JPH10188332A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPH10188332A
JPH10188332A JP9188703A JP18870397A JPH10188332A JP H10188332 A JPH10188332 A JP H10188332A JP 9188703 A JP9188703 A JP 9188703A JP 18870397 A JP18870397 A JP 18870397A JP H10188332 A JPH10188332 A JP H10188332A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
refractive index
substrate
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9188703A
Other languages
Japanese (ja)
Other versions
JP3799756B2 (en
Inventor
Yuzuru Tanabe
譲 田辺
Yousuke Fujino
陽輔 藤野
Mitsuru Kurosawa
みつる 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP18870397A priority Critical patent/JP3799756B2/en
Publication of JPH10188332A publication Critical patent/JPH10188332A/en
Application granted granted Critical
Publication of JP3799756B2 publication Critical patent/JP3799756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optical head device whose miniaturization is easy and which has good productivity by allowing at least one side of liquid crystal cell substrates of liquid crystal to be arranged in between a beam splitter and optical recording mediums to have a projected part or a recessed part, allowing liquid crystal molecules being in the inside to be twisted and making a focus or the phase distribution of light beams variable by electrodes provided on the substrates to enhance the utilization efficiency of light beams. SOLUTION: When a voltage is not impressed on electrodes 14, 15 of substrates 11, 12 being at upper and lower sides of a liquid crystal lens, light beams of P-polarized lights emitted from a light source pass through the beam spliter of a polarization system and light beams which are made circularity polarized lights of a clockwise direction by a phase difference plate 3 pass through liquid crystal lens by almost without being diffracted to be focused on a first optical recording medium. The light beam reflected from the first optical recording medium becomes a circularity polarized light to pass through the liquid crystal lens as it is and it is returned to a linearly polarixed light with the phase difference plate. When the voltage is impressed on the electrodes 14, 15, light beams of P-polarized lights emitted from the light source are made the polarized lights of a clockwise direction and they are focused on a second optical recording medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CD(コンパクト
ディスク)、CD−ROM、ビデオディスク等の光ディ
スク及び光磁気ディスク等の光学記録媒体に光学的情報
を書き込んだり、光学的情報を読み取るための光ヘッド
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for writing optical information on an optical recording medium such as a CD (compact disk), a CD-ROM, a video disk, and a magneto-optical disk, and for reading optical information. The present invention relates to an optical head device.

【0002】[0002]

【従来の技術】従来、光ディスク及び光磁気ディスク等
の光記録媒体に光学的情報を書き込んだり、光学的情報
を読み取る光ヘッド装置において、CD/CD−ROM
とDVDディスクのように異なる厚みのディスクに対し
て信号の読み書きを1つの光ヘッド装置で実現するため
に、次のような構成が採られていた。
2. Description of the Related Art Conventionally, in an optical head device for writing optical information on an optical recording medium such as an optical disk and a magneto-optical disk and for reading the optical information, a CD / CD-ROM is used.
In order to realize reading and writing of signals with respect to disks having different thicknesses such as a DVD disk and a DVD disk with a single optical head device, the following configuration has been adopted.

【0003】例えば、レンズの表面にフレネルレンズタ
イプのブレーズホログラムを形成し、半導体レーザから
レンズに入射した光のうち、例えば約半分をホログラム
によってビームが広がる方向に回折し、残り半分はその
まま透過せしめ、その後にレンズ本体によって各々のビ
ームを収束せしめることによって、2つの焦点を持つ光
を1つの光ヘッド装置によって作り出すことが行われて
きた。また、レンズは従来と同様のものにし、上記と同
じ機能を持つフレネルホログラムレンズプレートを別途
分離して配置せしめることも試みられている。
For example, a Fresnel lens type blazed hologram is formed on the surface of a lens, and for example, about half of the light incident on the lens from the semiconductor laser is diffracted by the hologram in the direction in which the beam spreads, and the other half is transmitted as it is. Then, by converging each beam by a lens body, light having two focal points is produced by one optical head device. It has also been attempted to make the lens the same as the conventional one, and separately separate and arrange a Fresnel hologram lens plate having the same function as above.

【0004】しかしこれらの方式では、上記のホログラ
ムによって往路で光の光量が半分になり、かつ復路でも
再び光量が半分になるので、往復で光量が1/4以下に
なる問題があった。
[0004] However, in these systems, the hologram reduces the amount of light on the forward path by half and again on the return path by half, so that there is a problem that the amount of light is reduced to 1/4 or less during reciprocation.

【0005】このため、特に大きな出力を得るのが困難
である赤色の半導体レーザを利用した光ヘッド装置の場
合、光源に対する負荷が大きくなり、消費電力の増加、
光ヘッド装置の大型化、コストの上昇、信頼性の低下を
もたらす問題があった。
For this reason, in the case of an optical head device using a red semiconductor laser, for which it is particularly difficult to obtain a large output, the load on the light source increases, and the power consumption increases.
There has been a problem that the optical head device is increased in size, cost is increased, and reliability is reduced.

【0006】また、2個の焦点距離の異なるレンズを用
意し、それを機械的に切り替えて使用することも行われ
ているが、機械的に移動させて使用するので、光ヘッド
装置の大型化、コストの上昇、信頼性の低下をもたらす
問題があった。
It has also been practiced to prepare two lenses having different focal lengths and mechanically switch and use them. However, since the lenses are mechanically moved and used, the size of the optical head device increases. However, there is a problem that the cost increases and the reliability decreases.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前述の問題
を解消し、光の利用効率を高め、小型化が容易で、安価
に生産性良く製造できる2焦点レンズを組み込んだ光ヘ
ッド装置の提供を目的とする。また、偏光ホログラムや
偏光ビームスプリッタを用いたいわゆる偏光系でも使用
できる2焦点レンズを組み込んだ光ヘッド装置の提供を
目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, improves the efficiency of light utilization, is easy to miniaturize, and provides an optical head device incorporating a bifocal lens which can be manufactured inexpensively with high productivity. For the purpose of providing. It is another object of the present invention to provide an optical head device incorporating a bifocal lens that can be used in a so-called polarization system using a polarization hologram or a polarization beam splitter.

【0008】[0008]

【課題を解決するための手段】本発明は、光源、ビーム
スプリッタ、液晶レンズ及び光検出器を有する光ヘッド
装置において、ビームスプリッタと光記録媒体との間に
配置する液晶レンズとして、液晶セルの基板の少なくと
も一方が凹部又は凸部を有しており、内部に充填された
液晶がツイストしており、基板の少なくとも一部に設け
られた電極によって焦点距離又は光の位相分布を可変と
したものを使用することを特徴とする光ヘッド装置を提
供する。
SUMMARY OF THE INVENTION The present invention relates to an optical head device having a light source, a beam splitter, a liquid crystal lens, and a photodetector, wherein a liquid crystal lens disposed between the beam splitter and the optical recording medium has a liquid crystal cell. At least one of the substrates has a concave portion or a convex portion, the liquid crystal filled therein is twisted, and the focal length or the phase distribution of light is made variable by electrodes provided on at least a part of the substrate. The present invention provides an optical head device characterized by using:

【0009】また、光源、ビームスプリッタ、液晶レン
ズ及び光検出器を有する光ヘッド装置において、ビーム
スプリッタと光記録媒体との間に配置する液晶レンズと
して、液晶セルの基板の少なくとも一方が微細な凹部又
は凸部を有してフレネルレンズ構造とされており、内部
に充填された液晶がツイストしており、基板の少なくと
も一部に設けられた電極によって焦点距離又は光の位相
分布を可変としたものを使用することを特徴とする光ヘ
ッド装置を提供する。
In an optical head device having a light source, a beam splitter, a liquid crystal lens, and a photodetector, at least one of the substrates of the liquid crystal cell has a fine concave as a liquid crystal lens disposed between the beam splitter and the optical recording medium. Or, it has a Fresnel lens structure with a convex portion, the liquid crystal filled inside is twisted, and the focal length or the phase distribution of light is made variable by an electrode provided on at least a part of the substrate The present invention provides an optical head device characterized by using:

【0010】さらに、それらの液晶レンズの中央部分の
基板がほぼ平板とされている光ヘッド装置、及び、それ
らの液晶の常光屈折率をno 、異常光屈折率をne 、ツ
イストピッチをP、真空中の波長をλとしたとき、(n
e −no2 P/(8λ)≦0.05である光ヘッド装
置を提供する。
Further, an optical head device in which the substrate at the center of the liquid crystal lens is substantially flat, and the ordinary refractive index of the liquid crystal is n o , the extraordinary refractive index is n e , and the twist pitch is P , When the wavelength in vacuum is λ, (n
e -n o) 2 P / (to provide an optical head device which is 8.lambda) ≦ 0.05.

【0011】さらには、それらの基板の屈折率を、液晶
の常光屈折率又は異常光屈折率又は常光屈折率と異常光
屈折率の平均にほぼ等しくした光ヘッド装置、及び、そ
れらのビームスプリッタとして、格子状の凹部を設けた
基板を少なくとも一方の基板として用い、基板間に光学
異方性材料を充填した偏光回折素子を用いる光ヘッド装
置を提供する。
Further, an optical head device in which the refractive index of the substrate is substantially equal to the ordinary light refractive index or the extraordinary light refractive index of the liquid crystal or the average of the ordinary light refractive index and the extraordinary light refractive index, and a beam splitter thereof. And an optical head device using a polarization diffraction element in which an optically anisotropic material is filled between substrates using a substrate provided with a lattice-shaped concave portion as at least one substrate.

【0012】本発明では、液晶レンズを用いているの
で、外部からの電圧印加によって焦点距離又は光の位相
分布を切り替え可能であり、利用効率の高い光ヘッド装
置が得られる。
In the present invention, since a liquid crystal lens is used, the focal length or the phase distribution of light can be switched by applying a voltage from the outside, and an optical head device with high utilization efficiency can be obtained.

【0013】[0013]

【発明の実施の形態】図1は、本発明の基本的な構成を
示す模式図である。図1において、1は半導体レーザ等
の光源、2はビームスプリッタ、3は位相差板、4は液
晶レンズ、5は集光レンズ、6は第1の光記録媒体、7
は第2の光記録媒体、8は光検出器を示す。
FIG. 1 is a schematic diagram showing a basic configuration of the present invention. In FIG. 1, 1 is a light source such as a semiconductor laser, 2 is a beam splitter, 3 is a phase difference plate, 4 is a liquid crystal lens, 5 is a condenser lens, 6 is a first optical recording medium, 7
Denotes a second optical recording medium, and 8 denotes a photodetector.

【0014】光源1から出た光は、ビームスプリッタ2
を通過し、位相差板3を通過し、液晶レンズ4を通過し
て、集光レンズ5で集光されて光記録媒体に到達する。
ここで、液晶レンズに電圧を印加するか否か又は印加す
る電圧を変えることにより、液晶レンズの焦点距離又は
光の位相分布を変えて、第1の光記録媒体6又は第2の
光記録媒体7に焦点を合わせる。なお、本発明でビーム
スプリッタは、プリズム状のもの、液晶ホログラム等の
偏光ビームスプリッタが使用できる。
Light emitted from the light source 1 is transmitted to a beam splitter 2
Passes through the phase difference plate 3, passes through the liquid crystal lens 4, and is condensed by the condenser lens 5 to reach the optical recording medium.
Here, whether or not a voltage is applied to the liquid crystal lens or the applied voltage is changed to change the focal length of the liquid crystal lens or the phase distribution of light to change the first optical recording medium 6 or the second optical recording medium. Focus on 7. In the present invention, the beam splitter may be a prism-shaped one or a polarizing beam splitter such as a liquid crystal hologram.

【0015】この光記録媒体から反射して戻ってきた光
は、再度集光レンズ5、液晶レンズ4、位相差板3、ビ
ームスプリッタ2を順次通過し、ビームスプリッタ2で
分離された光が光検出器8に到達する。
The light reflected from the optical recording medium and returned again passes through the condenser lens 5, the liquid crystal lens 4, the phase difference plate 3, and the beam splitter 2 again, and the light separated by the beam splitter 2 is converted into light. It reaches the detector 8.

【0016】図2は、基板が凹部又は凸部を有する液晶
レンズの例を示す断面図である。図2において、11、
12は基板、13はその基板に設けられた凹部、14、
15は電極、16は周辺のシール材、17は基板間に充
填された液晶を示す。
FIG. 2 is a sectional view showing an example of a liquid crystal lens in which a substrate has a concave portion or a convex portion. In FIG. 2, 11,
12 is a substrate, 13 is a recess provided in the substrate, 14,
Reference numeral 15 denotes an electrode, 16 denotes a peripheral sealing material, and 17 denotes a liquid crystal filled between the substrates.

【0017】この基板11、12は、プラスチック、ガ
ラス等の透明基板が使用できる。この基板の少なくとも
一方の内面側(液晶側)に凹部又は凸部を形成する。こ
の図では基板12側に凹部を形成している。この凹部又
は凸部は基板自体に形成してもよく、表面に有機又は無
機の透明膜を所定の形状に形成してもよい。
As the substrates 11 and 12, a transparent substrate such as plastic or glass can be used. A concave portion or a convex portion is formed on at least one inner surface side (liquid crystal side) of the substrate. In this figure, a concave portion is formed on the substrate 12 side. The concave portion or the convex portion may be formed on the substrate itself, or an organic or inorganic transparent film may be formed on the surface in a predetermined shape.

【0018】この加工は、基板自体に形成する場合に
は、機械的に削ったり、プレス成形したり、エッチング
したりして形成すればよい。表面に有機又は無機の透明
膜を形成する場合には、透明膜を全面に形成後、基板自
体の場合と同様に削ったり、エッチングしたりして形成
してもよく、直接所定のパターンに堆積させたり、印刷
したりして形成してもよい。
When this processing is performed on the substrate itself, it may be formed by mechanical shaving, press molding, or etching. When forming an organic or inorganic transparent film on the surface, after forming the transparent film on the entire surface, it may be formed by shaving or etching as in the case of the substrate itself, and may be directly deposited in a predetermined pattern. It may be formed by printing or printing.

【0019】図3は、基板をフレネルレンズ構造にした
液晶レンズの例を示す断面図である。図3において、2
1、22は基板、23はその基板に設けられたフレネル
レンズ構造の凹凸部、24、25は電極、26は周辺の
シール材、27は基板間に充填された液晶を示す。この
フレネルレンズ構造の凹凸部も前記した基板に凹部又は
凸部を形成する方法と同様の方法で形成できる。
FIG. 3 is a sectional view showing an example of a liquid crystal lens in which the substrate has a Fresnel lens structure. In FIG. 3, 2
Reference numerals 1 and 22 denote substrates, 23 denotes an uneven portion of the Fresnel lens structure provided on the substrate, 24 and 25 denote electrodes, 26 denotes a peripheral sealing material, and 27 denotes a liquid crystal filled between the substrates. The concave and convex portions of the Fresnel lens structure can be formed by the same method as the method of forming the concave or convex portions on the substrate.

【0020】これらのレンズの凹凸は、完全に所定の形
状としてもよく、加工が容易になるように中心部のみは
平坦な形状にして用いてもあまり問題はない。特に、フ
レネルレンズ構造とする場合には、中心部を平坦にして
おくことにより、加工が容易になり好ましい。この中心
部とは、レンズの外径に対して20〜60%程度の径よ
り内側の領域を意味する。
The irregularities of these lenses may be completely formed into a predetermined shape, and there is no problem even if only the central portion is used in a flat shape so as to facilitate processing. In particular, in the case of a Fresnel lens structure, it is preferable that the center portion be flat to facilitate processing. The central portion means a region inside the diameter of about 20 to 60% with respect to the outer diameter of the lens.

【0021】電極14、15、24、25は、通常のI
TO等の透明電極が使用できる。通常は全面ベタ電極と
することでよいが、例えばリング状にパターニングして
部分的にレンズ作用を変えさせるようにもできる。ま
た、一部に金属線等を設けて低抵抗化することもでき
る。
The electrodes 14, 15, 24 and 25 are formed of a normal I
A transparent electrode such as TO can be used. Normally, the entire surface may be a solid electrode. However, for example, it may be patterned in a ring shape to partially change the lens function. Further, the resistance can be reduced by providing a metal wire or the like in a part.

【0022】また、図示していないが、この電極上にポ
リイミド、ポリアミド、SiO等の配向膜を形成して用
いる。代表的な例では、ポリイミド膜を形成し、表面を
ラビングして配向膜を形成する。この配向膜のラビング
方向は、液晶が2枚の基板間でツイストしたり、しなか
ったりして使用できる。
Although not shown, an alignment film of polyimide, polyamide, SiO, or the like is formed on the electrode and used. In a typical example, a polyimide film is formed, and the surface is rubbed to form an alignment film. The rubbing direction of the alignment film can be used depending on whether or not the liquid crystal is twisted between the two substrates.

【0023】このようにして形成された2枚の基板を電
極側が対向するように配置し、周辺でシール材16、2
6で接着して、内部に液晶17、27を充填する。この
液晶としては、通常のネマチック液晶が使用される。
The two substrates thus formed are arranged so that the electrode sides face each other.
Then, liquid crystal 17 and 27 are filled inside. As this liquid crystal, a normal nematic liquid crystal is used.

【0024】次いで光ヘッド装置の動作を説明する。光
源1から出た光は、直線偏光、例えばP偏光(紙面に平
行な方向の偏光)を有するとする。図2の液晶レンズで
正の誘電異方性のネマチック液晶を用い、基板12の屈
折率を液晶の常光屈折率no と異常光屈折率ne との中
間の値(no+ne )/2に一致するようにしたものを
用い、その配向膜の光源側のラビング方向は紙面に平行
な方向にする。
Next, the operation of the optical head device will be described. It is assumed that light emitted from the light source 1 has linearly polarized light, for example, P-polarized light (polarized light in a direction parallel to the paper surface). A nematic liquid crystal of positive dielectric anisotropy with the liquid crystal lens of FIG. 2, an intermediate value between the refractive index of the substrate 12 and the ordinary refractive index n o and extraordinary refractive index n e of the liquid crystal (n o + n e) / The rubbing direction of the alignment film on the light source side is set to be parallel to the paper.

【0025】この場合、液晶が右ねじれでツイストピッ
チP(360°ツイストするピッチ)でツイストしてい
るとすると、右回り円偏光の光に対する液晶の実効的な
屈折率は近似的に(ne +no )/2+(ne −no
2 P/(8λ)と表される。また、左回り円偏光の光に
対する液晶の実効的な屈折率は近似的に(no +ne
/2−(no −ne2 P/(8λ)と表される。
In this case, assuming that the liquid crystal is twisted at a twist pitch P (360 ° twist pitch) with right-handed twist, the effective refractive index of the liquid crystal with respect to clockwise circularly polarized light is approximately (n e + n o) / 2 + ( n e -n o)
It is expressed as 2 P / (8λ). Further, the effective refractive index of the liquid crystal with respect to light of left-handed circularly polarized light is approximately (n o + n e)
/ 2- (n o -n e) is expressed as 2 P / (8λ).

【0026】液晶レンズ4がオフ状態の場合、光源側の
基板では液晶は基板にほぼ平行にかつ紙面に平行な方向
に配向している。反対側(光記録媒体側)の基板では、
例えば90°ねじれた状態等の光源側の基板の配向角度
と異なる角度で配向しているとする。
When the liquid crystal lens 4 is in the off state, the liquid crystal in the substrate on the light source side is oriented in a direction substantially parallel to the substrate and parallel to the plane of the drawing. On the opposite substrate (optical recording medium side),
For example, it is assumed that the substrate is oriented at an angle different from the orientation angle of the substrate on the light source side such as a 90 ° twisted state.

【0027】往路では光源1から出た光は、ビームスプ
リッタ2を通過し、次いでλ/4板等の位相差板3によ
り右回り円偏光にされ、液晶レンズ4に入射する。この
ビームスプリッタ2は、光の偏光方向によってビームス
プリッタとして機能したり機能しなかったりする偏光系
ビームスプリッタとされる。
On the outward path, the light emitted from the light source 1 passes through the beam splitter 2, is then converted to clockwise circularly polarized light by a phase difference plate 3 such as a λ / 4 plate, and enters the liquid crystal lens 4. The beam splitter 2 is a polarization beam splitter that functions or does not function as a beam splitter depending on the polarization direction of light.

【0028】このとき、(ne +no )/2に比して
(ne −no2 P/(8λ)が小さいとすると、右回
り円偏光の光に対して液晶の実効的な屈折率は近似的に
(ne+no )/2にほぼ等しくなる。このため、往路
では光源1から出た光は、基板の屈折率(液晶の常光屈
折率と異常光屈折率との中間)とねじれた液晶の屈折率
はほぼ一致することになり、屈折率が等しいので光は屈
折せずにほぼ直進する。そして、集光レンズ5で集光さ
れて第1の光記録媒体6に焦点を結ぶ。
[0028] At this time, when the (n e + n o) / 2 in than (n e -n o) 2 P / (8λ) is small, the liquid crystal effective against light right-handed circularly polarized light refractive index is substantially equal to approximately (n e + n o) / 2. For this reason, in the outward path, the light emitted from the light source 1 has a refractive index of the substrate (between the ordinary refractive index of the liquid crystal and the extraordinary refractive index of the liquid crystal) and the refractive index of the twisted liquid crystal which are substantially equal to each other. Since they are equal, light travels almost straight without being refracted. Then, the light is condensed by the condenser lens 5 and focused on the first optical recording medium 6.

【0029】復路では、第1の光記録媒体6の表面で反
射された光は、左回りの円偏光になり、再度集光レンズ
5、レンズとして機能していない液晶レンズ4を通過
し、位相差板3で直線偏光に戻され、ビームスプリッタ
2で光が分離され光検出器8に到達する。
On the return path, the light reflected on the surface of the first optical recording medium 6 becomes counterclockwise circularly polarized light, passes through the condenser lens 5 and the liquid crystal lens 4 not functioning as a lens again, and The light is returned to linearly polarized light by the phase difference plate 3, is separated by the beam splitter 2, and reaches the photodetector 8.

【0030】また、本発明では、右回り円偏光に対する
液晶部の実効屈折率と、左回り円偏光に対する液晶部の
実効屈折率とが、実用上許容される範囲内でほぼ等しい
ことが重要になる。そのためには、ピッチPはあまり大
きくないことが好ましい。具体的には、ピッチPは5μ
m以下にされることが好ましく、特に3μm以下にする
ことが好ましい。
In the present invention, it is important that the effective refractive index of the liquid crystal portion for clockwise circularly polarized light and the effective refractive index of the liquid crystal portion for counterclockwise circularly polarized light are substantially equal within a practically allowable range. Become. For that purpose, the pitch P is preferably not so large. Specifically, the pitch P is 5 μ
m, particularly preferably 3 μm or less.

【0031】また、液晶のピッチPと液晶層の厚みdと
の比d/Pが1.0を超える場合、電圧オフ時に液晶ら
せん軸の乱れたフォーカルコニック状態による光散乱の
ため、実質的にターンオフ時間が増大する傾向にある。
このため、液晶の粘性を低くする、基板界面付近の液晶
配向ベクトルと基板面とのなす角度すなわちプレチルト
角を大きくする等が好ましい。
When the ratio d / P between the pitch P of the liquid crystal and the thickness d of the liquid crystal layer exceeds 1.0, light scattering is caused by the focal conic state in which the liquid crystal helical axis is disturbed when the voltage is turned off. Turn-off time tends to increase.
For this reason, it is preferable to reduce the viscosity of the liquid crystal, or to increase the angle between the liquid crystal alignment vector near the substrate interface and the substrate surface, that is, increase the pretilt angle.

