JP3550905B2 (en) Manufacturing method of diffraction element used for optical head device
JPH1164615A (en) Diffraction element
JP3598703B2 (en) Optical head device and manufacturing method thereof
JP3509399B2 (en) Optical head device
JP3829356B2 (en) Optical head device
JP3528381B2 (en) Optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3713778B2 (en) Optical head device
JP3648581B2 (en) Polarization diffraction grating, aperture control device using the same, aperture control method, and optical head device
JP3550873B2 (en) Optical head device
JPH1048588A (en) Optical head device
JPH09185837A (en) Optical head device
JP3528468B2 (en) Optical head device and manufacturing method thereof
JPH09180234A (en) Optical head device
JP2005353207A (en) Polarizing hologram element, optical pickup device, and manufacturing method for them
JP2002365416A (en) Polarization diffraction element and optical head device
JPH10188332A (en) Optical head device
JPH09127335A (en) Manufacture of optical head device and optical head device
JP4364083B2 (en) Optical head device
JPH09161303A (en) Optical head device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees