JP3947828B2 - Optical head device and manufacturing method thereof - Google Patents

Optical head device and manufacturing method thereof Download PDF

Info

Publication number
JP3947828B2
JP3947828B2 JP25653895A JP25653895A JP3947828B2 JP 3947828 B2 JP3947828 B2 JP 3947828B2 JP 25653895 A JP25653895 A JP 25653895A JP 25653895 A JP25653895 A JP 25653895A JP 3947828 B2 JP3947828 B2 JP 3947828B2
Authority
JP
Japan
Prior art keywords
refractive index
light
liquid crystal
concavo
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25653895A
Other languages
Japanese (ja)
Other versions
JPH09102138A (en
Inventor
譲 田辺
友紀 郡島
弘昌 佐藤
弘樹 保高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP25653895A priority Critical patent/JP3947828B2/en
Priority to KR1020047003501A priority patent/KR100642951B1/en
Priority to KR1019980702484A priority patent/KR19990064007A/en
Priority to US09/043,908 priority patent/US6118586A/en
Priority to PCT/JP1996/002872 priority patent/WO1997013245A1/en
Publication of JPH09102138A publication Critical patent/JPH09102138A/en
Priority to US09/524,742 priority patent/US6271966B1/en
Application granted granted Critical
Publication of JP3947828B2 publication Critical patent/JP3947828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)
  • Polarising Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CD(コンパクト・ディスク)、CD−ROM、ビデオディスク等の光ディスク及び光磁気ディスク等に光学的情報を書き込んだり、光学的情報を読み取るための光ヘッド装置に関する。
【0002】
【従来の技術】
従来、光ディスク及び光磁気ディスク等に光学的情報を書き込んだり、光学的情報を読み取る光ヘッド装置としては、ディスクの記録面から反射された信号光を検出部へ導光(ビームスプリット)する光学部品としてプリズム式ビームスプリッタを用いたものと、回折格子又はホログラム素子を用いたものとが知られていた。
【0003】
従来、光ヘッド装置用の回折格子又はホログラム素子は、ガラスやプラスチック基板上に、矩形の断面を有する矩形格子(レリーフ型)をドライエッチング法又は射出成形法よって形成し、これによって光を回折しビームスプリット機能を付与していた。
【0004】
また、光の利用効率が10%程度の等方性回折格子よりも光の利用効率を上げようとした場合、偏光を利用することが考えられる。偏光を利用しようとすると、プリズム式ビームスプリッタにλ/4板を組み合わせて、往き(光源から記録面へ向かう方向)及び帰り(記録面から検出部へ向かう方向)の効率を上げて往復効率を上げる方法があった。
【0005】
しかし、プリズム式偏光ビームスプリッタは高価であり、他の方式が模索されていた。一つの方式としてLiNbO等の複屈折結晶の平板を用い、表面に異方性回折格子を形成し偏選択性をもたす方法が知られている。しかし、複屈折結晶自体が高価であり、民生分野への適用は困難である。
【0006】
等方性回折格子は前述のように、往き(光源から記録面へ向かう方向)の利用効率が50%程度で、帰り(記録面から検出部へ向かう方向)の利用効率が20%程度であるため、往復で10%程度が限界である。
【0007】
【発明が解決しようとする課題】
本発明は、前述の問題を解消し光の利用効率を高め、安価に製造できる光ヘッド装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、光源からの光を回折素子を通して光記録媒体上に照射することにより情報の書き込み及び/又は情報の読み取りを行う光ヘッド装置において、前記回折素子は、透明基板の表面に格子状の凹凸部が形成され、前記凹凸部が光学等方性材料からなり、前記凹凸部に光学異方性を有して常光屈折率と異常光屈折率との差Δnが0.05以上0.35以下である液晶が充填されていて、前記凹凸部の屈折率が前記液晶の常光屈折率又は異常光屈折率にほぼ等しい光学異方性回折格子であって、前記凹凸部の屈折率をn、深さをD、液晶の常光屈折率をn、液晶の異常光屈折率をn、|n−n|と|n−n|のいずれか大きい方をΔN、光源からの光の真空中における波長をλとするとき、DΔN=λ/2なる関係が30℃より高い温度で満たされるようにすることにより、0〜60℃の温度範囲で温度特性が最適になるようにして回折による往復効率を高めたことを特徴とする光ヘッド装置を提供する。
また、前記回折素子が、表面に格子状の凹凸部が形成された2枚の透明基板を用い、凹凸部を形成した面どうしを対面させ、あるいは、2枚の透明基板に形成された凹凸部が、積層面に対して非対称となるように積層させて、前記凹凸部にその液晶を充填し、2枚の透明基板を積層してなる光ヘッド装置、さらに前記格子状の凹凸部の断面形状が左右非対称である光ヘッド装置を提供する。
【0009】
また、光源からの光を回折素子を通して光記録媒体上に照射することにより情報の書き込み及び/又は情報の読み取りを行う光ヘッド装置であって、前記回折素子が、表面に格子状の凹凸部が形成された透明基板と、前記凹凸部に充填された、光学異方性を有していて常光屈折率と異常光屈折率との差Δnが0.05以上0.35以下である液晶とを備えた光学異方性回折格子であって、前記凹凸部の屈折率をn、深さをD、液晶の常光屈折率をn、液晶の異常光屈折率をn、|n−n|と|n−n|のいずれか大きい方をΔN、光源からの光の真空中における波長をλとするとき、DΔN=λ/2なる関係が30℃より高い温度で満たされるようにすることにより、0〜60℃の温度範囲で温度特性が最適になるようにして回折による往復効率を高めたことを特徴とする光ヘッド装置の製造方法において、前記光学異方性回折格子が、透明基板の屈折率にほぼ等しい屈折率を有する透明薄膜を透明基板上に被覆する工程と、次いで前記透明薄膜をフォトリソグラフィ法により加工して格子状の凹凸部を形成する工程とを備えた製造方法で製造されることを特徴とする光ヘッド装置の製造方法、さらにまた、前記透明薄膜がSiO膜(1<x<2)である光ヘッド装置の製造方法を提供する。
【0010】
【発明の実施の形態】
発明において、前記凹凸部が光学等方性材料からなりその屈折率が、前記液晶の常光屈折率又は異常光屈折率にほぼ等しければ、光の偏光を利用した光学異方性回折格子として機能するが、特に常光屈折率にほぼ等しい場合、前記凹凸部を有する透明基板材料の選択範囲が広くなり、安価で良質の回折素子が作製できるので好ましい。また、凹凸部の屈折率を液晶の異常光屈折率にほぼ等しくする場合、透明基板材料としてポリカーボネートのような屈折率の高いもの(屈折率1.58)が有効に使用できる。
【0015】
表面に格子状の凹凸部が形成された2枚の透明基板を用い、凹凸部を形成した面どうしを対面させ、それらの凹凸部に前記液晶を充填し、2枚の透明基板を積層して光学異方性回折格子を形成してもよい。その場合、各々の凹凸部は浅いものでよく、そのため作製が容易になり好ましい。また、2つの対面する凹凸部により液晶の配向性が向上する点でも好ましい。
【0016】
前記2枚の透明基板に形成された凹凸部が、積層面に対して非対称となるように積層されている場合、断面形状が非対称な回折格子を容易に作製でき、±1次回折光のいずれか一方の回折効率を大きくし、回折効率の大きい方の光を1つの検出器で検出できるという効果があり、好ましい。