【0032】液晶レンズ4に電圧が印加されてオン状態
になると、液晶は電界方向に整列し、基板にほぼ垂直に
(紙面の上下方向)に配向する。このため、往路では光
源1から出た光は、ビームスプリッタ2を通過し、次い
で位相差板3により右回り円偏光にされ、液晶レンズ4
に入射する。
When a voltage is applied to the liquid crystal lens 4 and the liquid crystal lens 4 is turned on, the liquid crystal is aligned in the direction of the electric field, and is oriented substantially perpendicularly to the substrate (up and down in the drawing). For this reason, on the outward path, the light emitted from the light source 1 passes through the beam splitter 2, and is then converted to clockwise circularly polarized light by the phase difference plate 3,
Incident on.

【0033】ここで基板の屈折率(液晶の常光屈折率と
異常光屈折率との中間)と液晶の屈折率(常光屈折率と
なる)は一致しないことになり、凹レンズとして機能す
ることになり光は屈折する。このため、集光レンズ5で
集光された際に焦点距離が長くなって、第2の光記録媒
体7に焦点を結ぶ。
Here, the refractive index of the substrate (between the ordinary light refractive index of the liquid crystal and the extraordinary light refractive index) and the refractive index of the liquid crystal (which becomes the ordinary light refractive index) do not match, and thus function as a concave lens. Light is refracted. For this reason, when the light is condensed by the condensing lens 5, the focal length increases, and the light is focused on the second optical recording medium 7.

【0034】復路では、第2の光記録媒体7の表面で反
射された光は、左回り円偏光になり、再度集光レンズ
5、凹レンズとして機能している液晶レンズ4を通過
し、位相差板3で直線偏光に戻され、ビームスプリッタ
2で光が分離され光検出器8に到達する。
On the return path, the light reflected on the surface of the second optical recording medium 7 becomes left-handed circularly polarized light, passes through the condenser lens 5 and the liquid crystal lens 4 functioning as a concave lens again, and The light is returned to linearly polarized light by the plate 3, is separated by the beam splitter 2, and reaches the photodetector 8.

【0035】上記例では、基板12が凹部を有する基板
を用いたが、同じ構成で凸部を有する基板を用いれば、
凸レンズとして機能することになる。また、基板12の
屈折率を液晶の常光屈折率no と一致するようにしたも
のを用いれば、電圧オフ時に基板12が凹部を有する基
板を用いた場合には凸レンズとして機能し、凸部を有す
る基板を用いた場合には凹レンズとして機能する。
In the above example, the substrate 12 has a concave portion, but if a substrate having the same configuration and having a convex portion is used,
It will function as a convex lens. Further, by using the refractive index of the substrate 12 that is to coincide with the ordinary refractive index n o of the liquid crystal acts as a convex lens if the substrate 12 is a substrate having a concave portion at the time of voltage off, the convex portion When a substrate having the above is used, it functions as a concave lens.

【0036】この場合、配向処理は両側の基板とも水平
配向処理をする、片側の基板のみを水平配向処理する、
片側の基板のみを水平配向処理し他方の基板を垂直配向
処理する、両側の基板とも垂直配向処理をする等の配向
処理が可能である。
In this case, in the alignment treatment, the substrates on both sides are subjected to horizontal orientation treatment, only one substrate is subjected to horizontal orientation treatment,
Orientation processing such as horizontal alignment processing of only one substrate and vertical alignment processing of the other substrate, and vertical alignment processing of both substrates can be performed.

【0037】垂直配向処理は、有機シラン、レシチン、
界面活性剤等で電極基板表面を処理する方法で行えばよ
い。また、水平配向処理は、電極、基板又はその上に形
成された有機、無機のオーバーコート材を布等で一方向
にこする方法や、斜方蒸着法等により行えばよい。
In the vertical alignment treatment, an organic silane, lecithin,
It may be performed by a method of treating the surface of the electrode substrate with a surfactant or the like. The horizontal alignment treatment may be performed by a method of rubbing an electrode, a substrate, or an organic or inorganic overcoat material formed on the electrode or substrate with a cloth or the like in one direction, an oblique evaporation method, or the like.

【0038】なお、本発明で使用する光源1は、通常の
光ヘッド装置に使用される光源が使用できる。具体的に
は、半導体レーザによる光源が最も一般的であるが、他
のレーザや波長変換素子を組み合わせたような光源も使
用できる。
Incidentally, as the light source 1 used in the present invention, a light source used in a usual optical head device can be used. Specifically, a light source using a semiconductor laser is most common, but a light source obtained by combining another laser or a wavelength conversion element can also be used.

【0039】ビームスプリッタ2は、特定の偏光方向の
光のみ回折させるものであり、往路の光源からの光はそ
のまま通過し、復路の光は回折又は反射する等して、光
検出器に光を到達させうるものであればよい。具体的に
は、回折格子、液晶を用いた回折格子、複合プリズム等
が使用できる。特に、特定の偏光方向の光のみ回折させ
る液晶を用いた回折格子が好適である。位相差板3は、
直線偏光で入射した光を円偏光に変換するλ/4板等の
公知の位相差板が使用できる。
The beam splitter 2 diffracts only light having a specific polarization direction. The light from the light source on the outward path passes through as it is, and the light on the return path is diffracted or reflected. Anything that can be reached can be used. Specifically, a diffraction grating, a diffraction grating using liquid crystal, a compound prism, or the like can be used. In particular, a diffraction grating using a liquid crystal that diffracts only light having a specific polarization direction is preferable. The phase difference plate 3
A known retardation plate such as a λ / 4 plate that converts light incident as linearly polarized light into circularly polarized light can be used.

【0040】集光レンズ5は、第1の光記録媒体又は第
2の光記録媒体のいずれかに光を集光させるためのレン
ズである。液晶レンズ4が電圧オン状態とオフ状態とで
いずれもある程度レンズとして機能する場合には、その
使用状態のいずれかの状態で第1の光記録媒体又は第2
の光記録媒体のいずれかに光を集光させうるようにす
る。
The condenser lens 5 is a lens for condensing light on either the first optical recording medium or the second optical recording medium. When the liquid crystal lens 4 functions as a lens to some extent in both the voltage on state and the off state, the first optical recording medium or the second optical recording medium may be used in any of the use states.
Light can be focused on any of the optical recording media.

【0041】[0041]

【実施例】【Example】

「例1」図2に示すように、基板11、12として厚さ
0.5mmで、大きさが10×10mmで、屈折率が
1.57のガラス基板を用い、下面のガラス基板の中心
はプレスにより非球面凹レンズ状に凹部13を形成し
た。この非球面レンズは、直径2mm、中心の深さは5
μmとした。上面、下面の基板11、12とも電極1
4、15としてITO電極を形成後、ポリイミドの膜を
塗布し、ラビングして水平配向処理を行った。
"Example 1" As shown in FIG. 2, a glass substrate having a thickness of 0.5 mm, a size of 10 × 10 mm, and a refractive index of 1.57 was used as the substrates 11 and 12, and the center of the lower glass substrate was The recess 13 was formed in the shape of an aspherical concave lens by pressing. This aspheric lens has a diameter of 2 mm and a center depth of 5 mm.
μm. Both the upper and lower substrates 11 and 12 have electrodes 1
After forming ITO electrodes as Nos. 4 and 15, a polyimide film was applied and rubbed to perform horizontal alignment treatment.

【0042】この2枚の基板11、12を夫々の配向方
向が平行になるように対向させ、周辺でシールして、レ
ンズ中心部で間隙が10μm、周辺部で間隙が5μmの
空セルを形成した。なお、基板11、12の外面には夫
々反射防止膜を形成した。
The two substrates 11 and 12 are opposed to each other so that their alignment directions are parallel to each other, and sealed at the periphery to form an empty cell having a gap of 10 μm at the center of the lens and a gap of 5 μm at the periphery. did. Note that antireflection films were formed on the outer surfaces of the substrates 11 and 12, respectively.

【0043】この空セルに、液晶17として常光屈折率
が1.52、Δnが0.1、ツイストピッチPが10μ
mの正の誘電異方性のネマチック液晶組成物を注入し、
注入口を封止して液晶レンズを製造した。
In this empty cell, the liquid crystal 17 has an ordinary light refractive index of 1.52, Δn of 0.1, and a twist pitch P of 10 μm.
m of a positive dielectric anisotropic nematic liquid crystal composition,
The inlet was sealed to produce a liquid crystal lens.

【0044】図1に示すように、この液晶レンズ4を配
置して、波長650nmの右回り及び左回りの円偏光の
透過率を測定したところ、右回りの円偏光(光ヘッド装
置での往路)では95%、左回りの円偏光(光ヘッド装
置での復路)でも95%の効率であり、往復で90%の
効率が得られた。
As shown in FIG. 1, the transmittance of right-handed and left-handed circularly polarized light having a wavelength of 650 nm was measured by disposing the liquid crystal lens 4, and found to be right-handed circularly polarized light (outgoing path in an optical head device). ), The efficiency was 95% for the left-handed circularly polarized light (return path in the optical head device), and 90% was obtained for the round trip.

【0045】まず、液晶レンズ4の上下の基板11、1
2の電極14、15間に電圧を印加しない場合について
説明する。光源1から出たP偏光(紙面に平行な偏光方
向)の光は、偏光系のビームスプリッタ2を通過し、位
相差板3で右回りの円偏光になった光は、液晶レンズ4
でほとんど屈折されなく通過し、第1の光記録媒体6に
焦点が合った。
First, the substrates 11, 1 above and below the liquid crystal lens 4 are arranged.
A case where no voltage is applied between the two electrodes 14 and 15 will be described. The P-polarized light (polarization direction parallel to the paper) emitted from the light source 1 passes through a polarizing beam splitter 2, and the clockwise circularly polarized light from the phase difference plate 3 is converted into a liquid crystal lens 4.
The light passed through the first optical recording medium 6 without being substantially refracted.

【0046】この第1の光記録媒体6で反射した光は左
回りの円偏光になり、再度液晶レンズ4をほぼそのまま
通過し、位相差板3で直線偏光に戻され、S偏光(紙面
に垂直な偏光方向)の光になって、偏光系のビームスプ
リッタ2に入射する。S偏光の光はビームスプリッタ2
で回折されて、光検出器8に到達した。
The light reflected by the first optical recording medium 6 becomes left-handed circularly polarized light, passes through the liquid crystal lens 4 again as it is, is returned to linearly polarized light by the phase difference plate 3, and becomes S-polarized light (on the paper surface). It becomes light having a (vertical polarization direction) and is incident on the polarizing beam splitter 2. S-polarized light beam splitter 2
And reached the photodetector 8.

【0047】一方、液晶レンズ4の上下の基板11、1
2の電極14、15間に100Hz、5Vの電圧を印加
した場合について説明する。光源1から出たP偏光(紙
面に平行な偏光方向)の光は、偏光系のビームスプリッ
タ2を通過し、位相差板3で右回りの円偏光になった光
は、液晶レンズ4で屈折され、第2の光記録媒体7に焦
点が合った。
On the other hand, the substrates 11 and 1 above and below the liquid crystal lens 4
A case where a voltage of 100 Hz and 5 V is applied between the two electrodes 14 and 15 will be described. The P-polarized light (polarization direction parallel to the paper surface) emitted from the light source 1 passes through a polarizing beam splitter 2, and the clockwise circularly polarized light from the phase difference plate 3 is refracted by a liquid crystal lens 4. Thus, the second optical recording medium 7 was focused.

【0048】この第2の光記録媒体7で反射した光は左
回りの円偏光になり、再度液晶レンズ4で屈折され、位
相差板3で直線偏光に戻され、S偏光(紙面に垂直な偏
光方向)の光になって、偏光系のビームスプリッタ2に
入射する。S偏光の光はビームスプリッタ2で回折され
て、光検出器8に到達した。
The light reflected by the second optical recording medium 7 becomes counterclockwise circularly polarized light, refracted by the liquid crystal lens 4 again, returned to linearly polarized light by the phase difference plate 3, and converted into S-polarized light (perpendicular to the paper surface). (Polarization direction), and enters the polarization beam splitter 2. The S-polarized light is diffracted by the beam splitter 2 and reaches the photodetector 8.

【0049】「例2」例1の液晶レンズの代わりに、同
じガラス基板を使用し、図3に示すようにフレネルレン
ズ構造の凹凸部23をプレスでにより形成した。フレネ
ルレンズ構造の凹凸部23は、直径2mm、中心の深さ
は2μmとした。周辺部での間隙が4μmとする他は例
1と同様にして空セルを形成した。
Example 2 Instead of the liquid crystal lens of Example 1, the same glass substrate was used, and as shown in FIG. 3, an uneven portion 23 having a Fresnel lens structure was formed by pressing. The uneven portion 23 of the Fresnel lens structure had a diameter of 2 mm and a center depth of 2 μm. Empty cells were formed in the same manner as in Example 1 except that the gap at the peripheral portion was 4 μm.

【0050】この空セルに、液晶27として常光屈折率
が1.52、Δnが0.1、ツイストピッチPが4μm
の正の誘電異方性のネマチック液晶組成物を注入し、注
入口を封止して液晶レンズを製造した。
In this empty cell, the liquid crystal 27 has an ordinary light refractive index of 1.52, Δn of 0.1, and a twist pitch P of 4 μm.
Was injected, and the injection port was sealed to produce a liquid crystal lens.

【0051】この液晶レンズを例1と同様に図1のよう
な構成の光ヘッド装置に組み込んだ。波長650nmの
右回り及び左回りの円偏光の透過率を測定したところ、
右回りの円偏光(光ヘッド装置での往路)では95%、
左回りの円偏光(光ヘッド装置での復路)でも95%の
効率であり、往復で90%の効率が得られた。例1と同
様に100Hz、5Vの電圧のオン、オフにより、焦点
を切り替えることができた。
This liquid crystal lens was incorporated in an optical head device having a configuration as shown in FIG. When measuring the transmittance of clockwise and counterclockwise circularly polarized light with a wavelength of 650 nm,
95% for clockwise circularly polarized light (outbound path in optical head device),
Efficiency of 95% was obtained even for counterclockwise circularly polarized light (return path in the optical head device), and 90% efficiency was obtained for reciprocation. As in Example 1, the focus could be switched by turning on and off a voltage of 100 Hz and 5 V.

【0052】「例3」図2に示すように、基板11、1
2として厚さ0.5mmで、大きさが10×10mm
で、屈折率が1.62のガラス基板を用い、下面のガラ
ス基板の中心はプレスにより非球面凹レンズ状に凹部1
3を形成した。この非球面レンズは、直径2mm、中心
の深さは5μmとした。上面、下面の基板11、12と
も電極14、15としてITO電極を形成した。次い
で、上面の基板11にはポリイミドの膜を塗布し、ラビ
ングして水平配向処理を行った。また、下面の基板12
には有機シラン系の垂直配向剤を塗布した。
"Example 3" As shown in FIG.
2, the thickness is 0.5 mm and the size is 10 × 10 mm
A glass substrate having a refractive index of 1.62 is used, and the center of the lower glass substrate is pressed into an aspheric concave lens shape by pressing.
3 was formed. This aspheric lens had a diameter of 2 mm and a center depth of 5 μm. ITO electrodes were formed as electrodes 14 and 15 on both the upper and lower substrates 11 and 12. Next, a polyimide film was applied to the substrate 11 on the upper surface, and rubbing was performed to perform a horizontal alignment process. The lower substrate 12
Was coated with an organic silane-based vertical alignment agent.

【0053】この2枚の基板11、12を夫々の配向方
向が平行になるように対向させ、周辺でシールして、レ
ンズ中心部で間隙が10μm、周辺部で間隙が5μmの
空セルを形成した。なお、基板11、12の外面には夫
々反射防止膜を形成した。
The two substrates 11 and 12 are opposed to each other so that their alignment directions are parallel to each other, and are sealed at the periphery to form an empty cell having a gap of 10 μm at the center of the lens and a gap of 5 μm at the periphery. did. Note that antireflection films were formed on the outer surfaces of the substrates 11 and 12, respectively.

【0054】この空セルに、液晶17として常光屈折率
が1.52、Δnが0.2、ツイストピッチPが2μm
の正の誘電異方性のネマチック液晶組成物を注入し、注
入口を封止して液晶レンズを製造した。
In this empty cell, the liquid crystal 17 has an ordinary light refractive index of 1.52, Δn of 0.2, and a twist pitch P of 2 μm.
Was injected, and the injection port was sealed to produce a liquid crystal lens.

【0055】この液晶レンズを例1と同様に図1のよう
な構成の光ヘッド装置に組み込んだ。波長650nmの
右回り及び左回りの円偏光の透過率を測定したところ、
右回りの円偏光(光ヘッド装置での往路)では95%、
左回りの円偏光(光ヘッド装置での復路)でも95%の
効率であり、往復で90%の効率が得られた。例1と同
様に100Hz、5Vの電圧のオン、オフにより、焦点
を切り替えることができた。
This liquid crystal lens was incorporated in an optical head device having a configuration as shown in FIG. When measuring the transmittance of clockwise and counterclockwise circularly polarized light with a wavelength of 650 nm,
95% for clockwise circularly polarized light (outbound path in optical head device),
Efficiency of 95% was obtained even for counterclockwise circularly polarized light (return path in the optical head device), and 90% efficiency was obtained for reciprocation. As in Example 1, the focus could be switched by turning on and off a voltage of 100 Hz and 5 V.

【0056】「例4」2枚の基板として厚さ0.5mm
で、大きさが10×10mmで、屈折率が1.57のガ
ラス基板を用いた。下面のガラス基板は中心が凸部にな
るようにエッチングにより非球面凸レンズ状に凸部を形
成した。この非球面レンズは、直径1.5mm、中心の
高さは4μmとした。上面、下面の基板とも電極として
ITO電極を形成後、ポリイミドの膜を塗布し、ラビン
グして水平配向処理を行った。
[Example 4] 0.5 mm thick as two substrates
A glass substrate having a size of 10 × 10 mm and a refractive index of 1.57 was used. On the lower glass substrate, a convex portion was formed in an aspheric convex lens shape by etching so that the center became a convex portion. This aspheric lens had a diameter of 1.5 mm and a center height of 4 μm. After forming ITO electrodes as electrodes on both the upper and lower substrates, a polyimide film was applied and rubbed to perform horizontal alignment processing.

【0057】この2枚の基板を夫々の配向方向が平行に
なるように対向させ、周辺でシールして、レンズ中心部
で間隙が4μm、周辺部で間隙が8μmの空セルを形成
した。なお、2枚の基板の外面には夫々反射防止膜を形
成した。
The two substrates were opposed to each other so that their orientation directions became parallel, and sealed at the periphery to form an empty cell having a gap of 4 μm at the center of the lens and a gap of 8 μm at the periphery. Note that antireflection films were formed on the outer surfaces of the two substrates, respectively.

【0058】この空セルに、液晶として常光屈折率が
1.49、Δnが0.12、ツイストピッチPが3μm
の正の誘電異方性のネマチック液晶組成物を注入し、注
入口を封止して液晶レンズを製造した。
In this empty cell, the ordinary refractive index of the liquid crystal is 1.49, Δn is 0.12, and the twist pitch P is 3 μm.
Was injected, and the injection port was sealed to produce a liquid crystal lens.

【0059】このようにして製造した液晶レンズは、電
圧を印加しない状態では液晶の分子はらせん構造を有
し、そのらせん軸は基板面に垂直になる。このため、基
板面に垂直に入射した波長633nmの光に対して、液
晶の実効屈折率は常光屈折率1.49と異常光屈折率
1.61との中間の値1.55になる。このことから、
液晶の屈折率と基板の屈折率との屈折率差が小さくな
り、液晶レンズを透過した光の位相分布は透過前の状態
とほとんど変わらなかった。
In the liquid crystal lens thus manufactured, when no voltage is applied, the liquid crystal molecules have a helical structure, and the helical axis is perpendicular to the substrate surface. Therefore, for light having a wavelength of 633 nm, which is perpendicularly incident on the substrate surface, the effective refractive index of the liquid crystal is 1.55, which is an intermediate value between the ordinary refractive index of 1.49 and the extraordinary refractive index of 1.61. From this,
The difference between the refractive index of the liquid crystal and the refractive index of the substrate became smaller, and the phase distribution of the light transmitted through the liquid crystal lens was almost the same as before transmission.

【0060】次に、液晶レンズの上下の基板の電極間に
100Hz、10Vの電圧を印加すると、液晶分子が縦
配向状態となる。このため、基板面に垂直に入射した波
長633nmの光に対しては、液晶の実効屈折率は常光
屈折率1.49に等しくなる。このことから、液晶の屈
折率と基板の屈折率との屈折率差が大きくなり、液晶レ
ンズを透過した光の位相分布はセルの基板面に形成され
た非球面形状高さに比例するように変化した。
Next, when a voltage of 100 Hz and 10 V is applied between the electrodes of the substrate above and below the liquid crystal lens, the liquid crystal molecules are in a vertical alignment state. Therefore, for light having a wavelength of 633 nm, which is perpendicularly incident on the substrate surface, the effective refractive index of the liquid crystal becomes equal to the ordinary light refractive index of 1.49. From this, the difference between the refractive index of the liquid crystal and the refractive index of the substrate increases, and the phase distribution of the light transmitted through the liquid crystal lens is proportional to the height of the aspherical shape formed on the substrate surface of the cell. changed.

【0061】これにより、図1の構成で用いた場合、液
晶レンズ4の上下の基板の電極間に電圧を印加しない場
合には、第1の光記録媒体6からの信号が読み出せ、電
圧を印加した場合には、第2の光記録媒体7からの信号
が読み出せた。
Thus, when the voltage is not applied between the electrodes on the upper and lower substrates of the liquid crystal lens 4 when used in the configuration of FIG. 1, the signal from the first optical recording medium 6 can be read and the voltage can be reduced. When the voltage was applied, the signal from the second optical recording medium 7 could be read.

【0062】「例5」例4と同じガラス基板を用いた。
ただし、下面のガラス基板は中心が凸部になるようにエ
ッチングにより非球面凸レンズ状に凸部を形成した。こ
の非球面レンズは、直径1.5mm、中心の高さは3μ
mとした。この下面のガラス基板には、電極としてIT
O電極を形成後、有機シラン系の溶剤を塗布して垂直配
向処理を行った。一方、上面のガラス基板は、電極とし
てITO電極を形成した後、ポリイミドの膜を塗布し、
ラビングして水平配向処理を行った。
Example 5 The same glass substrate as in Example 4 was used.
However, the glass substrate on the lower surface was formed into a convex convex lens shape by etching so that the center became a convex portion. This aspheric lens has a diameter of 1.5 mm and a center height of 3 μm.
m. On the glass substrate on this lower surface, IT
After forming the O electrode, a vertical alignment treatment was performed by applying an organic silane-based solvent. On the other hand, on the glass substrate on the top, after forming an ITO electrode as an electrode, a polyimide film is applied,
Rubbing was performed to perform horizontal alignment processing.

【0063】この2枚の基板を対向させ、周辺でシール
して、レンズ中心部で間隙が3μm、周辺部で間隙が6
μmの空セルを形成した。なお、2枚の基板の外面には
夫々反射防止膜を形成した。
The two substrates are opposed to each other, sealed at the periphery, and the gap is 3 μm at the center of the lens and 6 mm at the periphery.
A μm empty cell was formed. Note that antireflection films were formed on the outer surfaces of the two substrates, respectively.

【0064】この空セルに、液晶として常光屈折率が
1.49、Δnが0.12、ツイストピッチPが1.6
μmの正の誘電異方性のネマチック液晶組成物を注入
し、注入口を封止して液晶レンズを製造した。
In this empty cell, as a liquid crystal, the ordinary light refractive index is 1.49, Δn is 0.12, and the twist pitch P is 1.6.
A nematic liquid crystal composition having a positive dielectric anisotropy of μm was injected, and the injection port was sealed to produce a liquid crystal lens.

【0065】このようにして製造した液晶レンズは、電
圧を印加しない状態では液晶の分子はらせん構造を有
し、そのらせん軸は基板面に垂直になる。このため、基
板面に垂直に入射した波長633nmの光に対して、液
晶の実効屈折率は常光屈折率1.49と異常光屈折率
1.61との中間の値1.55になる。このことから、
液晶の屈折率と基板の屈折率との屈折率差が小さくな
り、液晶レンズを透過した光の位相分布は透過前の状態
とほとんど変わらなかった。
In the liquid crystal lens thus manufactured, when no voltage is applied, the liquid crystal molecules have a helical structure, and the helical axis is perpendicular to the substrate surface. Therefore, for light having a wavelength of 633 nm, which is perpendicularly incident on the substrate surface, the effective refractive index of the liquid crystal is 1.55, which is an intermediate value between the ordinary refractive index of 1.49 and the extraordinary refractive index of 1.61. From this,
The difference between the refractive index of the liquid crystal and the refractive index of the substrate became smaller, and the phase distribution of the light transmitted through the liquid crystal lens was almost the same as before transmission.

【0066】次に、液晶レンズの上下の基板の電極間に
100Hz、10Vの電圧を印加すると、液晶分子が縦
配向状態となる。このため、基板面に垂直に入射した波
長633nmの光に対しては、液晶の実効屈折率は常光
屈折率1.49に等しくなる。このことから、液晶の屈
折率と基板の屈折率との屈折率差が大きくなり、液晶レ
ンズを透過した光の位相分布はセルの基板面に形成され
た非球面形状高さに比例するように変化した。
Next, when a voltage of 100 Hz and 10 V is applied between the electrodes of the substrate above and below the liquid crystal lens, the liquid crystal molecules are in a vertical alignment state. Therefore, for light having a wavelength of 633 nm, which is perpendicularly incident on the substrate surface, the effective refractive index of the liquid crystal becomes equal to the ordinary light refractive index of 1.49. From this, the difference between the refractive index of the liquid crystal and the refractive index of the substrate increases, and the phase distribution of the light transmitted through the liquid crystal lens is proportional to the height of the aspherical shape formed on the substrate surface of the cell. changed.

【0067】これにより、図1の構成で用いた場合、液
晶レンズ4の上下の基板の電極間に電圧を印加しない場
合には、第1の光記録媒体6からの信号が読み出せ、電
圧を印加した場合には、第2の光記録媒体7からの信号
が読み出せた。
Thus, when the voltage is not applied between the electrodes on the upper and lower substrates of the liquid crystal lens 4 in the configuration shown in FIG. 1, a signal from the first optical recording medium 6 can be read, and the voltage can be reduced. When the voltage was applied, the signal from the second optical recording medium 7 could be read.

【0068】「例6」図4に示すように、2枚の基板と
して厚さ0.5mmで、大きさが10×10mmで、屈
折率が1.49のガラス基板を用い、下面のガラス基板
には、中心部が基板の平坦部と同じ高さの山となるよう
にプレスにより非球面同心円状に凹部を形成した。この
非球面レンズは、直径2.3mm、凹部の深さは2.3
μmとした。上面、下面の基板とも電極としてITO電
極を形成後、ポリイミドの膜を塗布し、ラビングして水
平配向処理を行った。
Example 6 As shown in FIG. 4, a glass substrate having a thickness of 0.5 mm, a size of 10 × 10 mm, a refractive index of 1.49 was used as two substrates, and a glass substrate on the lower surface was used. In this method, a concave portion was formed in an aspherical concentric shape by pressing so that the central portion became a peak having the same height as the flat portion of the substrate. This aspheric lens has a diameter of 2.3 mm and a depth of the concave portion of 2.3.
μm. After forming ITO electrodes as electrodes on both the upper and lower substrates, a polyimide film was applied and rubbed to perform horizontal alignment processing.

【0069】この2枚の基板を夫々の配向方向が平行に
なるように対向させ、周辺でシールして、レンズ中心部
で間隙が4μm、凹部で間隙が6.3μmの空セルを形
成した。なお、2枚の基板の外面には夫々反射防止膜を
形成した。
The two substrates were opposed to each other so that their alignment directions became parallel, and the periphery was sealed to form an empty cell having a gap of 4 μm at the center of the lens and a gap of 6.3 μm at the concave portion. Note that antireflection films were formed on the outer surfaces of the two substrates, respectively.

【0070】この空セルに、液晶として常光屈折率が
1.49、Δnが0.12、ツイストピッチPが1.6
μmの正の誘電異方性のネマチック液晶組成物を注入
し、注入口を封止して液晶レンズを製造した。
In this empty cell, as a liquid crystal, the ordinary light refractive index is 1.49, Δn is 0.12, and the twist pitch P is 1.6.
A nematic liquid crystal composition having a positive dielectric anisotropy of μm was injected, and the injection port was sealed to produce a liquid crystal lens.

【0071】このようにして製造した液晶レンズは、電
圧を印加しない状態では液晶の分子はらせん構造を有
し、そのらせん軸は基板面に垂直になる。このため、基
板面に垂直に入射した波長633nmの光に対して、液
晶の実効屈折率は常光屈折率1.49と異常光屈折率
1.61との中間の値1.55になる。このことから、
液晶の屈折率と基板の屈折率との屈折率差が大きくな
り、液晶レンズを透過した光の位相分布はセルの基板面
に形成された非球面形状高さに比例するように変化し
た。
In the liquid crystal lens manufactured as described above, when no voltage is applied, the liquid crystal molecules have a helical structure, and the helical axis is perpendicular to the substrate surface. Therefore, for light having a wavelength of 633 nm, which is perpendicularly incident on the substrate surface, the effective refractive index of the liquid crystal is 1.55, which is an intermediate value between the ordinary refractive index of 1.49 and the extraordinary refractive index of 1.61. From this,
The difference between the refractive index of the liquid crystal and the refractive index of the substrate increased, and the phase distribution of the light transmitted through the liquid crystal lens changed so as to be proportional to the height of the aspherical shape formed on the substrate surface of the cell.

【0072】次に、液晶レンズの上下の基板の電極間に
100Hz、10Vの電圧を印加すると、液晶分子が縦
配向状態となる。このため、基板面に垂直に入射した波
長633nmの光に対しては、液晶の実効屈折率は常光
屈折率1.49に等しくなる。このことから、液晶の屈
折率と基板の屈折率との屈折率差が小さくなり、液晶レ
ンズを透過した光の位相分布は透過前の状態とほとんど
変わらなかった。
Next, when a voltage of 100 Hz and 10 V is applied between the electrodes on the upper and lower substrates of the liquid crystal lens, the liquid crystal molecules are in a vertical alignment state. Therefore, for light having a wavelength of 633 nm, which is perpendicularly incident on the substrate surface, the effective refractive index of the liquid crystal becomes equal to the ordinary light refractive index of 1.49. From this, the difference between the refractive index of the liquid crystal and the refractive index of the substrate became small, and the phase distribution of the light transmitted through the liquid crystal lens was almost the same as the state before transmission.

【0073】これにより、図1の構成で用いた場合、液
晶レンズ4の上下の基板の電極間に電圧を印加しない場
合には、第2の光記録媒体7からの信号が読み出せ、電
圧を印加した場合には、第1の光記録媒体6からの信号
が読み出せた。
Thus, when the voltage is not applied between the electrodes on the upper and lower substrates of the liquid crystal lens 4 when used in the configuration of FIG. 1, the signal from the second optical recording medium 7 can be read and the voltage can be reduced. When applied, the signal from the first optical recording medium 6 could be read.

【0074】[0074]

【発明の効果】本発明の光ヘッド装置では、液晶がツイ
ストした液晶レンズを用いているので、外部からの電圧
印加によって焦点距離又は光の位相分布を切り替え可能
であり、利用効率の高い光ヘッド装置を得ることができ
る。本発明は、その効果を損しない範囲内で、種々の応
用ができる。
According to the optical head device of the present invention, since the liquid crystal lens in which the liquid crystal is twisted is used, the focal length or the phase distribution of light can be switched by applying a voltage from the outside, and the optical head with high utilization efficiency can be used. A device can be obtained. The present invention can be applied to various applications as long as the effects are not impaired.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光ヘッド装置の例を示す模式図。FIG. 1 is a schematic view showing an example of an optical head device according to the present invention.

【図2】基板が凹部又は凸部を有する液晶レンズの例を
示す断面図。
FIG. 2 is a cross-sectional view illustrating an example of a liquid crystal lens in which a substrate has a concave portion or a convex portion.

【図3】基板をフレネルレンズ構造にした液晶レンズの
例を示す断面図。
FIG. 3 is a cross-sectional view illustrating an example of a liquid crystal lens in which a substrate has a Fresnel lens structure.

【図4】基板の中心部に山を有する液晶レンズの例を示
す断面図。
FIG. 4 is a cross-sectional view showing an example of a liquid crystal lens having a mountain at the center of a substrate.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光源、ビームスプリッタ、液晶レンズ及び
光検出器を有する光ヘッド装置において、ビームスプリ
ッタと光記録媒体との間に配置する液晶レンズとして、
液晶セルの基板の少なくとも一方が凹部又は凸部を有し
ており、内部に充填された液晶がツイストしており、基
板の少なくとも一部に設けられた電極によって焦点距離
又は光の位相分布を可変としたものを使用することを特
徴とする光ヘッド装置。
In an optical head device having a light source, a beam splitter, a liquid crystal lens, and a photodetector, as a liquid crystal lens disposed between the beam splitter and an optical recording medium,
At least one of the substrates of the liquid crystal cell has a concave portion or a convex portion, the liquid crystal filled therein is twisted, and the focal length or the phase distribution of light is varied by electrodes provided on at least a part of the substrate. An optical head device characterized by using:
【請求項2】光源、ビームスプリッタ、液晶レンズ及び
光検出器を有する光ヘッド装置において、ビームスプリ
ッタと光記録媒体との間に配置する液晶レンズとして、
液晶セルの基板の少なくとも一方が微細な凹部又は凸部
を有してフレネルレンズ構造とされており、内部に充填
された液晶がツイストしており、基板の少なくとも一部
に設けられた電極によって焦点距離又は光の位相分布を
可変としたものを使用することを特徴とする光ヘッド装
置。
2. An optical head device having a light source, a beam splitter, a liquid crystal lens, and a photodetector, wherein the liquid crystal lens disposed between the beam splitter and the optical recording medium is:
At least one of the substrates of the liquid crystal cell has a Fresnel lens structure having fine concaves or convexes, and the liquid crystal filled therein is twisted and focused by electrodes provided on at least a part of the substrate. An optical head device using a variable distance or phase distribution of light.
【請求項3】液晶レンズの中央部分の基板がほぼ平板と
されている請求項1又は2記載の光ヘッド装置。
3. The optical head device according to claim 1, wherein the substrate at the center of the liquid crystal lens is substantially flat.
【請求項4】液晶の常光屈折率をno 、異常光屈折率を
e 、ツイストピッチをP、真空中の波長をλとしたと
き、(ne −no2 P/(8λ)≦0.05である請
求項1、2又は3記載の光ヘッド装置。
4. A liquid crystal ordinary refractive index n o, the extraordinary refractive index of n e, when the twisting pitch P, and wavelength in vacuum was λ, (n e -n o) 2 P / (8λ) 4. The optical head device according to claim 1, wherein ≤0.05.
【請求項5】基板の屈折率を、液晶の常光屈折率又は異
常光屈折率又は常光屈折率と異常光屈折率の平均にほぼ
等しくした請求項1、2、3又は4記載の光ヘッド装
置。
5. The optical head device according to claim 1, wherein the refractive index of the substrate is substantially equal to the ordinary refractive index of the liquid crystal, the extraordinary refractive index, or the average of the ordinary refractive index and the extraordinary refractive index. .
【請求項6】格子状の凹部を設けた基板を少なくとも一
方の基板として用い、基板間に光学異方性材料を充填し
た偏光回折素子を用いる請求項1、2、3、4又は5記
載の光ヘッド装置。
6. The polarization diffraction element according to claim 1, wherein a substrate provided with a lattice-shaped concave portion is used as at least one substrate, and a polarization diffraction element in which an optically anisotropic material is filled between the substrates is used. Optical head device.
JP18870397A 1996-07-23 1997-07-14 Optical head device Expired - Fee Related JP3799756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18870397A JP3799756B2 (en) 1996-07-23 1997-07-14 Optical head device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP19368996 1996-07-23
JP8-285544 1996-10-28
JP28554496 1996-10-28
JP8-193689 1996-10-28
JP18870397A JP3799756B2 (en) 1996-07-23 1997-07-14 Optical head device

Publications (2)

Publication Number Publication Date
JPH10188332A true JPH10188332A (en) 1998-07-21
JP3799756B2 JP3799756B2 (en) 2006-07-19

Family

ID=27326082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18870397A Expired - Fee Related JP3799756B2 (en) 1996-07-23 1997-07-14 Optical head device

Country Status (1)

Country Link
JP (1) JP3799756B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018801A1 (en) * 1999-09-02 2001-03-15 Asahi Glass Company, Limited Optical head
JP2008268829A (en) * 2007-03-27 2008-11-06 Sharp Corp Hologram recording and reproducing apparatus and hologram recording and reproducing method
JP2011118039A (en) * 2009-12-01 2011-06-16 Stanley Electric Co Ltd Light deflector
US20120105753A1 (en) * 2010-10-29 2012-05-03 Sony Corporation Liquid crystal lens array device, driving method thereof and image display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018801A1 (en) * 1999-09-02 2001-03-15 Asahi Glass Company, Limited Optical head
US7054253B1 (en) 1999-09-02 2006-05-30 Asahi Glass Company, Limited Optical head
JP2008268829A (en) * 2007-03-27 2008-11-06 Sharp Corp Hologram recording and reproducing apparatus and hologram recording and reproducing method
JP2011118039A (en) * 2009-12-01 2011-06-16 Stanley Electric Co Ltd Light deflector
US20120105753A1 (en) * 2010-10-29 2012-05-03 Sony Corporation Liquid crystal lens array device, driving method thereof and image display device

Also Published As

Publication number Publication date
JP3799756B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
US6271966B1 (en) Optical head device including an optically anisotropic diffraction grating and process for its production
JP3620145B2 (en) Optical head device
JP4508048B2 (en) Liquid crystal lens and optical head device
JP2007025143A (en) Liquid crystal optical element and device
WO1997027583A1 (en) Optical head, method of manufacturing the same, and diffraction element suitable therefor
JP3624561B2 (en) Optical modulation element and optical head device
JP3799756B2 (en) Optical head device
JP3994450B2 (en) Manufacturing method of optical diffraction grating and optical head device using the same
JPH1092003A (en) Optical head device and liquid crystal lens used in the same
JP4179645B2 (en) Optical head device and driving method thereof
JP3885251B2 (en) Optical anisotropic diffraction grating, driving method thereof, and optical head device using the same
JP2002357715A (en) Grating-integrated azimuth rotator and optical head device
JP2007280460A (en) Optical head device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
Commander et al. Microlenses immersed in nematic liquid crystal with electrically controllable focal length
JPH10233027A (en) Optical head device
JPH1074333A (en) Optical head device and its production
JP3509399B2 (en) Optical head device
JP3648581B2 (en) Polarization diffraction grating, aperture control device using the same, aperture control method, and optical head device
JPH1069673A (en) Optical head device and composite anisotropic diffraction element using therefor
JP3528468B2 (en) Optical head device and manufacturing method thereof
JP3713778B2 (en) Optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JPH10112058A (en) Optical head device
JP3550873B2 (en) Optical head device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees