JPH09274188A - Optical modulation element and optical head device - Google Patents

Optical modulation element and optical head device

Info

Publication number
JPH09274188A
JPH09274188A JP8082801A JP8280196A JPH09274188A JP H09274188 A JPH09274188 A JP H09274188A JP 8082801 A JP8082801 A JP 8082801A JP 8280196 A JP8280196 A JP 8280196A JP H09274188 A JPH09274188 A JP H09274188A
Authority
JP
Japan
Prior art keywords
liquid crystal
modulation element
light
glass substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8082801A
Other languages
Japanese (ja)
Inventor
Tomoya Takigawa
具也 滝川
Yuzuru Tanabe
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP8082801A priority Critical patent/JPH09274188A/en
Publication of JPH09274188A publication Critical patent/JPH09274188A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the utilization efficiency of light and to prevent the degradation in orientation characteristics by rubbing the oriented films on the surfaces of the grating-like rugged parts on transparent substrates in the stripe direction of gratings. SOLUTION: The SiON film on the surface of the first glass substrate 1 is etched, by which the grid-shaped rugged parts 2 having a rectangular section are formed. A polyimide film 4 is formed by a spin coating method on the surface of the second glass substrate 3 and is subjected to a rubbing treatment for the purpose of orientation. On the other hand, a polyimide film 5 is similarly formed on the surface of the glass substrate 1 formed with the rugged parts 2 and is subjected to the rubbing treatment in the direction parallel with the strip direction of the rugged parts 2 in such a manner that the rubbing direction of the polyimide film 5 and the stripe direction of the rugged parts 2 are made the same. The glass substrates 1, 3 are disposed to face each other and the circumferences of the respective glass substrates 1, 3 are sealed with an epoxy resin 6. Liquid crystals 7 are vacuum injected between the substrates from a liquid crystal injection port to form the optically anisotropic diffraction gratings. Further, a λ/4 film 8, a photopolymer and a third substrate 9 are laminated and adhered to the glass substrate 3, by which the optical modulation element is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、CD(コンパクト
・ディスク)、CD−ROM、ビデオディスク等の光デ
ィスク及び光磁気ディスク等に光学的情報を書き込んだ
り、光学的情報を読み取るための光ヘッド装置及びそれ
に用いられる光学異方性回折格子からなる光変調素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical head device for writing and reading optical information on an optical disk such as a CD (compact disk), a CD-ROM, a video disk and a magneto-optical disk. And an optical modulator comprising an optically anisotropic diffraction grating used therein.

【0002】[0002]

【従来の技術】従来、光ディスク及び光磁気ディスク等
に光学的情報を書き込んだり、光学的情報を読み取る光
ヘッド装置としては、ディスクの記録面から反射された
信号光を検出部へ導光(ビームスプリット)する光学部
品としてプリズム式ビームスプリッタを用いたものと、
回折格子あるいはホログラム素子を用いたものとが知ら
れていた。
2. Description of the Related Art Conventionally, as an optical head device for writing optical information on an optical disk or a magneto-optical disk or reading optical information, a signal light reflected from a recording surface of the disk is guided to a detection unit (beam). A prism type beam splitter as an optical component for splitting;
It is known that a diffraction grating or a hologram element is used.

【0003】従来、光ヘッド装置用の回折格子あるいは
ホログラム素子は、ガラスやプラスチック基板上に、矩
形の断面を有する矩形格子(レリーフ型)をドライエッ
チング法あるいは射出成形法よって形成し、これによっ
て光を回折しビームスプリット機能を付与していた。
Conventionally, in a diffraction grating or hologram element for an optical head device, a rectangular grating (relief type) having a rectangular cross section is formed on a glass or plastic substrate by a dry etching method or an injection molding method. Was diffracted to give a beam splitting function.

【0004】また、光の利用効率が10%程度の等方性
回折格子よりも光の利用効率を上げようとする場合、偏
光を利用することが考えられる。偏光を利用しようとす
ると、プリズム式ビームスプリッタにλ/4板を組み合
わせて、往方向(光源側から光ディスク側へ向かう方
向)及び復方向(光ディスク側から光源側及び検出器側
へ向かう方向)の効率を上げて往復効率を上げる方法が
あった。
Further, in order to improve the light utilization efficiency of an isotropic diffraction grating having a light utilization efficiency of about 10%, it is conceivable to use polarized light. In order to use polarized light, a prism type beam splitter is combined with a λ / 4 plate, and a forward direction (direction from the light source side to the optical disc side) and a backward direction (direction from the optical disc side to the light source side and the detector side) are used. There was a way to increase efficiency and round trip efficiency.

【0005】しかし、プリズム式偏光ビームスプリッタ
は高価であり、他の方式が模索されていた。一つの方式
としてLiNbO3 等の複屈折結晶の平板を用い、表面
に異方性回折格子を形成し偏光選択性をもたす方法が知
られている。しかし、複屈折結晶自体が高価であり、民
生分野への適用は困難である。
However, the prism type polarizing beam splitter is expensive, and other methods have been sought. As one method, a method of using a flat plate of birefringent crystal such as LiNbO 3 and forming an anisotropic diffraction grating on the surface to have polarization selectivity is known. However, the birefringent crystal itself is expensive, and application to the consumer field is difficult.

【0006】等方性回折格子は前述のように、往方向の
利用効率が50%程度で、復方向の利用効率が20%程
度であるため、往復で10%程度が限界である。
As described above, the isotropic diffraction grating has a utilization efficiency of about 50% in the forward direction and a utilization efficiency of about 20% in the backward direction.

【0007】また高い光の利用効率を実現するために、
ガラス基板等の透明基板上に回折格子用の凹凸を形成
し、その凹凸部に液晶を充填して、液晶の光学異方性を
利用した光学異方性回折格子を有する光変調素子が知ら
れている。この場合、ガラス基板を直接ドライエッチン
グして凹凸部を形成すると、エッチングスピードが遅か
ったり、不要な堆積物を生じたりして、一定の深さを再
現性よくまた深さの面分布を少なくして、形成すること
は難しい。
In order to achieve high light utilization efficiency,
There is known a light modulation element having an optically anisotropic diffraction grating that utilizes the optical anisotropy of liquid crystal by forming unevenness for a diffraction grating on a transparent substrate such as a glass substrate and filling the unevenness with liquid crystal. ing. In this case, if the glass substrate is directly dry-etched to form the irregularities, the etching speed will be slow and unnecessary deposits will be generated, so that a certain depth can be reproducibly reproduced and the surface distribution of the depth can be reduced. It is difficult to form.

【0008】そのため通常はSiO2 、SiON等の透
明薄膜を蒸着法、プラズマCVD法、反応性ドライエッ
チング法等によって、欲しい深さの分の厚みだけ形成
し、ガラス基板とSiO2 膜等とのエッチングレートの
違いを用いて、再現性よく、面分布も少なく、ドライエ
ッチングすることが行われている。このように形成した
凹凸部に液晶を充填することによって、光学異方性回折
格子を形成する。
Therefore, normally, a transparent thin film such as SiO 2 or SiON is formed by a vapor deposition method, a plasma CVD method, a reactive dry etching method, or the like to a desired depth to form a glass substrate and a SiO 2 film or the like. Dry etching is performed with good reproducibility and small surface distribution by using the difference in etching rate. An optically anisotropic diffraction grating is formed by filling the concave and convex portion thus formed with liquid crystal.

【0009】[0009]

【発明が解決しようとする課題】しかし、直接液晶を充
填すると以下の問題が発生する。すなわち、液晶の配向
特性について、液晶は凹凸部(格子)のストライプ方向
に沿って配向するが、凹凸(格子)の表面性状や断面形
状によってしばしば配向特性が悪化し、歩留りの低下を
もたらす。
However, if the liquid crystal is directly filled, the following problems occur. That is, regarding the alignment characteristics of the liquid crystal, the liquid crystal is aligned along the stripe direction of the concave-convex portion (lattice), but the alignment characteristic is often deteriorated due to the surface texture or cross-sectional shape of the concave-convex portion (lattice), and the yield is reduced.

【0010】本発明は、前述の問題点を解消し光の利用
効率を高め、安価に製造でき、液晶の配向特性の悪化を
防止した光ヘッド装置及び光変調素子を提供することを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical head device and an optical modulation element which solve the above-mentioned problems, enhance the utilization efficiency of light, can be manufactured at low cost, and prevent the deterioration of the alignment characteristics of liquid crystal. .

【0011】[0011]

【課題を解決するための手段】本発明は、透明基板の表
面に格子状の凹凸部が形成され前記凹凸の凹部に光学異
方性を有する液晶が充填されている光学異方性回折格子
を備えた光変調素子において、前記凹凸部の表面に液晶
配向膜を設けたことを特徴とする光変調素子を提供す
る。
SUMMARY OF THE INVENTION The present invention provides an optically anisotropic diffraction grating in which a grid-shaped uneven portion is formed on the surface of a transparent substrate, and the concave portion is filled with liquid crystal having optical anisotropy. In the provided light modulation element, there is provided a light modulation element characterized in that a liquid crystal alignment film is provided on the surface of the uneven portion.

【0012】また本発明は、光源からの光を、前記光変
調素子を通して光記録媒体に照射することにより、光学
的情報の書き込み及び/又は読み取りを行うことを特徴
とする光ヘッド装置を提供する。
Further, the present invention provides an optical head device characterized in that optical information is written and / or read by irradiating an optical recording medium with light from a light source through the light modulation element. .

【0013】[0013]

【発明の実施の形態】本発明の好ましい態様では、液晶
配向膜はポリイミドからなることを特徴としている。ポ
リイミドはラビングにより液晶を配向させる性質を容易
に付与できる。
A preferred embodiment of the present invention is characterized in that the liquid crystal alignment film is made of polyimide. Polyimide can easily impart the property of aligning liquid crystals by rubbing.

【0014】本発明の別の好ましい態様では、液晶配向
膜の厚みが光波長の1/3以下であることを特徴として
いる。光波長の1/3以下とすることにより、例えばポ
リイミドの配向膜の屈折率(1.65)とガラス基板の
屈折率(1.52程度)とに起因する光の反射を抑制す
ることができ、好ましい。
Another preferred embodiment of the present invention is characterized in that the thickness of the liquid crystal alignment film is 1/3 or less of the light wavelength. By setting the wavelength to 1/3 or less of the light wavelength, it is possible to suppress the reflection of light due to, for example, the refractive index (1.65) of the polyimide alignment film and the refractive index of the glass substrate (about 1.52). ,preferable.

【0015】本発明のさらに別の好ましい態様では、液
晶配向膜をラビングしたことを特徴としている。ラビン
グすることにより、液晶の配向特性を高めることができ
る。
Yet another preferred embodiment of the present invention is characterized in that the liquid crystal alignment film is rubbed. By rubbing, the alignment characteristics of the liquid crystal can be improved.

【0016】本発明のさらに別の好ましい態様では、液
晶配向膜のラビング方向は格子のストライプ方向に略平
行であることを特徴としている。このような構成によ
り、格子のストライプによる配向力とラビングによる配
向力が組み合わされ、さらに液晶の配向特性を高めるこ
とができる。
In still another preferred embodiment of the present invention, the rubbing direction of the liquid crystal alignment film is substantially parallel to the stripe direction of the lattice. With such a configuration, the alignment force due to the stripe of the lattice and the alignment force due to the rubbing are combined, and the alignment characteristic of the liquid crystal can be further enhanced.

【0017】前記透明基板はガラス基板、透明プラスチ
ック基板等からなり、その上にフォトリソグラフィ法及
びドライエッチング法等により、深さ1〜2μm、ピッ
チ2〜20μmの格子状の凹凸部を形成する。
The transparent substrate is made of a glass substrate, a transparent plastic substrate or the like, and a grid-like uneven portion having a depth of 1 to 2 μm and a pitch of 2 to 20 μm is formed on the transparent substrate by a photolithography method or a dry etching method.

【0018】この凹凸部の表面に例えばポリイミドによ
る配向膜を設け、それを凹凸部のストライプ方向に合わ
せてラビングすることにより、凹凸部による配向力に加
えて配向膜による配向が行われ、配向力の向上した素子
とすることができ、歩留まりの向上が達成できる。
An alignment film made of, for example, polyimide is provided on the surface of the uneven portion, and by rubbing it along the stripe direction of the uneven portion, the alignment film is aligned in addition to the alignment force by the uneven portion, and the alignment force is increased. The device can be improved, and the yield can be improved.

【0019】この場合、ラビング布の繊維の太さは、通
常格子状凹凸部の溝幅に比べて、はるかに大きく、溝の
底部をラビングすることはできないが、格子状矩形凹凸
部の凸部上面の平らな部分や、凸部のエッジ部分がラビ
ングされ、これにより配向が行われる。このラビングに
よる配向が格子による本来の配向力に付加されるため、
全体として液晶の配向性が大幅に向上する。
In this case, the thickness of the fibers of the rubbing cloth is usually much larger than the groove width of the grid-shaped uneven portion, and the bottom of the groove cannot be rubbed, but the convex portions of the grid-shaped rectangular uneven portion are not rubbed. The flat portion on the upper surface and the edge portion of the convex portion are rubbed, and thereby orientation is performed. Since the orientation due to this rubbing is added to the original orientation force due to the lattice,
As a whole, the orientation of the liquid crystal is significantly improved.

【0020】[0020]

【実施例】本発明の実施例を図1に示す。厚さ0.5m
m、10×10mm角で、屈折率1.52の第1のガラ
ス基板1の表面に、p−CVD法(プラズマCVD法)
によりSiON膜を1.4μm形成する。その後、フォ
トリソグラフィ法とドライエッチング法によりSiON
膜をエッチングし、深さ1.4μm、ピッチ5μmの断
面が矩形状の格子状の凹凸部2を形成した。
FIG. 1 shows an embodiment of the present invention. 0.5m thickness
m, 10 × 10 mm square, p-CVD method (plasma CVD method) on the surface of the first glass substrate 1 having a refractive index of 1.52.
Thereby forming a SiON film of 1.4 μm. After that, SiON is formed by photolithography and dry etching.
The film was etched to form a grid-like uneven portion 2 having a rectangular cross section with a depth of 1.4 μm and a pitch of 5 μm.

【0021】具体的には、SiON膜にフォトレジスト
をスピンコート法によりコーティングする。次いで、所
定のパターンを有するフォトマスクをフォトレジスト膜
に密着させて紫外線で露光し、フォトレジスト現像処理
することによってフォトレジストの格子状パターンを第
1のガラス基板1の表面に形成する。そのフォトレジス
トの格子状パターンをさらにマスクとして、C26
スを用いドライエッチングすることにより形成した。
Specifically, the SiON film is coated with a photoresist by spin coating. Next, a photomask having a predetermined pattern is brought into close contact with the photoresist film, exposed to ultraviolet rays, and subjected to photoresist development processing to form a lattice pattern of the photoresist on the surface of the first glass substrate 1. Using the lattice pattern of the photoresist as a mask, it was formed by dry etching using C 2 F 6 gas.

【0022】第2のガラス基板3の面に液晶配向用の配
向膜としてポリイミド膜4をスピンコート法により60
nm形成し、配向のためのラビング処理を行った。
A polyimide film 4 is formed on the surface of the second glass substrate 3 as an alignment film for liquid crystal alignment by spin coating.
nm, and rubbing treatment for alignment was performed.

【0023】一方第1のガラス基板1の凹凸部2を形成
した面に同じくスピンコート法により、ポリイミド膜5
を60nm形成した。そのポリイミド膜5を凹凸部2の
ストライプ方向に平行な方向にラビング処理を行った。
On the other hand, the polyimide film 5 is formed on the surface of the first glass substrate 1 on which the uneven portion 2 is formed by the same spin coating method.
With a thickness of 60 nm. The polyimide film 5 was rubbed in a direction parallel to the stripe direction of the uneven portion 2.

【0024】第1のガラス基板1の凹凸部2を形成した
面と第2のガラス基板3のポリイミド膜4を形成した面
とを対面させ、さらにポリイミド膜5のラビング方向と
前記凹凸部2のストライプ方向(ラビング方向)が同じ
になるようにして、2つのガラス基板を積層し、液晶注
入口を除き2つのガラス基板の周囲をエポキシ樹脂6で
シールした。液晶注入口から液晶7(メルク社製商品名
BL002、ネマチック液晶、常光屈折率=1.52
5、異常光屈折率=1.771)を真空注入し、光学異
方性回折格子を形成した。このとき、Δn(液晶の常光
屈折率と異常光屈折率との差)=0.246とした。
The surface of the first glass substrate 1 on which the concavo-convex portion 2 is formed faces the surface of the second glass substrate 3 on which the polyimide film 4 is formed, and the rubbing direction of the polyimide film 5 and the concavo-convex portion 2 Two glass substrates were laminated so that the stripe directions (rubbing directions) were the same, and the periphery of the two glass substrates was sealed with epoxy resin 6 except for the liquid crystal injection port. From the liquid crystal inlet, liquid crystal 7 (product name BL002 manufactured by Merck & Co., nematic liquid crystal, ordinary light refractive index = 1.52
5, extraordinary light refractive index = 1.771) was vacuum-injected to form an optically anisotropic diffraction grating. At this time, Δn (difference between ordinary refractive index of liquid crystal and extraordinary refractive index) = 0.246.

【0025】第2のガラス基板3のポリイミド膜4と反
対側の面にλ/4フィルム8を透明な接着剤により積層
接着し、さらにその上に波面収差を改善するためのフォ
トポリマー(図示しない)及び第3のガラス基板9を積
層接着して光変調素子を作製した。光変調素子の光源か
らの光の入射部、光の出射部には、誘電体多層膜による
反射防止膜を施した。
A λ / 4 film 8 is laminated and adhered to the surface of the second glass substrate 3 opposite to the polyimide film 4 by a transparent adhesive, and a photopolymer (not shown) for improving wavefront aberration is further formed thereon. ) And the third glass substrate 9 were laminated and adhered to each other to produce a light modulation element. An antireflection film made of a dielectric multilayer film was applied to the light incident part and the light emitting part of the light modulation element.

【0026】光源として半導体レーザ(図1では光変調
素子の下方に設けられるが、図示せず。)を用い、波長
678nmのP波(紙面に平行な偏光成分)を入射させ
たとき、P波の透過率は約92%であった。また、光デ
ィスク(図1では光変調素子の上方に設けられるが、図
示せず。)からの反射光(円偏光)がλ/4フィルム8
によりS波(紙面に垂直な偏光成分)に変化し、S波が
光学異方性回折格子により回折された。+1次回折光の
回折効率は33%で、−1次回折光の回折効率は33%
であった。
When a semiconductor laser (provided below the light modulation element in FIG. 1 but not shown) is used as a light source and a P wave having a wavelength of 678 nm (polarization component parallel to the paper surface) is incident, the P wave is generated. Was about 92%. Further, the reflected light (circularly polarized light) from the optical disk (which is provided above the light modulation element in FIG. 1, but not shown) is the λ / 4 film 8.
Change to S wave (polarization component perpendicular to the paper surface), and the S wave is diffracted by the optically anisotropic diffraction grating. The diffraction efficiency of + 1st order diffracted light is 33%, and the diffraction efficiency of -1st order diffracted light is 33%.
Met.

【0027】この結果、往路効率約92%、往復効率約
61%(±1次回折光検出)となった。
As a result, the forward efficiency was about 92% and the round trip efficiency was about 61% (± first-order diffracted light detection).

【0028】[0028]

【発明の効果】以上説明したように、本発明において
は、透明基板上に設けた格子状凹凸部の表面に例えばポ
リイミドからなる配向膜を設け、これを格子のストライ
プ方向にラビングしているため、格子状凹凸によるスト
ライプ方向の本来の配向力に対しさらに配向膜による配
向力が加わるため、格子の表面性状や断面形状の影響に
よる配向特性の劣化を防止し、歩留りを向上させるとと
もに安定した強い配向力が得られ、液晶の配向特性の向
上がなされる。
As described above, according to the present invention, the alignment film made of, for example, polyimide is provided on the surface of the grid-shaped irregularities provided on the transparent substrate, and this is rubbed in the grid stripe direction. Since the alignment force of the alignment film is added to the original alignment force in the stripe direction due to the grid-like irregularities, deterioration of the alignment characteristics due to the influence of the surface properties and cross-sectional shape of the grid is prevented, and the yield is improved and stable and strong. The alignment force is obtained, and the alignment characteristics of the liquid crystal are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の光変調素子の側断面図。FIG. 1 is a side sectional view of an optical modulator according to an embodiment of the present invention.

【符号の説明】 1:第1のガラス基板 2:凹凸部 3:第2のガラス基板 4:ポリイミド膜 5:ポリイミド膜 6:エポキシ樹脂 7:液晶 8:λ/4フィルム 9:第3のガラス基板[Explanation of Codes] 1: First glass substrate 2: Concavo-convex portion 3: Second glass substrate 4: Polyimide film 5: Polyimide film 6: Epoxy resin 7: Liquid crystal 8: λ / 4 film 9: Third glass substrate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】透明基板の表面に格子状の凹凸部が形成さ
れ前記凹凸の凹部に光学異方性を有する液晶が充填され
ている光学異方性回折格子を備えた光変調素子におい
て、前記凹凸部の表面に液晶配向膜を設けたことを特徴
とする光変調素子。
1. A light modulation element comprising an optically anisotropic diffraction grating in which a grid-shaped uneven portion is formed on the surface of a transparent substrate and the concave portion of the unevenness is filled with a liquid crystal having optical anisotropy. A light modulation element characterized in that a liquid crystal alignment film is provided on the surface of the uneven portion.
【請求項2】前記液晶配向膜はポリイミドからなること
を特徴とする請求項1記載の光変調素子。
2. The light modulation element according to claim 1, wherein the liquid crystal alignment film is made of polyimide.
【請求項3】前記液晶配向膜の厚みが光波長の1/3以
下であることを特徴とする請求項1又は2記載の光変調
素子。
3. The light modulation element according to claim 1, wherein the liquid crystal alignment film has a thickness of 1/3 or less of a light wavelength.
【請求項4】前記液晶配向膜をラビングしたことを特徴
とする請求項1、2又は3記載の光変調素子。
4. The light modulation element according to claim 1, 2 or 3, wherein the liquid crystal alignment film is rubbed.
【請求項5】前記液晶配向膜のラビング方向は格子のス
トライプ方向に略平行であることを特徴とする請求項4
記載の光変調素子。
5. The rubbing direction of the liquid crystal alignment film is substantially parallel to the stripe direction of the lattice.
The light modulation element according to any one of the preceding claims.
【請求項6】光源からの光を、請求項1〜5いずれか記
載の光変調素子を通して光記録媒体に照射することによ
り、光学的情報の書き込み及び/又は読み取りを行うこ
とを特徴とする光ヘッド装置。
6. A light which writes and / or reads optical information by irradiating an optical recording medium with light from a light source through the light modulation element according to any one of claims 1 to 5. Head device.
JP8082801A 1996-04-04 1996-04-04 Optical modulation element and optical head device Pending JPH09274188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8082801A JPH09274188A (en) 1996-04-04 1996-04-04 Optical modulation element and optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8082801A JPH09274188A (en) 1996-04-04 1996-04-04 Optical modulation element and optical head device

Publications (1)

Publication Number Publication Date
JPH09274188A true JPH09274188A (en) 1997-10-21

Family

ID=13784521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8082801A Pending JPH09274188A (en) 1996-04-04 1996-04-04 Optical modulation element and optical head device

Country Status (1)

Country Link
JP (1) JPH09274188A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104748A1 (en) * 2015-12-15 2017-06-22 大日本印刷株式会社 Light-modulating film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104748A1 (en) * 2015-12-15 2017-06-22 大日本印刷株式会社 Light-modulating film

Similar Documents

Publication Publication Date Title
KR100642951B1 (en) Optical head device and production method thereof
WO1999018459A1 (en) Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
JP3624561B2 (en) Optical modulation element and optical head device
JP3994450B2 (en) Manufacturing method of optical diffraction grating and optical head device using the same
JPH1164615A (en) Diffraction element
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP3528381B2 (en) Optical head device
JPH09274188A (en) Optical modulation element and optical head device
JP3982025B2 (en) Manufacturing method of diffraction element
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JP3550873B2 (en) Optical head device
JP3713778B2 (en) Optical head device
JP3509399B2 (en) Optical head device
JPH1069673A (en) Optical head device and composite anisotropic diffraction element using therefor
JP3829356B2 (en) Optical head device
JP4626026B2 (en) Optical head device
JP4427877B2 (en) Aperture limiting element and optical head device
JPH09244008A (en) Optical modulation element and optical head device
JPH09198698A (en) Production of optical head device
JPH09185837A (en) Optical head device
JPH09161303A (en) Optical head device
JPH09127335A (en) Manufacture of optical head device and optical head device
JPH1048588A (en) Optical head device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810