【0017】
本発明で用いる液晶としては、ネマチック液晶、スメクチック液晶等の液晶表示装置等に使用される公知の液晶が使用できる。
【0018】
本発明において、前記液晶の常光屈折率と異常光屈折率との差Δnが0.05以上0.35以下であるとする。その理由は、0.05未満では凹凸部を深くする必要があり製造が困難になり、コスト高を招きやすく、0.35超では液晶が紫外線等により劣化しやすいからである
【0019】
前記透明基板としては、ガラス、ポリオレフィン、ポリカーボネート等の屈折率が1.4程度以上1.6程度以下のものが、液晶の常光屈折率約1.5に整合しやすいため、好ましい。
【0020】
前記凹凸部が光学的に等方性材料からなりその屈折率をn、前記凹凸部の深さをD、前記液晶の常光屈折率をn、異常光屈折率をn、|n−n|と|n−n|のいずれか大きい方をΔN、光源からの光の真空中における波長をλとするとき、DΔN=λ/2となる温度が30℃より高温であるようにされる。すなわち、DΔN=λ/2のときに回折による往復効率は最も高くなるが、ΔNは温度によって変化するので0〜60℃の範囲で温度特性を最適にするためには、30℃以上の温度で上記の関係を満たすような凹凸部の深さにされる
【0022】
前記透明基板の光学異方性回折格子上に、ガラス、又はアクリル樹脂、ポリオレフィン、ポリカーボネート等のプラスチックからなる厚さ1mm程度の第2の透明基板を積層することにより、液晶の層をはさみ込んで固定できるため好ましい。液晶は凹凸部に充填するだけでなく、凹凸部からあふれた部分は透明基板と第2の透明基板との間に、液晶の薄い層を形成してもよい。透明基板の凹凸部を形成した面の平坦部と第2の透明基板との距離は、大きすぎると第2の透明基板に形成した配向膜による液晶の配向力が低下するため10μm以下が好ましく、5μm以下がより好ましい。
【0023】
前記透明基板の光学異方性回折格子上に第2の透明基板が積層され、前記第2の透明基板の液晶側に液晶配向用のポリイミド膜(配向膜)が形成される場合、前記透明基板にポリイミド膜を形成する場合と比較して、ラビング時のラビング用布の損傷が小さくなり、製造コストが小さくなり好ましい。
【0024】
格子状の凹凸部を有する透明基板は、その凹凸部自体がラビングされた配向膜と同様の配向作用を有し、第2の透明基板に配向膜を設けなくとも、それだけでも充分な回折素子としての特性が得られることを見い出した。その場合、配向膜を設けた場合とほぼ同等の特性が得られ、配向膜を設けなくてもよいので低コストで製造できる利点がある。
【0025】
また、第2の透明基板にポリイミド膜を形成する際に、配向のためのラビング方向と前記凹凸部のストライプの方向(格子状の凹凸部の長手方向)を同じにすることにより、液晶の配向の安定性や再現性を向上させ、ΔNを大きくでき、温度等の周辺環境による配向率の低下を防止できる点で好ましい。
【0026】
前記格子状の凹凸部の断面形状が、凹凸部の長手方向(ストライプ方向)に垂直な面において左右非対称である場合、+1次回折光又は−1次回折光のいずれか一方の回折効率を大きくし、回折効率の大きい方のみを利用すれば1つの検出器のみで大きい往復効率が得られ好ましい。左右非対称の形状とは、階段状、斜面状(のこぎり状)等の形状である。
【0027】
また、凹凸部の間隔に分布を持たせるようにする、凹凸部の一部を左右非対称のものにしその他を左右対称のものにする、凹凸部の一部を凸部としその他を凹部とする、というような変更を行ってもよい。
【0028】
前記透明基板の光学異方性回折格子上に、λ/2板、λ/4板等として機能する位相差板、位相差フィルムを積層させれば、光の往き方向(光源側から光記録媒体側へ向かう方向)と光の帰り方向(光記録媒体側から光源側へ向かう方向)とで偏光方向を直交させ、光学異方性回折格子として機能させうる。前記位相差板、位相差フィルムは、数10〜数100μm程度の厚みを有するポリカーボネート又はポリビニールアルコール等の材料が好ましく使用できる。
【0029】
前記位相差板又は位相差フィルムの少なくとも片面をフォトポリマー、熱硬化型エポキシ樹脂等の有機樹脂で覆うか、又はさらに前記有機樹脂を介して平坦性のよいガラス基板、プラスチック基板等の第3の透明基板を接着すれば、波面収差の低減、信頼性の向上という利点があり好ましい。
【0030】
前記透明基板と第2の透明基板との間の周辺部、又は回折素子全体の周辺部をエポキシ樹脂等のシール材でシールすることにより、液晶の漏れを防ぐだけでなく、外部環境の湿度や温度の変化による液晶及び有機樹脂等の好ましくない物理的又は化学的変化を防止でき好ましい。
【0031】
前記透明基板の凹凸部を設けた面と反対側の面(光源側の面)に、トラッキングエラー検出用の3ビームを発生させる第2の回折格子を設けてもよく、その場合トラッキングエラー検出が容易になり好ましい。前記第2の回折格子は、フォトポリマー、フォトレジスト等を塗布し所定パターンに露光することにより形成するか、又はドライエッチング法により直接第2の基板を加工することにより形成する。
【0032】
本発明の光ヘッド装置を読み取り用として使用する場合は、通常、光源側に光記録媒体からの反射光を検出する検出器を設けるが、その検出器の受光面上に前記反射光が所望のビーム形状に集光するように、回折素子の光学異方性回折格子パターンに面内曲率を付与したり、格子間隔に分布を付与してもよい。前記格子パターンは、コンピュータによって設計した曲率分布、格子間隔分布とし、スポットサイズディテクション法等のフォーカスエラー検出法に最適なパターンとすることができる。前記検出器としては、フォトダイオード、CCD素子等の半導体素子を利用したものが小型軽量で、低消費電力であるため好ましい。
【0033】
前記回折素子の光入出射面に反射防止膜を設けることにより、光の損失を防止できる。その場合、反射防止膜としてアモルファスフッ素樹脂を使用すれば、蒸着装置等の高価で大型の成膜装置を使用しないで低コストで成膜できるため好ましい。
【0034】
前記光源、回折素子、検出器、対物レンズ等を同一のパッケージ内に収容すれば、小型で光軸調整等が容易な光ヘッド装置を提供でき好ましい。
【0035】
本発明の光源としては、半導体レーザ(LD)、LED等の半導体素子を利用したものがよく、LDが小型軽量で、低消費電力で、コヒーレンス性を有するため好ましい。また光記録媒体としては、CD、CD−ROM、DVD(デジタル・ビデオ・ディスク)等の光ディスク、光磁気ディスク、相変化型光ディスク、光カード、その他光により情報を書き込み及び/又は読み取るような光システム用の記録媒体が使用できる。
【0036】
さらに本発明において、前記透明薄膜がSiO膜(1<x<2)である場合、液晶の常光屈折率にほぼ一致した凹凸部を容易に作製でき好ましい。また、前記透明薄膜をアクリル樹脂等の有機樹脂として、2P法(フォトポリマライゼーション法)又は選択光重合法を用いて凹凸部を形成するようにしてもよい。
【0037】
具体的には以下のようにして凹凸部を形成する。研磨したガラス基板等の透明基板の表面にフォトレジストをスピンコート法等によりコーティングする。所定のパターンを有するフォトマスクをフォトレジスト膜に密着させて紫外線で露光し、フォトレジスト現像処理することによってフォトレジストの格子状パターンを透明基板の表面に形成する。そのフォトレジストの格子状パターンをさらにマスクとして、CF等のガスを用いドライエッチングすることにより、深さ1〜2μm、ピッチ2〜20μmの光学異方性回折格子用の格子状の凹凸部を形成する。
【0038】
又は上記の方法によって作成した透明基板をマスター基板としてアクリル樹脂等を注入し成形するか、前記透明基板を基に金型を作成し、アクリル樹脂、ポリオレフィン、ポリカーボネート、ポリエーテルスルフォン等の材料を用い、射出成形法、2P法等により格子状の凹凸部を有する透明基板を作製できる。
【0039】
ここで、例えばガラス基板を直接ドライエッチングすることもできるが、エッチング速度が遅く、一定の深さを再現性よく形成することが困難であり、また深さの分布を少なくすることが難しい等の問題がある。
【0040】
そのため、SiO膜のようにガラス基板等の透明基板の屈折率に近い屈折率の膜を蒸着法等によって所望の凹凸部の深さが得られるような厚みに成膜し、透明基板とSiO膜とのエッチング速度の違いを利用して、再現性よく、面分布も少なく、ドライエッチングできる。透明基板の屈折率とSiO膜等の透明薄膜の屈折率との差は、界面による好ましくない反射等を防ぐために0.1以内とするのが好ましい。
【0041】
前記SiO膜の屈折率は通常1.46程度であり、液晶の常光屈折率より低く良好な特性を得ることは容易ではない。また、通常、液晶の常光屈折率は異常光屈折率よりも低い。したがって、以下の方法で液晶の常光屈折率にほぼ一致した凹凸部を容易に製作できる。
【0042】
すなわち、屈折率の高いSiOと、屈折率の低いSiOとの混合物を蒸着法等により成膜することによってSiO膜(1<x<2)を成膜できる。又は、SiOを蒸着法により成膜する際に、蒸着装置内の雰囲気ガスの酸素分圧を徐々に大きくすることにより、SiO膜(1<x<2)を成膜できる。このSiO膜はSiの酸化物であるため、例えばエッチングガスとしてCFを用いた場合、CFの揮発性の高さよりドライエッチング速度も高くなり、ガラス基板とのエッチング選択比も良好となる。
【0043】
以上は単独の回折素子について述べたが、例えば120×120mm巾の透明基板に複数個の液晶を充填した回折素子を形成し、最後に個々に切断することもできる。
【0044】
液晶は、格子状の凹凸部の長手方向にほぼ平行な方向(図1では紙面に垂直な方向)に配向しているが、光源(図1では下方)から入射したP波(図1では偏光方向が紙面に平行な偏光成分)に対しては、液晶と凹凸部は屈折率が等しく、すなわち光学異方性回折格子はP波に対しては透明となる。そのため、P波は何の変化も受けずそのままλ/4板に入射し、円偏光に変化し、対物レンズとしての非球面レンズを透過し、ほぼ100%の光が光記録媒体の記録面に到達する。
【0045】
前記記録面で反射し再び非球面レンズを通り戻ってきた反射光は、再びλ/4板を通過し、偏光方向が90度異なったS波に変化する。S波が光学異方性回折格子に入射すると、今度は液晶と凹凸部の屈折率が異なるため回折格子として機能し、+1次光として最大40%程度、−1次光として最大40%程度の回折効率が得られる。+1次光、−1次光を検出する検出器をどちらか一方にのみ配置した場合で40%、両方に配置した場合は計80%の往復効率が得られる。
【0046】
さらに前記凹凸部を、斜面状(のこぎり状)にしたときはほぼ70〜90%、3段の階段状にしたときはほぼ81%の往復効率が得られる。
【0047】
【実施例】
[例1]
例1の構成を図1に示す。厚さ1mm、10×10mm巾で、屈折率1.54の比較的アルカリ成分の少ないガラス基板1の1表面に、フォトリソグラフィ法とドライエッチング法によって、深さ1.55μm、ピッチ9μmの断面が矩形状の格子状の凹凸部2を形成した。
【0048】
具体的には、両面を研磨したガラス基板1の1表面にフォトレジストをスピンコート法によりコーティングする。次いで、所定のパターンを有するフォトマスクをフォトレジスト膜に密着させて紫外線で露光し、フォトレジスト現像処理することによってフォトレジストの格子状パターンを透明基板の表面に形成する。そのフォトレジストの格子状パターンをさらにマスクとして、CFガスを用いドライエッチングすることにより形成した。
【0049】
比較的アルカリ成分の少ない第2のガラス基板3の1表面に液晶配向用の配向膜としてポリイミド膜4を形成し、配向のためのラビング処理を行った。前記ガラス基板1の凹凸部2を形成した面と、第2のガラス基板3のポリイミド膜4を形成した面とを対面させ、さらにポリイミド膜4のラビング方向と前記凹凸部2のストライプ方向が同じになるようにして、2つのガラス基板を積層し、液晶注入口を除き2つのガラス基板の周囲を直径約4μmの球状スペーサを含むエポキシ樹脂5でシールした。
【0050】
液晶注入口から液晶6(ネマチック液晶、メルク社製商品名P−008、常光屈折率1.525、異常光屈折率1.771)を真空注入した。このとき、ΔN=0.23、D=1.55(μm)、λ=678(nm)であり、DΔN=λ/2を満たすのは35℃になるようにDを設定した。
【0051】
前記第2のガラス基板3のポリイミド膜4と反対側の面にλ/4フィルム7を透明な接着剤により積層接着し、さらにその上に波面収差を改善するためのフォトポリマー8、第3のガラス基板9を積層接着して回折素子10を作製した。回折素子10の光源からの光の入射部11、出射部12には、誘電体多層膜による反射防止膜を施した。
【0052】
光源として半導体レーザ(図1では回折素子10の下方に設けられるが、図示せず。)を用い、波長678nmのP波(紙面に平行な偏光成分)を入射させたとき、P波の透過率は約97%であった。また、光ディスク(図1では回折素子10の上方に設けられるが、図示せず。)からの反射光(円偏光)がλ/4フィルム7によりS波(紙面に垂直な偏光成分)に変化し、このS波が光学異方性回折格子により回折され、+1次回折光の回折効率は33%で、−1次回折光の回折効率は33%であった。この結果、往路効率約97%、往復効率約64%(±1次回折光検出)となった。
【0053】
[例2]
ガラス基板1に形成する凹凸部の断面形状を図2に示すようなのこぎり状にした以外は、例1と同様に作製した。例2においては、P波の透過率は約97%で、S波の+1次回折光の回折効率は約75%で、−1次回折光の回折効率は約2%であった。この結果、往路効率約97%、往復効率約73%(+1次回折光検出)となった。
【0054】
[例3]
ガラス基板1に形成する凹凸部の断面形状を図3に示すような3段の階段状にした以外は、例1と同様に作製した。例3においては、P波の透過率は約97%で、S波の+1次回折光の回折効率は約70%で、−1次回折光の回折効率は約2%であった。この結果、往路効率約97%、往復効率約68%(+1次回折光検出)となった。
【0055】
[例4]
ポリイミド膜4を形成しなかった以外は例1と同様の構成とした。この場合、凹凸部2の配向力のみによって液晶6は配向した。例4においては、P波の透過率は約97%で、S波の+1次回折光の回折効率は約31%で、−1次回折光の回折効率は約30%であった。この結果、往路効率約97%、往復効率約59%(±1次回折光検出)となった。
【0056】
【発明の効果】
本発明は、複屈折結晶のような高価な材料を用いることなく、複屈折結晶よりも大きな基板面積で量産性よく生産でき、またレリーフ型回折格子のような等方性格子に比べて、高い光利用効率が得られる。
【0057】
光学異方性回折格子のピッチ等の基本的構造は、液晶自体ではなく透明基板によって規定されているため、温度特性及び耐環境性に優れる。また、ポリイミド膜等の液晶配向用の膜を設けなくとも、液晶を配向させることもできる。光学異方性回折格子の格子パターンについては、露光用のマスク等を用いCGH(Computer Generated Hologram)法により、複雑な格子パターンを容易に量産性よく形成できる。
【0058】
またλ/4板等の位相差板、位相差フィルム回折素子内にラミネートすれば、非常に生産性に優れ全体をコンパクトにできる。
【図面の簡単な説明】
【図1】例1を示し、液晶による光学異方性回折格子を用いた光ヘッド装置の基本構成の側面図。
【図2】例2の光ヘッド装置用の透明基板の側面図。
【図3】例3の光ヘッド装置用の透明基板の側面図。
【符号の説明】
1:ガラス基板
2:凹凸部
3:第2のガラス基板
4:ポリイミド膜
5:エポキシ樹脂
6:液晶
7:λ/4フィルム
8:フォトポリマー
9:第3のガラス基板
10:回折素子
11:光の入射部
12:光の出射部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical head device for writing optical information on an optical disk such as a CD (compact disk), a CD-ROM, a video disk, and a magneto-optical disk, and for reading the optical information.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as an optical head device that writes optical information on an optical disk, a magneto-optical disk, or the like, or reads optical information, an optical component that guides (beam splits) signal light reflected from the recording surface of the disk to a detection unit In particular, the one using a prism type beam splitter and the one using a diffraction grating or a hologram element are known.
[0003]
Conventionally, a diffraction grating or hologram element for the optical head device, a glass or plastic substrate, a rectangular grating (relief type) formed by Doraie' Jin grayed method or injection molding method having a rectangular cross-section, thereby diffraction light The beam split function was added.
[0004]
In addition, it is conceivable to use polarized light when trying to increase the light utilization efficiency as compared with an isotropic diffraction grating having a light utilization efficiency of about 10%. When using polarized light, a prism beam splitter is combined with a λ / 4 plate to increase the efficiency of reciprocation (direction from the light source to the recording surface) and return (direction from the recording surface to the detection unit) to increase the reciprocal efficiency. There was a way to raise.
[0005]
However, prismatic polarization beam splitters are expensive, and other methods have been sought. Using a plate of birefringent crystal such as LiNbO 3 as a method, to methods et forming an anisotropic diffraction grating having polarization selectivity is known to the surface. However, the birefringent crystal itself is expensive and difficult to apply to the consumer field.
[0006]
As described above, the use efficiency of the isotropic diffraction grating is about 50% in the forward direction (direction from the light source to the recording surface), and the utilization efficiency in the return direction (direction from the recording surface to the detection unit) is about 20%. Therefore, about 10% is the limit in the round trip.
[0007]
[Problems to be solved by the invention]
It is an object of the present invention to provide an optical head device that can solve the above-described problems, increase the light utilization efficiency, and can be manufactured at low cost.
[0008]
[Means for Solving the Problems]
The present invention relates to an optical head device for writing information and / or reading information by irradiating light from a light source onto an optical recording medium through a diffraction element, wherein the diffraction element has a lattice-like shape on the surface of a transparent substrate. An uneven portion is formed, the uneven portion is made of an optically isotropic material, the uneven portion has optical anisotropy, and a difference Δn between an ordinary light refractive index and an extraordinary light refractive index is 0.05 or more and 0.35. The following liquid crystal is filled, and the refractive index of the concavo-convex portion is an optical anisotropic diffraction grating substantially equal to the ordinary light refractive index or the extraordinary light refractive index of the liquid crystal, and the refractive index of the concavo-convex portion is n, Depth is D, liquid crystal's ordinary refractive index is ng , liquid crystal's extraordinary refractive index is n e , | n−n g | and | n−n e |, whichever is larger, ΔN, when the wavelength in vacuum and λ 0, DΔN = λ 0/ 2 the relationship 30 By so filled at a higher temperature, the temperature characteristic in the temperature range of 0 to 60 ° C. to provide an optical head apparatus characterized by enhanced reciprocating efficiency due to diffraction so as to optimize.
Further, the diffraction element uses two transparent substrates having a lattice-like uneven portion formed on the surface thereof, faces each other where the uneven portions are formed, or the uneven portions formed on the two transparent substrates. However, it is laminated so as to be asymmetric with respect to the laminating surface, the liquid crystal is filled in the concavo-convex portion, and two transparent substrates are laminated, and the cross-sectional shape of the lattice-like concavo-convex portion Provides an optical head device that is asymmetrical.
[0009]
Further, an optical head device for reading the write and / or information of the information by irradiating on the optical recording medium through the diffraction element to the light from the light source, the diffraction element is lattice-shaped uneven portion on the surface And a liquid crystal filled in the concavo-convex portion and having an optical anisotropy and having a difference Δn between ordinary light refractive index and extraordinary light refractive index of 0.05 to 0.35. The refractive index of the concavo-convex part is n, the depth is D, the ordinary light refractive index of the liquid crystal is ng , and the extraordinary light refractive index of the liquid crystal is n e , | n−n. g | a | n-n e |, whichever is larger the .DELTA.N, when a wavelength in vacuum of the light from the light source and λ 0, DΔN = λ 0/ 2 the relationship is satisfied at a temperature above 30 ° C. by way, so the temperature characteristic is optimum in the temperature range of 0 to 60 ° C. In the method for manufacturing an optical head device characterized by enhanced reciprocating efficiency due to diffraction, the optical anisotropic diffraction grating, to cover the transparent thin film having a refractive index substantially equal to the refractive index of the transparent substrate on the transparent substrate A method of manufacturing an optical head device comprising: a step; and a step of processing the transparent thin film by a photolithography method to form a lattice-shaped uneven portion; and Provided is a method for manufacturing an optical head device in which the transparent thin film is a SiO x film (1 <x <2).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, if the concavo-convex portion is made of an optically isotropic material and its refractive index is substantially equal to the ordinary or extraordinary refractive index of the liquid crystal, it functions as an optically anisotropic diffraction grating utilizing the polarization of light. However, in particular, when the refractive index is almost equal to the ordinary light refractive index, the selection range of the transparent substrate material having the concavo-convex portion is widened, which is preferable because a low-cost and high-quality diffraction element can be produced. Further, when the refractive index of the concavo-convex portion is made substantially equal to the extraordinary light refractive index of the liquid crystal, a transparent substrate material having a high refractive index such as polycarbonate (refractive index 1.58) can be used effectively.
[0015]
Using two transparent substrates with a grid-like concavo-convex portion formed on the surface, the surfaces with the concavo-convex portions facing each other, filling the concavo-convex portions with the liquid crystal, and laminating the two transparent substrates An optical anisotropic diffraction grating may be formed. In that case, each concavo-convex portion may be shallow, which is preferable because it is easy to manufacture. Moreover, it is preferable also in the point which the orientation of a liquid crystal improves by the two uneven | corrugated | grooved part which faces.
[0016]
When the concavo-convex portions formed on the two transparent substrates are laminated so as to be asymmetric with respect to the laminated surface, a diffraction grating having an asymmetric cross-sectional shape can be easily produced, and any of ± first-order diffracted light One of the diffraction efficiencies is increased, and light having a higher diffraction efficiency can be detected by one detector, which is preferable.
[0017]
As the liquid crystal used in the present invention, known liquid crystals used for liquid crystal display devices such as nematic liquid crystals and smectic liquid crystals can be used.
[0018]
In the present invention, it is assumed that the difference Δn between the ordinary light refractive index and the extraordinary light refractive index of the liquid crystal is 0.05 or more and 0.35 or less. The reason is that if it is less than 0.05, it is necessary to deepen the concavo-convex portion, which makes it difficult to produce and easily increases the cost, and if it exceeds 0.35, the liquid crystal tends to deteriorate due to ultraviolet rays or the like.
[0019]
As the transparent substrate, a glass, polyolefin, polycarbonate or the like having a refractive index of about 1.4 or more and 1.6 or less is preferable because it easily matches the ordinary refractive index of liquid crystal of about 1.5.
[0020]
The concavo-convex portion is made of an optically isotropic material, the refractive index is n, the depth of the concavo-convex portion is D, the ordinary refractive index of the liquid crystal is ng , the extraordinary refractive index is ne , | n−n g | a | n-n e |, whichever is larger the .DELTA.N, when a wavelength in vacuum of the light from the light source and lambda 0, so that the temperature at which DΔN = λ 0/2 is at a temperature higher than 30 ° C. To be . That, DΔN = λ 0/2 of but reciprocating efficiency is highest due to diffraction when, .DELTA.N in order to optimize the temperature characteristic in the range of 0 to 60 ° C. with the changes with temperature, over 30 ° C. a temperature is in the depth of the uneven portion such as to satisfy the above relationship.
[0022]
On the optically anisotropic diffraction grating of the transparent substrate, a second transparent substrate made of glass or plastic such as acrylic resin, polyolefin, polycarbonate or the like is laminated to sandwich a liquid crystal layer. It is preferable because it can be fixed. The liquid crystal is not only filled in the concavo-convex portion, but a thin layer of liquid crystal may be formed between the transparent substrate and the second transparent substrate in the portion overflowing from the concavo-convex portion. If the distance between the flat portion of the surface on which the concavo-convex portion of the transparent substrate is formed and the second transparent substrate is too large, the alignment force of the liquid crystal by the alignment film formed on the second transparent substrate is reduced, and is preferably 10 μm or less. 5 μm or less is more preferable.
[0023]
When a second transparent substrate is laminated on the optically anisotropic diffraction grating of the transparent substrate, and a polyimide film (alignment film) for liquid crystal alignment is formed on the liquid crystal side of the second transparent substrate, the transparent substrate Compared with the case where a polyimide film is formed on the substrate, the rubbing cloth is less damaged at the time of rubbing, which is preferable because the manufacturing cost is reduced.
[0024]
A transparent substrate having a lattice-shaped uneven portion has an alignment function similar to that of an alignment film in which the uneven portion itself is rubbed, and even if it does not provide an alignment film on the second transparent substrate, it is sufficient as a diffraction element. It was found that the characteristics of can be obtained. In that case, substantially the same characteristics as those obtained when the alignment film is provided can be obtained, and there is an advantage that the alignment film can be provided at a low cost because the alignment film need not be provided.
[0025]
Further, when the polyimide film is formed on the second transparent substrate, the rubbing direction for alignment and the stripe direction of the uneven portions (longitudinal direction of the lattice-shaped uneven portions) are made the same to align the liquid crystal. It is preferable in that the stability and reproducibility can be improved, ΔN can be increased, and a decrease in the orientation rate due to the surrounding environment such as temperature can be prevented.
[0026]
When the cross-sectional shape of the lattice-like uneven part is asymmetrical in a plane perpendicular to the longitudinal direction (stripe direction) of the uneven part, the diffraction efficiency of either the + 1st order diffracted light or the −1st order diffracted light is increased, If only the one having higher diffraction efficiency is used, it is preferable that a large round trip efficiency can be obtained with only one detector. The left-right asymmetric shape is a step shape, a slope shape (sawtooth shape) or the like.
[0027]
Also, the distribution of the uneven portions is made to have a distribution, a part of the uneven portion is left-right asymmetric and the other is left-right symmetrical, a portion of the uneven portion is a convex portion and the others are concave portions, Such a change may be made.
[0028]
When a retardation plate and retardation film functioning as a λ / 2 plate, λ / 4 plate, etc. are laminated on the optically anisotropic diffraction grating of the transparent substrate, the light forward direction (from the light source side to the optical recording medium) The direction of polarization) is orthogonal to the direction of light return (the direction from the optical recording medium side to the light source side), and can function as an optically anisotropic diffraction grating. For the retardation plate and retardation film, materials such as polycarbonate or polyvinyl alcohol having a thickness of about several tens to several hundreds of μm can be preferably used.
[0029]
At least one surface of the retardation plate or retardation film is covered with an organic resin such as a photopolymer or a thermosetting epoxy resin, or a third glass substrate, a plastic substrate or the like having good flatness through the organic resin. Adhering a transparent substrate is preferable because of the advantages of reducing wavefront aberration and improving reliability.
[0030]
By sealing the peripheral portion between the transparent substrate and the second transparent substrate, or the peripheral portion of the entire diffractive element with a sealing material such as an epoxy resin, not only leakage of liquid crystal is prevented, but also the humidity of the external environment It is preferable because undesirable physical or chemical changes such as liquid crystals and organic resins due to temperature changes can be prevented.
[0031]
A second diffraction grating that generates three beams for tracking error detection may be provided on the surface (light source side surface) opposite to the surface on which the uneven portion of the transparent substrate is provided. It is easy and preferable. The second diffraction grating is formed by applying a photopolymer, a photoresist, or the like and exposing it to a predetermined pattern, or by directly processing the second substrate by a dry etching method.
[0032]
When the optical head device of the present invention is used for reading, a detector for detecting reflected light from the optical recording medium is usually provided on the light source side, and the reflected light is desired on the light receiving surface of the detector. An in-plane curvature may be imparted to the optical anisotropic diffraction grating pattern of the diffraction element, or a distribution may be imparted to the grating spacing so as to condense into a beam shape. The lattice pattern can be a curvature distribution and a lattice interval distribution designed by a computer, and can be an optimum pattern for a focus error detection method such as a spot size detection method. As the detector, one using a semiconductor element such as a photodiode or a CCD element is preferable because it is small and light and has low power consumption.
[0033]
By providing an antireflection film on the light incident / exit surface of the diffractive element, light loss can be prevented. In that case, it is preferable to use an amorphous fluororesin as the antireflection film because the film can be formed at a low cost without using an expensive and large film forming apparatus such as a vapor deposition apparatus.
[0034]
If the light source, diffractive element, detector, objective lens, and the like are accommodated in the same package, it is preferable that a small-sized optical head device that can easily adjust the optical axis is provided.
[0035]
The light source of the present invention preferably uses a semiconductor element such as a semiconductor laser (LD) or LED, and is preferable because the LD is small and light, has low power consumption, and has coherence. Optical recording media include optical discs such as CDs, CD-ROMs, DVDs (digital video discs), magneto-optical discs, phase change optical discs, optical cards, and other light that writes and / or reads information with light. Recording media for the system can be used.
[0036]
Further, in the present invention, when the transparent thin film is a SiO x film (1 <x <2), it is preferable that an uneven portion substantially matching the ordinary light refractive index of the liquid crystal can be easily produced. Moreover, you may make it form an uneven | corrugated | grooved part using 2P method (photopolymerization method) or selective photopolymerization method by using the said transparent thin film as organic resins, such as an acrylic resin.
[0037]
Specifically, the uneven portion is formed as follows. A photoresist is coated on the surface of a polished transparent substrate such as a glass substrate by a spin coat method or the like. A photomask having a predetermined pattern is brought into close contact with the photoresist film, exposed to ultraviolet rays, and subjected to a photoresist development process to form a photoresist lattice pattern on the surface of the transparent substrate. By using the photoresist lattice pattern as a mask and dry etching using a gas such as CF 4 , a lattice-like uneven portion for an optical anisotropic diffraction grating having a depth of 1 to 2 μm and a pitch of 2 to 20 μm is formed. Form.
[0038]
Alternatively, a transparent substrate created by the above method is used as a master substrate to inject and mold acrylic resin or the like, or a mold is created based on the transparent substrate, and materials such as acrylic resin, polyolefin, polycarbonate, and polyether sulfone are used. A transparent substrate having a lattice-shaped uneven portion can be produced by an injection molding method, a 2P method, or the like.
[0039]
Here, for example, the glass substrate can be directly dry-etched, but the etching rate is slow, it is difficult to form a constant depth with good reproducibility, and it is difficult to reduce the depth distribution, etc. There's a problem.
[0040]
Therefore, a film having a refractive index close to the refractive index of a transparent substrate such as a glass substrate, such as a SiO 2 film, is formed to a thickness such that a desired uneven portion depth can be obtained by vapor deposition or the like. By utilizing the difference in etching rate between the two films, dry etching can be performed with good reproducibility and small surface distribution. The difference between the refractive index of the transparent substrate and the refractive index of the transparent thin film such as the SiO 2 film is preferably within 0.1 in order to prevent undesired reflection or the like by the interface.
[0041]
The refractive index of the SiO 2 film is usually about 1.46, and it is not easy to obtain good characteristics lower than the ordinary refractive index of liquid crystal. Also, the ordinary light refractive index of liquid crystals is usually lower than the extraordinary light refractive index. Therefore, it is possible to easily manufacture a concavo-convex portion that substantially matches the ordinary refractive index of liquid crystal by the following method.
[0042]
That is, an SiO x film (1 <x <2) can be formed by forming a mixture of SiO having a high refractive index and SiO 2 having a low refractive index by an evaporation method or the like. Alternatively, when the SiO film is formed by vapor deposition, the SiO x film (1 <x <2) can be formed by gradually increasing the oxygen partial pressure of the atmospheric gas in the vapor deposition apparatus. Since this SiO x film is an oxide of Si, for example, when CF 4 is used as an etching gas, the dry etching rate is higher than the high volatility of CF 4 and the etching selectivity with the glass substrate is also good. .
[0043]
Although a single diffraction element has been described above, for example, a diffraction element in which a plurality of liquid crystals are filled in a transparent substrate having a width of 120 × 120 mm can be formed and finally cut individually.
[0044]
The liquid crystal is oriented in a direction substantially parallel to the longitudinal direction of the lattice-shaped irregularities (in FIG. 1, the direction perpendicular to the paper surface), but is incident on a P wave (polarized in FIG. 1) from a light source (downward in FIG. 1). For the polarization component whose direction is parallel to the plane of the paper, the liquid crystal and the concavo-convex portion have the same refractive index, that is, the optical anisotropic diffraction grating is transparent to the P wave. Therefore, the P wave is not affected by any change and enters the λ / 4 plate as it is, changes to circularly polarized light, passes through an aspheric lens as an objective lens, and almost 100% of the light is incident on the recording surface of the optical recording medium. To reach.
[0045]
The reflected light reflected on the recording surface and returned through the aspherical lens again passes through the λ / 4 plate again and changes to an S wave whose polarization direction is different by 90 degrees. When the S wave is incident on the optical anisotropic diffraction grating, this time, it functions as a diffraction grating because the refractive index of the liquid crystal is different from that of the concavo-convex portion, and is about 40% at the maximum as + 1st order light and about 40% at the maximum as -1st order light. Diffraction efficiency is obtained. When the detectors for detecting the + 1st order light and the −1st order light are arranged in only one of them, the reciprocating efficiency of 40% can be obtained.
[0046]
Further, when the concave and convex portion is formed into a slope shape (sawtooth shape), a reciprocation efficiency of about 81% is obtained when it is formed in a shape of approximately 70 to 90% and three steps.
[0047]
【Example】
[Example 1]
The configuration of Example 1 is shown in FIG. A cross section having a depth of 1.55 μm and a pitch of 9 μm is formed on one surface of a glass substrate 1 having a thickness of 1 mm, a width of 10 × 10 mm, and a refractive index of 1.54 and a relatively low alkali component by photolithography and dry etching. A rectangular lattice-shaped uneven portion 2 was formed.
[0048]
Specifically, a photoresist is coated on one surface of the glass substrate 1 whose both surfaces have been polished by spin coating. Next, a photomask having a predetermined pattern is brought into close contact with the photoresist film, exposed to ultraviolet rays, and subjected to photoresist development to form a photoresist lattice pattern on the surface of the transparent substrate. Using the photoresist lattice pattern as a mask, it was formed by dry etching using CF 4 gas.
[0049]
A polyimide film 4 was formed as an alignment film for liquid crystal alignment on one surface of the second glass substrate 3 having relatively little alkali component, and a rubbing treatment for alignment was performed. The surface of the glass substrate 1 on which the concavo-convex portion 2 is formed faces the surface of the second glass substrate 3 on which the polyimide film 4 is formed, and the rubbing direction of the polyimide film 4 and the stripe direction of the concavo-convex portion 2 are the same. Then, two glass substrates were laminated, and the periphery of the two glass substrates was sealed with an epoxy resin 5 including a spherical spacer having a diameter of about 4 μm except for the liquid crystal injection port.
[0050]
Liquid crystal 6 (nematic liquid crystal, product name P-008 manufactured by Merck & Co., Inc., ordinary light refractive index 1.525, extraordinary light refractive index 1.771) was vacuum-injected from the liquid crystal injection port. In this case, ΔN = 0.23, a D = 1.55 (μm), λ 0 = 678 (nm), satisfy the DΔN = λ 0/2 was set to D to be 35 ° C..
[0051]
A λ / 4 film 7 is laminated and adhered to the surface of the second glass substrate 3 opposite to the polyimide film 4 with a transparent adhesive, and further a photopolymer 8 for improving wavefront aberration, a third A diffractive element 10 was produced by laminating and bonding the glass substrate 9. The light incident portion 11 and the light emitting portion 12 from the light source of the diffractive element 10 are provided with an antireflection film made of a dielectric multilayer film.
[0052]
When a semiconductor laser (provided below the diffractive element 10 in FIG. 1 but not shown) is used as a light source and a P-wave having a wavelength of 678 nm (a polarization component parallel to the paper surface) is incident, the transmittance of the P-wave Was about 97%. In addition, the reflected light (circularly polarized light) from the optical disk (provided above the diffraction element 10 in FIG. 1 but not shown) is changed to an S wave (polarized component perpendicular to the paper surface) by the λ / 4 film 7. The S wave was diffracted by the optically anisotropic diffraction grating. The diffraction efficiency of the + 1st order diffracted light was 33%, and the diffraction efficiency of the −1st order diffracted light was 33%. As a result, the forward path efficiency was about 97% and the round trip efficiency was about 64% (± first-order diffracted light detection).
[0053]
[Example 2]
It was produced in the same manner as in Example 1 except that the cross-sectional shape of the concavo-convex portion formed on the glass substrate 1 was changed to a saw shape as shown in FIG. In Example 2, the transmittance of the P wave was about 97%, the diffraction efficiency of the + 1st order diffracted light of the S wave was about 75%, and the diffraction efficiency of the −1st order diffracted light was about 2%. As a result, the forward path efficiency was about 97% and the round trip efficiency was about 73% (+ 1st order diffracted light detection).
[0054]
[Example 3]
It was produced in the same manner as in Example 1 except that the cross-sectional shape of the concavo-convex portion formed on the glass substrate 1 was changed to a three-step shape as shown in FIG. In Example 3, the transmittance of the P wave was about 97%, the diffraction efficiency of the + 1st order diffracted light of the S wave was about 70%, and the diffraction efficiency of the −1st order diffracted light was about 2%. As a result, the forward path efficiency was about 97% and the round trip efficiency was about 68% (+ 1st order diffracted light detection).
[0055]
[Example 4]
The configuration was the same as in Example 1 except that the polyimide film 4 was not formed. In this case, the liquid crystal 6 was aligned only by the alignment force of the uneven portion 2. In Example 4, the transmittance of the P wave was about 97%, the diffraction efficiency of the + 1st order diffracted light of the S wave was about 31%, and the diffraction efficiency of the −1st order diffracted light was about 30%. As a result, the forward path efficiency was about 97% and the round trip efficiency was about 59% (± first-order diffracted light detection).
[0056]
【The invention's effect】
The present invention is capable of mass production with a larger substrate area than a birefringent crystal without using an expensive material such as a birefringent crystal, and is higher than an isotropic grating such as a relief type diffraction grating. Light utilization efficiency can be obtained.
[0057]
Since the basic structure such as the pitch of the optically anisotropic diffraction grating is defined not by the liquid crystal itself but by the transparent substrate, it has excellent temperature characteristics and environmental resistance. Further, the liquid crystal can be aligned without providing a liquid crystal alignment film such as a polyimide film. As for the grating pattern of the optical anisotropic diffraction grating, a complex grating pattern can be easily formed with high productivity by the CGH (Computer Generated Hologram) method using an exposure mask or the like.
[0058]
The lambda / 4 plate or the like retardation plate, if laminated to the retardation film in the diffraction element can overall excellent compact highly productive.
[Brief description of the drawings]
FIG. 1 is a side view of a basic configuration of an optical head device using an optically anisotropic diffraction grating made of liquid crystal, showing Example 1. FIG.
2 is a side view of a transparent substrate for an optical head device of Example 2. FIG.
3 is a side view of a transparent substrate for the optical head device of Example 3. FIG.
[Explanation of symbols]
1: glass substrate 2: concavo-convex part 3: second glass substrate 4: polyimide film 5: epoxy resin 6: liquid crystal 7: λ / 4 film 8: photopolymer 9: third glass substrate 10: diffraction element 11: light Incident part 12: light emitting part

Claims (6)

光源からの光を回折素子を通して光記録媒体上に照射することにより情報の書き込み及び/又は情報の読み取りを行う光ヘッド装置において、前記回折素子は、透明基板の表面に格子状の凹凸部が形成され、前記凹凸部が光学等方性材料からなり、前記凹凸部に光学異方性を有して常光屈折率と異常光屈折率との差Δnが0.05以上0.35以下である液晶が充填されていて、前記凹凸部の屈折率が前記液晶の常光屈折率又は異常光屈折率にほぼ等しい光学異方性回折格子であって、前記凹凸部の屈折率をn、深さをD、液晶の常光屈折率をn、液晶の異常光屈折率をn、|n−n|と|n−n|のいずれか大きい方をΔN、光源からの光の真空中における波長をλとするとき、DΔN=λ/2なる関係が30℃より高い温度で満たされるようにすることにより、0〜60℃の温度範囲で温度特性が最適になるようにして回折による往復効率を高めたことを特徴とする光ヘッド装置。In an optical head device that writes information and / or reads information by irradiating light from a light source on the optical recording medium through the diffraction element, the diffraction element has a lattice-shaped uneven portion formed on the surface of the transparent substrate. A liquid crystal in which the concavo-convex portion is made of an optically isotropic material, the concavo-convex portion has optical anisotropy, and a difference Δn between an ordinary light refractive index and an extraordinary light refractive index is 0.05 or more and 0.35 or less. In which the refractive index of the uneven portion is substantially equal to the ordinary light refractive index or the extraordinary light refractive index of the liquid crystal, and the refractive index of the uneven portion is n and the depth is D. , The normal light refractive index of the liquid crystal is ng , the extraordinary light refractive index of the liquid crystal is n e , | n−n g | or | n−n e |, whichever is larger, ΔN, and the wavelength of light from the light source in vacuum when the a λ 0, DΔN = λ 0/ 2 the relationship is greater than 30 ° C. By so filled in degrees, the optical head device, wherein the temperature characteristic is enhanced reciprocating efficiency due to diffraction so as to optimize the temperature range of 0 to 60 ° C.. 表面に格子状の凹凸部が形成された2枚の透明基板を用い、凹凸部を形成した面どうしを対面させ、それらの凹凸部に前記液晶を充填し、2枚の透明基板を積層してなる請求項1記載の光ヘッド装置。  Using two transparent substrates with a grid-like concavo-convex portion formed on the surface, the surfaces with the concavo-convex portions facing each other, filling the concavo-convex portions with the liquid crystal, and laminating the two transparent substrates The optical head device according to claim 1. 前記2枚の透明基板に形成された凹凸部が、積層面に対して非対称となるように積層されている請求項2記載の光ヘッド装置。  The optical head device according to claim 2, wherein the uneven portions formed on the two transparent substrates are laminated so as to be asymmetric with respect to the laminated surface. 前記格子状の凹凸部の断面形状が、凹凸部の長手方向(ストライプ方向)に垂直な面において左右非対称である請求項1記載の光ヘッド装置。  2. The optical head device according to claim 1, wherein a cross-sectional shape of the lattice-shaped concavo-convex portion is asymmetrical in a plane perpendicular to a longitudinal direction (stripe direction) of the concavo-convex portion. 光源からの光を回折素子を通して光記録媒体上に照射することにより情報の書き込み及び/又は情報の読み取りを行う光ヘッド装置であって、前記回折素子が、表面に格子状の凹凸部が形成された透明基板と、前記凹凸部に充填された、光学異方性を有していて常光屈折率と異常光屈折率との差Δnが0.05以上0.35以下である液晶とを備えた光学異方性回折格子であって、前記凹凸部の屈折率をn、深さをD、液晶の常光屈折率をn、液晶の異常光屈折率をn、|n−n|と|n−n|のいずれか大きい方をΔN、光源からの光の真空中における波長をλとするとき、DΔN=λ/2なる関係が30℃より高い温度で満たされるようにすることにより、0〜60℃の温度範囲で温度特性が最適になるようにして回折による往復効率を高めたことを特徴とする光ヘッド装置の製造方法において、前記光学異方性回折格子が、透明基板の屈折率にほぼ等しい屈折率を有する透明薄膜を透明基板上に被覆する工程と、次いで前記透明薄膜をフォトリソグラフィ法により加工して格子状の凹凸部を形成する工程とを備えた製造方法で製造されることを特徴とする光ヘッド装置の製造方法。An optical head device for writing information and / or reading information by irradiating light from a light source onto an optical recording medium through a diffraction element, wherein the diffraction element has a lattice-shaped uneven portion formed on a surface thereof. A transparent substrate and a liquid crystal filled in the concavo-convex portion and having optical anisotropy and having a difference Δn between ordinary light refractive index and extraordinary light refractive index of 0.05 to 0.35. An optically anisotropic diffraction grating, wherein the uneven portion has a refractive index n, a depth D, a liquid crystal normal light refractive index ng , and a liquid crystal extraordinary light refractive index ne , | n−n g | | n-n e |, whichever is larger the .DELTA.N, when a wavelength in vacuum of the light from the light source and lambda 0, so that DΔN = λ 0/2 the relationship is satisfied at a temperature above 30 ° C. by diffraction as the temperature characteristic is optimum in the temperature range of 0 to 60 ° C. In the method of manufacturing an optical head device, wherein the optical anisotropic diffraction grating has a refractive index substantially equal to the refractive index of the transparent substrate, the transparent thin film is coated on the transparent substrate. And then manufacturing the optical thin-film device by a method of processing the transparent thin film by a photolithography method to form a lattice-shaped uneven portion. 前記透明薄膜がSiO膜(1<x<2)である請求項5記載の製造方法。The manufacturing method according to claim 5, wherein the transparent thin film is a SiO x film (1 <x <2).
JP25653895A 1995-10-03 1995-10-03 Optical head device and manufacturing method thereof Expired - Fee Related JP3947828B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP25653895A JP3947828B2 (en) 1995-10-03 1995-10-03 Optical head device and manufacturing method thereof
KR1020047003501A KR100642951B1 (en) 1995-10-03 1996-10-03 Optical head device and production method thereof
KR1019980702484A KR19990064007A (en) 1995-10-03 1996-10-03 Optical head device and manufacturing method thereof
US09/043,908 US6118586A (en) 1995-10-03 1996-10-03 Optical head device including an optically anisotropic diffraction grating and production method thereof
PCT/JP1996/002872 WO1997013245A1 (en) 1995-10-03 1996-10-03 Optical head device and production method thereof
US09/524,742 US6271966B1 (en) 1995-10-03 2000-03-13 Optical head device including an optically anisotropic diffraction grating and process for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25653895A JP3947828B2 (en) 1995-10-03 1995-10-03 Optical head device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09102138A JPH09102138A (en) 1997-04-15
JP3947828B2 true JP3947828B2 (en) 2007-07-25

Family

ID=17294025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25653895A Expired - Fee Related JP3947828B2 (en) 1995-10-03 1995-10-03 Optical head device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3947828B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497586B1 (en) * 1997-10-02 2005-07-01 아사히 가라스 가부시키가이샤 Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
JP3832243B2 (en) * 1998-03-27 2006-10-11 株式会社日立製作所 Polarizing diffraction grating and magneto-optical head using the same
JP5333261B2 (en) * 2009-03-11 2013-11-06 Jsr株式会社 Polarization diffraction element

Also Published As

Publication number Publication date
JPH09102138A (en) 1997-04-15

Similar Documents

Publication Publication Date Title
KR100642951B1 (en) Optical head device and production method thereof
US6618116B1 (en) Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
JP3624561B2 (en) Optical modulation element and optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JPH1164615A (en) Diffraction element
JP3994450B2 (en) Manufacturing method of optical diffraction grating and optical head device using the same
JP3982025B2 (en) Manufacturing method of diffraction element
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3713778B2 (en) Optical head device
JP3528381B2 (en) Optical head device
JP3509399B2 (en) Optical head device
JP3550873B2 (en) Optical head device
JPH09127335A (en) Manufacture of optical head device and optical head device
JPH09185837A (en) Optical head device
JP4427877B2 (en) Aperture limiting element and optical head device
JP3829356B2 (en) Optical head device
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JPH1048588A (en) Optical head device
JPH09274188A (en) Optical modulation element and optical head device
JPH09161303A (en) Optical head device
JPH09198698A (en) Production of optical head device
JP4364083B2 (en) Optical head device
JP4420990B2 (en) Optical head device
JPH09180234A (en) Optical head device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees