JPH1021576A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPH1021576A
JPH1021576A JP8169966A JP16996696A JPH1021576A JP H1021576 A JPH1021576 A JP H1021576A JP 8169966 A JP8169966 A JP 8169966A JP 16996696 A JP16996696 A JP 16996696A JP H1021576 A JPH1021576 A JP H1021576A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
light
refractive index
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8169966A
Other languages
Japanese (ja)
Other versions
JP3509399B2 (en
Inventor
Koichi Murata
浩一 村田
Yuzuru Tanabe
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP16996696A priority Critical patent/JP3509399B2/en
Publication of JPH1021576A publication Critical patent/JPH1021576A/en
Application granted granted Critical
Publication of JP3509399B2 publication Critical patent/JP3509399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical head device able to be industrially produced and having a high light utilization efficiency even to S-wave incident light. SOLUTION: As a diffraction element 4 to be arranged between a light source 1 and an optical recording medium 6, the diffraction element laminating a phase difference element 3 and an optical anisotropy diffraction grating 2 constituted so that a twisted liquid crystal 15 is filled up between a first substrate 12 forming grating shape projecting parts nearly equal to either one between an ordinary light refractive index or an abnormal light refractive index of the liquid crystal on its surface and a flat second substrate 11 is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CD(コンパクト
ディスク)、CD−ROM、ビデオディスク、光磁気デ
ィスク等の光学記録媒体に光学的情報を書き込んだり、
光学的情報を読み取るための光ヘッド装置に関する。
The present invention relates to a method for writing optical information on an optical recording medium such as a CD (compact disk), CD-ROM, video disk, magneto-optical disk,
The present invention relates to an optical head device for reading optical information.

【0002】[0002]

【従来の技術】従来、光ディスク、光磁気ディスク等の
光学記録媒体に光学的情報を書き込んだり、光学的情報
を読み取る光ヘッド装置としては、ディスクの記録面か
ら反射された信号光を検出部へ導光(ビームスプリッ
ト)する光学部品としてプリズム式ビームスプリッタを
用いたものと、回折格子又はホログラムを用いたものと
が知られていた。
2. Description of the Related Art Conventionally, as an optical head device for writing optical information on an optical recording medium such as an optical disk or a magneto-optical disk or reading optical information, a signal light reflected from a recording surface of the disk is sent to a detection unit. As a light guiding (beam splitting) optical component, a device using a prism type beam splitter and a device using a diffraction grating or a hologram have been known.

【0003】光ヘッド装置用の回折格子又はホログラム
は、ガラスやプラスチック基板上に矩形断面を有する矩
形格子(レリーフ型)をドライエッチング法、射出成形
法等よって形成し、これによって光を回折しビームスプ
リット機能を付与していた。
A diffraction grating or a hologram for an optical head device is formed by forming a rectangular grating (relief type) having a rectangular cross section on a glass or plastic substrate by a dry etching method, an injection molding method, or the like. Had a split function.

【0004】また、光の利用効率が10%程度の等方性
回折格子よりも光の利用効率を上げようとした場合、偏
光を利用することが考えられる。偏光を利用しようとす
ると、プリズム式ビームスプリッタにλ/4板を組み合
わせて、往路(光源から記録面へ向かう方向)及び復路
(記録面から検出部へ向かう方向)の効率を上げて往復
効率を上げる方法があった。
In order to increase the light use efficiency over an isotropic diffraction grating having a light use efficiency of about 10%, it is conceivable to use polarized light. When trying to use polarized light, a prism type beam splitter is combined with a λ / 4 plate to increase the efficiency of the forward path (direction from the light source to the recording surface) and the return path (direction from the recording surface to the detection unit), thereby improving the reciprocating efficiency. There was a way to raise it.

【0005】しかし、プリズム式偏光ビームスプリッタ
は高価であり、他の方式が模索されていた。一つの方式
としてLiNbO3 等の複屈折結晶の平板状の基板を用
い、表面に異方性回折格子を形成し偏光選択性をもたす
方法が知られている。しかし、複屈折結晶自体が高価で
あり、生産性が悪いので、民生分野への適用は困難であ
った。
However, the prism type polarizing beam splitter is expensive, and other methods have been sought. One known method is to use a flat substrate of birefringent crystal such as LiNbO 3 and form an anisotropic diffraction grating on the surface to provide polarization selectivity. However, since the birefringent crystal itself is expensive and the productivity is poor, it has been difficult to apply it to the consumer field.

【0006】また、プロトン交換法によりLiNbO3
基板上に格子を形成しようとすると、プロトン交換液中
のプロトンが基板中に拡散しやすいため、細かいピッチ
の格子を形成するのは困難であるという問題もあった。
Further, LiNbO 3 is prepared by a proton exchange method.
When attempting to form a lattice on the substrate, there is also a problem that it is difficult to form a fine-pitch lattice because the protons in the proton exchange liquid easily diffuse into the substrate.

【0007】等方性回折格子は前述のように、往路の利
用効率が50%程度で、復路の利用効率が20%程度で
あるため、往復で10%程度が限界であった。
As described above, the isotropic diffraction grating has a utilization efficiency of about 50% in the forward path and about 20% in the return path, and thus has a limit of about 10% in a round trip.

【0008】これに対して、第1の基板上に格子状の凸
部を形成し、第2の基板として平坦な基板を用い、その
間に液晶を充填することによって光学異方性回折格子を
形成し、さらに位相差素子を積層した、光利用効率の高
いホログラム(回折素子)を利用した光ヘッド装置が知
られている(特表昭63−503102)。
On the other hand, an optically anisotropic diffraction grating is formed by forming a lattice-shaped convex portion on a first substrate, using a flat substrate as a second substrate, and filling a liquid crystal therebetween. Further, an optical head device using a hologram (diffraction element) having a high light use efficiency, in which a phase difference element is further laminated, is known (Japanese Patent Publication No. 63-503102).

【0009】[0009]

【発明が解決しようとする課題】その場合、回折素子は
液晶セルであるので、通常、工業的に容易に製造でき
る。この場合、ガラス、プラスチック等からなる基板を
用いて光学異方性回折格子を形成すれば、その透明基板
の屈折率は1.5程度である。液晶の常光屈折率も1.
5程度であるため、透明基板の屈折率と液晶の常光屈折
率をほぼ同じにした構成が容易に実現しうる。逆に、液
晶の異常光屈折率(1.8程度)に近い基板としては特
殊な光学ガラス等が使用できる。
In this case, since the diffraction element is a liquid crystal cell, it can usually be easily manufactured industrially. In this case, if an optically anisotropic diffraction grating is formed using a substrate made of glass, plastic, or the like, the refractive index of the transparent substrate is about 1.5. The ordinary refractive index of the liquid crystal is also 1.
Since it is about 5, a configuration in which the refractive index of the transparent substrate and the ordinary light refractive index of the liquid crystal are almost the same can be easily realized. Conversely, a special optical glass or the like can be used as a substrate close to the extraordinary light refractive index (about 1.8) of the liquid crystal.

【0010】格子状の凸部を形成した基板の屈折率と液
晶の常光屈折率がほぼ等しい構成で光学異方性回折格子
を形成して、それにλ/4板等の位相差素子を組み合わ
せて回折素子を作製した場合、往路の透過率を高くし、
復路の回折効率を高くするためには、光源から回折素子
に入射する光の偏光方向が格子の凸部の長手方向に直交
する光(P波)である必要がある。
An optically anisotropic diffraction grating is formed in such a configuration that the refractive index of the substrate on which the lattice-shaped projections are formed is substantially equal to the ordinary light refractive index of the liquid crystal, and is combined with a phase difference element such as a λ / 4 plate. If a diffractive element is made, increase the transmittance in the outward path,
In order to increase the diffraction efficiency on the return path, it is necessary that the polarization direction of the light incident on the diffraction element from the light source is light (P wave) orthogonal to the longitudinal direction of the convex portion of the grating.

【0011】なぜならば、液晶は格子の凸部の長手方向
に沿って配向するのが通常であり、その凸部の長手方向
に直交する偏光に対して液晶の常光屈折率が対応し、凸
部の長手方向に平行な偏光に対して液晶の異常光屈折率
が対応する。したがって、P波に対しては液晶の常光屈
折率と基板の凸部の屈折率がほぼ等しいことになるた
め、ほぼ100%光が透過する。一方、S波に対しては
液晶の異常光屈折率と基板の凸部の屈折率が異なること
になるため、光は回折することになる。
This is because the liquid crystal is usually oriented along the longitudinal direction of the convex portion of the lattice, and the ordinary light refractive index of the liquid crystal corresponds to polarized light orthogonal to the longitudinal direction of the convex portion. The extraordinary light refractive index of the liquid crystal corresponds to polarized light parallel to the longitudinal direction. Therefore, for the P wave, the ordinary light refractive index of the liquid crystal is substantially equal to the refractive index of the convex portion of the substrate, so that almost 100% of the light is transmitted. On the other hand, the light is diffracted for the S-wave because the extraordinary light refractive index of the liquid crystal and the refractive index of the convex portion of the substrate are different.

【0012】なお、光源から入射したP波又はS波は光
学異方性回折格子を透過し、位相差素子で円偏光に変換
され、集光レンズを通り光学記録媒体に集光される。
The P wave or S wave incident from the light source passes through the optically anisotropic diffraction grating, is converted into circularly polarized light by the phase difference element, and is condensed on the optical recording medium through the condenser lens.

【0013】光学記録媒体の記録面で反射した光は逆回
りの円偏光になり、再び集光レンズを通り、位相差素子
を通過してS波又はP波へ変換され、光学異方性回折格
子を通過する。したがって、入射光がP波の場合は戻り
光はS波になっているため回折し、入射光がS波の場合
は戻り光はP波になっているため回折せず透過する。
The light reflected on the recording surface of the optical recording medium becomes circularly polarized light in the opposite direction, passes through the condenser lens again, passes through the phase difference element and is converted into an S wave or a P wave, and is subjected to optical anisotropic diffraction. Go through the grid. Therefore, when the incident light is a P-wave, the return light is an S-wave and is diffracted. When the incident light is an S-wave, the return light is a P-wave and is transmitted without being diffracted.

【0014】このことから、往路の透過率を上げて復路
の回折効率を上げるためには、入射光をP波にする必要
があった。一方、光源の半導体レーザの光の偏光方向
は、半導体のPN接合面に対してある決まった方向を有
し、また戻り光の回折方向は回折格子の凸部の長手方向
によって規定される。したがって、入射光がP波に限定
されると半導体レーザ及び光検出器の配置に大きな制約
を受け、設計上の自由度が制限されるという問題があっ
た。
For this reason, in order to increase the transmittance on the outward path and increase the diffraction efficiency on the return path, it is necessary to convert the incident light into a P wave. On the other hand, the polarization direction of the light of the semiconductor laser as the light source has a certain direction with respect to the PN junction surface of the semiconductor, and the diffraction direction of the return light is defined by the longitudinal direction of the convex portion of the diffraction grating. Therefore, if the incident light is limited to the P wave, there is a problem that the arrangement of the semiconductor laser and the photodetector is greatly restricted, and the degree of freedom in design is limited.

【0015】本発明は、前述の問題を解消し光学異方性
回折格子の長手方向に平行な偏光をもつ入射光に対して
も、あるいはさらに任意の偏光方向を持つ光に対して
も、工業的生産ができ高い光利用効率を有する光ヘッド
装置の提供を目的とする。
The present invention solves the above-mentioned problem and is applicable to an incident light having a polarization parallel to the longitudinal direction of the optically anisotropic diffraction grating, or a light having an arbitrary polarization direction. It is an object of the present invention to provide an optical head device which can be efficiently produced and has high light use efficiency.

【0016】[0016]

【課題を解決するための手段】本発明は、光源と光学記
録媒体との間に回折素子を配置した光ヘッド装置におい
て、回折素子が、位相差素子と、表面に格子状の凸部が
形成された第1の基板と平らな第2の基板との間に液晶
を充填してなる光学異方性回折格子とを備えており、光
学異方性回折格子の第1の基板の凸部の屈折率が、液晶
の常光屈折率又は異常光屈折率のいずれかにほぼ等し
く、凸部が形成された第1の基板上の液晶配向方向が格
子の長手方向に沿った方向であり、平らな第2の基板上
の液晶配向方向が第1の基板の液晶配向方向と平行でな
い回折素子であることを特徴とする光ヘッド装置を提供
する。
According to the present invention, there is provided an optical head device in which a diffraction element is arranged between a light source and an optical recording medium, wherein the diffraction element has a phase difference element and a lattice-like convex portion formed on the surface. An optically anisotropic diffraction grating filled with liquid crystal between the first substrate and the flat second substrate, wherein the projections of the first substrate of the optically anisotropic diffraction grating are provided. The refractive index is almost equal to either the ordinary light refractive index or the extraordinary light refractive index of the liquid crystal, and the liquid crystal alignment direction on the first substrate on which the convex portions are formed is a direction along the longitudinal direction of the lattice, and An optical head device is provided, wherein the liquid crystal alignment direction on the second substrate is a diffraction element that is not parallel to the liquid crystal alignment direction on the first substrate.

【0017】また、その回折素子が第2の基板上と第1
の基板上で液晶配向方向がほぼ直交していることを特徴
とする光ヘッド装置、及び、それらの回折素子の第1の
基板の表面に透明材料膜が積層されており、凸部が透明
材料膜で形成されていることを特徴とする光ヘッド装置
を提供する。さらに、その回折素子の第1の基板の表面
の透明材料膜が、SiOxy (0≦x<2、0≦y<
1.3)からなることを特徴とする光ヘッド装置を提供
する。
Further, the diffraction element is formed on the second substrate and the first substrate.
Optical head devices characterized in that the liquid crystal alignment directions are substantially orthogonal to each other on the substrate, and a transparent material film is laminated on the surface of the first substrate of the diffractive element, and the projection is formed of a transparent material. An optical head device characterized by being formed of a film is provided. Further, the transparent material film on the surface of the first substrate of the diffraction element is formed of SiO x N y (0 ≦ x <2, 0 ≦ y <
1.3) An optical head device is provided.

【0018】[0018]

【発明の実施の形態】図1は、本発明の光ヘッド装置の
基本的な構成を示す模式図である。図1において、1は
半導体レーザのような光源、2は光学異方性回折格子、
3はλ/4板のような位相差素子である。4は回折素子
であり、この光学異方性回折格子2と位相差素子3とか
らなっている。5は光を集光する集光レンズ、6は光学
記録媒体、7は光検出器である。
FIG. 1 is a schematic diagram showing a basic structure of an optical head device according to the present invention. In FIG. 1, 1 is a light source such as a semiconductor laser, 2 is an optically anisotropic diffraction grating,
Reference numeral 3 denotes a phase difference element such as a λ / 4 plate. Reference numeral 4 denotes a diffraction element, which comprises the optically anisotropic diffraction grating 2 and the phase difference element 3. 5 is a condenser lens for condensing light, 6 is an optical recording medium, and 7 is a photodetector.

【0019】図2は、本発明で用いられる光学異方性回
折格子の断面図である。図2において、11は凸部を設
けた第1の基板、12は平坦な第2の基板、13はその
凸部、14は周辺をシールするシール材、15はその間
に配置される液晶である。
FIG. 2 is a sectional view of an optically anisotropic diffraction grating used in the present invention. In FIG. 2, reference numeral 11 denotes a first substrate provided with a convex portion, 12 denotes a flat second substrate, 13 denotes a convex portion thereof, 14 denotes a sealing material for sealing the periphery, and 15 denotes a liquid crystal disposed therebetween. .

【0020】本発明において、第1の基板における凸部
は基板自体で形成されていてもよく、基板の表面に透明
材料膜を形成してそれを凸部に形成していてもよい。凸
部の屈折率を、液晶の常光屈折率と一致させる場合に
は、通常のガラス基板は屈折率が1.5程度であるので
通常はそのまま使用できる。また、この基板上に透明材
料膜を形成する場合には、やはりこのガラス基板にほぼ
屈折率が等しい屈折率が1.5程度のものが用いられ
る。
In the present invention, the projection on the first substrate may be formed by the substrate itself, or a transparent material film may be formed on the surface of the substrate and formed on the projection. When the refractive index of the convex portion is made to match the ordinary light refractive index of the liquid crystal, the ordinary glass substrate can usually be used as it is because the refractive index is about 1.5. When a transparent material film is formed on this substrate, a glass substrate having a refractive index substantially equal to that of the glass substrate and having a refractive index of about 1.5 is used.

【0021】この透明材料膜としては、用いる液晶の常
光屈折率とほぼ一致する有機又は無機の各種の透明材料
膜が使用できる。それらのうち、SiOxy (0≦x
<2、0≦y<1.3)(これにはSiOx (1≦x<
2)も含む)が、ドライエッチング法により容易に微細
加工できるので好ましい。
As the transparent material film, various kinds of organic or inorganic transparent material films which almost match the ordinary light refractive index of the liquid crystal to be used can be used. Among them, SiO x N y (0 ≦ x
<2, 0 ≦ y <1.3) (this includes SiO x (1 ≦ x <
2) is preferable because fine processing can be easily performed by a dry etching method.

【0022】本発明の光学異方性回折格子では、この基
板自体又はその表面に形成された透明材料膜を、所定の
形状に加工して格子状の凸部を形成する。この場合、凸
部の深さ、ピッチ、形状は目的とする回折特性に応じて
決めればよい。この凸部の形成は、エッチングによって
彫り込んでもよく、所定の箇所に透明材料を堆積させて
形成してもよい。
In the optically anisotropic diffraction grating of the present invention, the substrate itself or the transparent material film formed on the surface thereof is processed into a predetermined shape to form a lattice-like projection. In this case, the depth, pitch, and shape of the projection may be determined according to the intended diffraction characteristics. The projection may be formed by engraving by etching or by depositing a transparent material at a predetermined location.

【0023】本発明では、表面に形成された透明材料膜
を用いて凸部を形成する場合、例えば、以下のようにし
て作製する。まず、厚み1〜2μm程度の基板に透明材
料膜を真空蒸着法、スパッタリング法等により形成す
る。その後フォトリソグラフィ法及びドライエッチング
法によって、屈折率1.5程度の所定の周期の凸部から
なる格子を形成し、回折格子パターンになるよう加工す
る。
In the present invention, when a convex portion is formed using a transparent material film formed on the surface, for example, it is manufactured as follows. First, a transparent material film is formed on a substrate having a thickness of about 1 to 2 μm by a vacuum evaporation method, a sputtering method, or the like. After that, a grating composed of convex portions having a predetermined period of about 1.5 with a refractive index of about 1.5 is formed by photolithography and dry etching, and is processed into a diffraction grating pattern.

【0024】この凸部の長手方向に垂直な面における断
面形状は、図2に示すような長方形、正方形等の左右対
称の矩形形状でもよく、階段状、のこぎり状等の左右非
対称の形状でもよい。左右非対称の形状の場合、光学異
方性回折格子による±1次回折光のうちいずれか一方の
回折効率が高くなる。このため、回折効率の高い方の回
折光のみを検出すればよいような場合、即ち、光検出器
を1つとする場合には、高い光の利用効率が得られるた
め好ましい。
The cross-sectional shape of the projection in a plane perpendicular to the longitudinal direction may be a symmetrical rectangular shape such as a rectangle or a square as shown in FIG. . In the case of an asymmetric shape, the diffraction efficiency of any one of ± first-order diffracted light by the optically anisotropic diffraction grating is increased. For this reason, it is preferable to detect only the diffracted light having the higher diffraction efficiency, that is, to use one photodetector, because high light use efficiency can be obtained.

【0025】本発明では、通常、第1の基板の液晶と接
する側の面にポリイミド等の配向膜を形成し、この配向
膜の液晶配向方向を凸部の長手方向に合わせる。この液
晶の配向は、ラビングで行ってもよく、斜め蒸着等の他
の方法で行ってもよいが、ラビング法で行うことが生産
性がよい。
In the present invention, usually, an alignment film such as polyimide is formed on the surface of the first substrate in contact with the liquid crystal, and the liquid crystal alignment direction of the alignment film is aligned with the longitudinal direction of the projection. The alignment of the liquid crystal may be performed by rubbing or another method such as oblique vapor deposition, but the productivity is good when performed by the rubbing method.

【0026】次に、第2のガラス基板(第2の基板)を
用意し、やはりその液晶と接する側の面にもポリイミド
等の配向膜を形成し、この配向膜のラビング方向を第1
の基板のラビング方向と異なる方向にラビングする。こ
の場合、2枚の基板の液晶配向方向を異ならせるが、特
にそれを直交するようにすることが好ましい。
Next, a second glass substrate (second substrate) is prepared, and an alignment film of polyimide or the like is also formed on the surface in contact with the liquid crystal, and the rubbing direction of the alignment film is changed to the first direction.
Is rubbed in a direction different from the rubbing direction of the substrate. In this case, although the liquid crystal alignment directions of the two substrates are made different, it is particularly preferable that the directions are orthogonal to each other.

【0027】このように液晶配向方向を異ならせて、第
2のガラス基板を第1のガラス基板に積層接着する。そ
の際、第1のガラス基板と第2のガラス基板の周辺部
に、スペーサを含んだエポキシ樹脂等のシール材を、液
晶注入用の開口部以外の部分に塗布し接着する。そし
て、真空中で前記開口部から液晶を注入し、前記開口部
を封着用の樹脂で塞ぐ。
As described above, the second glass substrate is laminated and adhered to the first glass substrate with the liquid crystal alignment directions being different. At this time, a sealing material such as an epoxy resin including a spacer is applied to the peripheral portions of the first glass substrate and the second glass substrate in a portion other than the opening for injecting the liquid crystal, and adhered. Then, liquid crystal is injected from the opening in a vacuum, and the opening is closed with a sealing resin.

【0028】なお、このシール工程、液晶注入工程、開
口部封着工程は、上記の工程に限られなく、液晶注入と
シール圧着を同時に行うような工程とすることもでき
る。
The sealing step, the liquid crystal injecting step, and the opening sealing step are not limited to the above steps, and may be steps in which liquid crystal injecting and seal pressing are performed simultaneously.

【0029】本発明で用いられる液晶としては、高分子
液晶、液晶モノマー、液晶組成物等が適宜使用できる。
通常の液晶組成物の場合、通常のTN型液晶で用いられ
ているネマチック液晶を使用すればよい。屈折率異方性
が大きい液晶を用いることが回折角を大きく取れるので
好ましい。具体的には、Δn≧2、特にはΔn≧2.
5、が好ましい。
As the liquid crystal used in the present invention, a polymer liquid crystal, a liquid crystal monomer, a liquid crystal composition and the like can be appropriately used.
In the case of a normal liquid crystal composition, a nematic liquid crystal used in a normal TN type liquid crystal may be used. It is preferable to use a liquid crystal having a large refractive index anisotropy since a large diffraction angle can be obtained. Specifically, Δn ≧ 2, particularly Δn ≧ 2.
5 is preferred.

【0030】液晶として高分子液晶を用いる場合は、液
晶モノマーを注入後、配向した状態で紫外線を照射する
か加熱して液晶モノマーを重合させればよい。その場
合、凸部のみによっても高分子液晶は配向できるので、
液晶が特定の方向に配向していれば、配向膜は省略して
もよい。なお、この高分子液晶を用いる場合には、液晶
モノマーでの配向を維持して高分子化されていればよい
ので、高分子液晶になってからその配向が変化する必要
はない。
When a polymer liquid crystal is used as the liquid crystal, after the liquid crystal monomer is injected, the liquid crystal monomer may be polymerized by irradiating ultraviolet rays or heating in an aligned state. In that case, the polymer liquid crystal can be oriented only by the convex part,
If the liquid crystal is oriented in a specific direction, the alignment film may be omitted. When this polymer liquid crystal is used, it is only necessary to maintain the orientation of the liquid crystal monomer and polymerize the polymer liquid crystal. Therefore, it is not necessary to change the orientation after the polymer liquid crystal is formed.

【0031】液晶は配向させられ、2枚の基板によりそ
の液晶配向方向が異なるようにされる。この場合、2枚
の基板液晶配向方向が相互にほぼ直交するようにされる
ことが好ましい。このため、用いられる液晶には90°
ツイスト、又は90°+180°×n(nは0以上の整
数)のツイストになるように、カイラル材料を混合する
ことが好ましい。
The liquid crystal is oriented so that the orientation of the liquid crystal is different between the two substrates. In this case, it is preferable that the liquid crystal alignment directions of the two substrates are substantially orthogonal to each other. Therefore, the liquid crystal used is 90 °
It is preferable to mix the chiral material so that the twist is twisted or 90 ° + 180 ° × n (n is an integer of 0 or more).

【0032】このようにして製造した光学異方性回折格
子に、λ/4板を代表とする位相差素子を積層して回折
素子を作製する。この位相差素子は、光学異方性回折格
子を通過してきた光を円偏光にする。この位相差素子は
光源とは反対側に、即ち、光学記録媒体側に配置され
る。この位相差素子としては、ポリカーボネート、ポリ
ビニルアルコール等の材料からなる公知の位相差フィル
ムが使用できる。
A retardation element represented by a λ / 4 plate is laminated on the optically anisotropic diffraction grating manufactured as described above to produce a diffraction element. This phase difference element converts light that has passed through the optically anisotropic diffraction grating into circularly polarized light. This phase difference element is arranged on the side opposite to the light source, that is, on the optical recording medium side. As the retardation element, a known retardation film made of a material such as polycarbonate and polyvinyl alcohol can be used.

【0033】この場合、本発明では、光学異方性回折格
子は凸部を形成した第1のガラス基板が光源とは反対側
にきて、この第1のガラス基板に位相差素子が積層され
るようにする。
In this case, according to the present invention, in the optically anisotropic diffraction grating, the first glass substrate on which the projections are formed comes on the side opposite to the light source, and the phase difference element is laminated on the first glass substrate. So that

【0034】このように格子状の凸部(長手方向が図1
の奥行き方向)が光源とは反対側にあるとし、正の誘電
異方性のネマチック液晶を用い、液晶のツイスト角が9
0°とし、第1の基板の格子状の凸部の屈折率を液晶の
常光屈折率にほぼ等しくし、これに半導体レーザからの
S波(紙面に垂直な方向の偏光を持つ)が入射した場合
の動作を図1を参照しつつ説明する。
As described above, the lattice-shaped protrusions (the longitudinal direction is
(The depth direction of the liquid crystal) is on the opposite side to the light source, a nematic liquid crystal having a positive dielectric anisotropy is used, and the twist angle of the liquid crystal is 9
At 0 °, the refractive index of the lattice-shaped convex portion of the first substrate was made almost equal to the ordinary light refractive index of the liquid crystal, and an S-wave (having a polarization perpendicular to the plane of the paper) from the semiconductor laser was incident on this. The operation in this case will be described with reference to FIG.

【0035】往路(光源側から光学記録媒体側へ向かう
方向)においては、半導体レーザからのS波に対して、
光学異方性回折格子で偏光面は90°回転し、液晶層を
通過後の格子部(第1の基板の内面)ではP波(紙面に
平行な方向の偏光を持つ)になる。このとき、P波に対
しては、格子状の凸部の屈折率と液晶部の屈折率(液晶
分子の短軸方向になるので常光屈折率に相当)はほぼ等
しいので、回折格子として機能せずに、そのまま光は透
過する。
On the outward path (the direction from the light source side to the optical recording medium side), the S-wave from the semiconductor laser is
The polarization plane is rotated by 90 ° by the optically anisotropic diffraction grating, and becomes a P wave (having polarization in a direction parallel to the paper) in the grating portion (the inner surface of the first substrate) after passing through the liquid crystal layer. At this time, for the P wave, the refractive index of the lattice-shaped convex portion is substantially equal to the refractive index of the liquid crystal portion (corresponding to the ordinary light refractive index because it is in the short axis direction of the liquid crystal molecules), so that it functions as a diffraction grating. Instead, the light is transmitted as it is.

【0036】復路(光学記録媒体側から光源側へ向かう
方向)においては、位相差素子によって偏光方向は変化
し、光学異方性回折格子にS波で入射する。そのとき、
S波に対応する液晶の屈折率は異常光屈折率に相当する
ので、格子状の凸部の屈折率(ほぼ常光屈折率に等し
い)とは異なり、回折格子として機能し、光の回折が起
こる。
On the return path (direction from the optical recording medium side to the light source side), the polarization direction is changed by the phase difference element, and the S-wave is incident on the optically anisotropic diffraction grating. then,
Since the refractive index of the liquid crystal corresponding to the S-wave corresponds to the extraordinary light refractive index, the liquid crystal functions as a diffraction grating unlike the refractive index of the lattice-shaped convex portion (substantially equal to the ordinary light refractive index), and light diffraction occurs. .

【0037】本発明のもう1つの形態として、第1の基
板の格子状の凸部の屈折率を液晶の異常光屈折率にほぼ
等しくするものがある。この場合も、回折光が光検知器
に到達するようにしなくてはならないので、図1で格子
状の凸部の長手方向は図1の紙面に垂直方向とされる。
これにより、従来の半導体レーザからのP波入力に、適
用できる。
In another embodiment of the present invention, the refractive index of the lattice-shaped convex portion of the first substrate is made substantially equal to the refractive index of the extraordinary light of the liquid crystal. Also in this case, since the diffracted light must reach the photodetector, the longitudinal direction of the lattice-shaped protrusions in FIG. 1 is set to be perpendicular to the plane of FIG.
Thereby, it can be applied to the P-wave input from the conventional semiconductor laser.

【0038】この場合、この凸部は液晶の異常光屈折率
(例えば、屈折率1.8程度)にほぼ等しくされる。こ
れは高屈折のガラス基板を直接加工してもよく、透明材
料膜を基板上に積層して形成してもよい。
In this case, the convex portions are made substantially equal to the extraordinary light refractive index of the liquid crystal (for example, about 1.8). This may be performed by directly processing a high-refractive glass substrate, or by laminating a transparent material film on the substrate.

【0039】この透明材料膜としては、用いる液晶の異
常光屈折率とほぼ一致する有機又は無機の各種の透明材
料膜が使用できる。それらのうち、SiOxy (0≦
x<2、0≦y<1.3)(これにはSiOx (1≦x
<2)も含む)が、ドライエッチング法により容易に微
細加工できるので好ましい。
As the transparent material film, various kinds of organic or inorganic transparent material films which substantially match the extraordinary refractive index of the liquid crystal used can be used. Among them, SiO x N y (0 ≦
x <2, 0 ≦ y <1.3) (this includes SiO x (1 ≦ x
<2) is also preferable because fine processing can be easily performed by a dry etching method.

【0040】本発明の光学異方性回折格子は高屈折のガ
ラス基板を直接加工してもよいが、透明材料膜を基板上
に積層して形成することが好ましく、この場合、以下の
ようにして作製する。まず、厚み1〜2μm程度の屈折
率1.8程度の被膜を真空蒸着法、スパッタリング法等
により基板上に形成する。その後フォトリソグラフィ法
及びドライエッチング法によって、所定の周期の凸部か
らなる格子とし、回折格子パターンになるよう加工す
る。
Although the optically anisotropic diffraction grating of the present invention may be formed by directly processing a high-refractive glass substrate, it is preferable to form a transparent material film on the substrate by laminating it. To make. First, a coating having a thickness of about 1 to 2 μm and a refractive index of about 1.8 is formed on a substrate by a vacuum deposition method, a sputtering method, or the like. After that, a photolithography method and a dry etching method are used to form a grating composed of convex portions with a predetermined period, and process the diffraction grating pattern.

【0041】この凸部の短手方向の断面形状は、図2に
示すように長方形、正方形等の左右対称の矩形形状とし
てもよいが、階段状、のこぎり状等の左右非対称の形状
としてもよい。左右非対称の形状の場合、光学異方性回
折格子による±1次回折光のうちいずれか一方の回折効
率が高くなるので、検出器が1つで回折効率の高い方の
回折光のみを検出すればよい場合には、高い光の利用効
率が得られる。
As shown in FIG. 2, the cross-sectional shape of the projection in the lateral direction may be a rectangular shape such as a rectangle or a square, or may be an asymmetric shape such as a step shape or a saw shape. . In the case of an asymmetric shape, the diffraction efficiency of one of the ± 1st-order diffracted lights by the optically anisotropic diffraction grating is increased. Therefore, if one detector detects only the diffracted light with the higher diffraction efficiency, In a good case, high light use efficiency can be obtained.

【0042】本発明では、前記の常光屈折率と合わせた
ときと同様に、通常、第1の基板の液晶と接する側の面
にポリイミド等の配向膜を形成し、この配向膜の液晶配
向方向を凸部の長手方向に合わせる。
In the present invention, as in the case where the refractive index is adjusted to the ordinary light refractive index, an alignment film such as polyimide is usually formed on the surface of the first substrate which is in contact with the liquid crystal, and the liquid crystal alignment direction of the alignment film is usually adjusted. To the longitudinal direction of the projection.

【0043】次に、第2のガラス基板(第2の基板)を
用意し、前記と同様にして配向膜を形成し、液晶を封入
して光学異方性回折格子を製造する。このようにして製
造した光学異方性回折格子に、λ/4板を代表とする位
相差素子を積層して回折素子を作製する。
Next, a second glass substrate (second substrate) is prepared, an alignment film is formed in the same manner as described above, and liquid crystal is sealed to produce an optically anisotropic diffraction grating. A retardation element typified by a λ / 4 plate is laminated on the optically anisotropic diffraction grating manufactured as described above to produce a diffraction element.

【0044】この場合も、本発明では、光学異方性回折
格子は凸部を形成した第1のガラス基板が光源とは反対
側にきて、この第1のガラス基板に位相差素子が積層さ
れるようにする。
Also in this case, according to the present invention, in the optically anisotropic diffraction grating, the first glass substrate on which the convex portions are formed comes on the side opposite to the light source, and the phase difference element is laminated on the first glass substrate. To be done.

【0045】このように格子状の凸部(長手方向が図1
の奥行き方向)が光源とは反対側にあるとし、正の誘電
異方性のネマチック液晶を用い、液晶のツイスト角が9
0°とし、第1の基板の格子状の凸部の屈折率を液晶の
異常光屈折率にほぼ等しくし、これに半導体レーザから
のP波(紙面に平行な方向の偏光を持つ)が入射した場
合の動作を図1を参照しつつ説明する。
As described above, the lattice-shaped projections (the longitudinal direction is
(The depth direction of the liquid crystal) is on the opposite side to the light source, a nematic liquid crystal having a positive dielectric anisotropy is used, and the twist angle of the liquid crystal is 9
At 0 °, the refractive index of the lattice-shaped convex portion of the first substrate is made almost equal to the extraordinary light refractive index of the liquid crystal, and a P-wave (having a polarization parallel to the plane of the paper) from the semiconductor laser is incident on this. The operation in such a case will be described with reference to FIG.

【0046】往路(光源側から光学記録媒体側へ向かう
方向)においては、半導体レーザからのP波に対して、
光学異方性回折格子で偏光面は90°回転し、液晶層を
通過後の格子部(第1の基板の内面)ではS波(紙面に
垂直な方向の偏光を持つ)になる。このとき、S波に対
しては、格子状の凸部の屈折率と液晶部の屈折率(液晶
分子の長軸方向になるので異常光屈折率に相当)はほぼ
等しいので、回折格子として機能せずに、そのまま光は
透過する。
On the outward path (the direction from the light source side to the optical recording medium side), the P-wave from the semiconductor laser is
The polarization plane is rotated by 90 ° by the optically anisotropic diffraction grating, and becomes an S wave (having a polarization in a direction perpendicular to the plane of the paper) at the grating portion (the inner surface of the first substrate) after passing through the liquid crystal layer. At this time, for the S wave, the refractive index of the lattice-like convex portion and the refractive index of the liquid crystal portion (corresponding to the extraordinary light refractive index because it is in the major axis direction of the liquid crystal molecules) are substantially equal, and thus function as the diffraction grating Instead, the light is transmitted as it is.

【0047】復路(光学記録媒体側から光源側へ向かう
方向)においては、位相差素子によって偏光方向は変化
し、光学異方性回折格子にP波で入射する。そのとき、
P波に対応する液晶の屈折率は常光屈折率に相当するの
で、格子状の凸部の屈折率(ほぼ異常光屈折率に等し
い)とは異なり、回折格子として機能し、光の回折が起
こる。
On the return path (the direction from the optical recording medium side to the light source side), the polarization direction is changed by the phase difference element, and the P-wave is incident on the optically anisotropic diffraction grating. then,
Since the refractive index of the liquid crystal corresponding to the P-wave corresponds to the ordinary light refractive index, the liquid crystal functions as a diffraction grating unlike the refractive index of the lattice-shaped convex portion (almost equal to the extraordinary light refractive index), and light diffraction occurs. .

【0048】本発明において、上記の説明では、上下の
基板間の配向方向は、直交しているとして説明したが、
本発明では90°以外の角度にすることもできる。も
し、入射光の偏光方向が、格子の凸部の長手方向と例え
ば30°、45°、60°等の任意の角度を持つときに
は、同じ角度で液晶をツイストさせればよい。
In the present invention, in the above description, the orientation direction between the upper and lower substrates has been described as being orthogonal,
In the present invention, the angle may be other than 90 °. If the polarization direction of the incident light has an arbitrary angle, for example, 30 °, 45 °, 60 °, or the like, with respect to the longitudinal direction of the convex portion of the grating, the liquid crystal may be twisted at the same angle.

【0049】これにより、入射光の偏光面を回転させ、
格子形成面において常に格子の長手方向に直交又は平行
するように偏光面を持っていくことによって、任意の偏
光方向で入射する光に対して、往復効率の高い光ヘッド
装置を実現できる。
As a result, the plane of polarization of the incident light is rotated,
An optical head device having a high reciprocating efficiency with respect to light incident in an arbitrary polarization direction can be realized by always providing the polarization plane on the lattice formation surface so as to be orthogonal or parallel to the longitudinal direction of the lattice.

【0050】本発明の回折素子は、光源側の基板、即
ち、第2の基板側にも他の回折格子を形成してもよく、
その場合光検出器への回折と3ビーム法によるトラッキ
ングエラー検出のための回折の両方が1個の回折素子で
実現できる。
In the diffraction element of the present invention, another diffraction grating may be formed on the substrate on the light source side, that is, on the second substrate side.
In that case, both diffraction to the photodetector and diffraction for tracking error detection by the three-beam method can be realized by one diffraction element.

【0051】本発明における光学異方性回折格子の凸部
のパターンは、光学記録媒体からの戻り光のビーム形状
が所望の形状になるように、回折格子面内で曲率をつけ
たり、格子間隔に分布をつけたりすることもできる。
In the present invention, the pattern of the convex portions of the optically anisotropic diffraction grating is provided with a curvature in the diffraction grating plane or a grating interval so that the beam shape of the return light from the optical recording medium has a desired shape. You can also add a distribution.

【0052】本発明において、回折素子の光源側の面及
び/又は光学記録媒体側の面に、UV硬化型アクリル樹
脂等の被膜を設けた場合、λ/4板やガラス基板の表面
の凹凸に起因する波面収差を低減でき好ましい。さらに
このUV硬化型アクリル樹脂等の被膜の上に、平坦度の
よいガラス基板やプラスチック基板等を積層することに
より、格段に波面収差を低減できる。回折素子の光の入
出射面が平坦化されていることにより、結果的に波面収
差が低減される。
In the present invention, when a coating such as a UV-curable acrylic resin is provided on the light source side surface and / or the optical recording medium side surface of the diffraction element, the unevenness of the surface of the λ / 4 plate or the glass substrate is reduced. This is preferable because the resulting wavefront aberration can be reduced. Further, by laminating a glass substrate, a plastic substrate, or the like with good flatness on the coating of the UV-curable acrylic resin or the like, the wavefront aberration can be remarkably reduced. Since the light incident / exit surface of the diffraction element is flattened, the wavefront aberration is consequently reduced.

【0053】本発明における光源としては半導体レー
ザ、YAGレーザ等の固体レーザ、He−Ne等の気体
レーザ等の各種の固体、気体レーザが使用でき、半導体
レーザが小型軽量化、連続発振、保守点検等の点で好ま
しい。光源部に半導体レーザ等と非線形光学素子を組み
込んだ高調波発生装置(SHG)を使用し、青色レーザ
等の短波長レーザを用いると、高密度の光記録及び読み
取りが可能になる。
As the light source in the present invention, various solid and gas lasers such as a solid-state laser such as a semiconductor laser and a YAG laser and a gas laser such as He-Ne can be used. It is preferable from the point of view. Using a harmonic generator (SHG) in which a semiconductor laser or the like and a non-linear optical element are incorporated in the light source section and using a short-wavelength laser such as a blue laser enables high-density optical recording and reading.

【0054】本発明の光学記録媒体は、光により情報の
記録及び/又は読み取りができる媒体である。その例と
してはCD(コンパクトディスク)、CD−ROM、D
VD(デジタルビデオディスク)等の光ディスク、及び
光磁気ディスク、相変化型光ディスク等が挙げられる。
The optical recording medium of the present invention is a medium on which information can be recorded and / or read by light. Examples include CDs (compact disks), CD-ROMs, D
An optical disk such as a VD (digital video disk), a magneto-optical disk, a phase change optical disk, and the like can be given.

【0055】[0055]

【実施例】【Example】

[例1]10mm×10mm角、厚さ0.5mm、屈折
率1.52の第1のガラス基板11上に、反応性スパッ
タ法によって屈折率1.52、厚さ1.4μmのSiO
xy (x≒1.8、y≒0.17)の透明材料膜を形
成した。
[Example 1] SiO 2 having a refractive index of 1.52 and a thickness of 1.4 μm was formed on a first glass substrate 11 having a size of 10 mm × 10 mm, a thickness of 0.5 mm and a refractive index of 1.52 by a reactive sputtering method.
x N y (x ≒ 1.8, y ≒ 0.17) to form a transparent material film.

【0056】その後、フォトリソグラフィ法及びドライ
エッチング法によって、SiOxy の透明材料膜をピ
ッチ(周期)が10μmの凸部とし、その結果長手方向
に垂直な面における断面形状が矩形状の格子状の凸部1
3を形成した。その液晶に接する側の面にポリイミドの
配向膜を形成した。そのラビング方向が前記凸部の長手
方向(図2の図に垂直方向)に沿うようにした。
Thereafter, the transparent material film of SiO x N y is formed into a projection having a pitch (period) of 10 μm by a photolithography method and a dry etching method. As a result, a grid having a rectangular cross section in a plane perpendicular to the longitudinal direction is obtained. Convex part 1
3 was formed. An alignment film of polyimide was formed on the surface in contact with the liquid crystal. The rubbing direction was set to be along the longitudinal direction of the projection (the direction perpendicular to the drawing of FIG. 2).

【0057】10mm×10mm角、厚み0.5mm、
屈折率1.52の第2のガラス基板12を用意し、その
液晶に接する側の面にポリイミドの配向膜を形成した。
そのラビング方向が前記凸部の長手方向と直交する(図
2の図に平行方向)ようにした。次いで、第1のガラス
基板と2のガラス基板とを相互の配向方向が直交する状
態で重ね合わせ、周辺部を液晶注入用の開口部を除いて
シールした。
10 mm × 10 mm square, 0.5 mm thick,
A second glass substrate 12 having a refractive index of 1.52 was prepared, and an alignment film of polyimide was formed on the surface in contact with the liquid crystal.
The rubbing direction was set so as to be orthogonal to the longitudinal direction of the projection (parallel to the drawing in FIG. 2). Next, the first glass substrate and the second glass substrate were overlapped with each other with their orientation directions orthogonal to each other, and the periphery was sealed except for the opening for injecting liquid crystal.

【0058】具体的には次のようにした。8μmの球状
スペーサを含むエポキシ樹脂を第2のガラス基板の周辺
部に塗布し、その上に第1のガラス基板を載置した。そ
の後、減圧雰囲気中で液晶として混合液晶組成物(メル
ク社製商品名「BL009」、ネマチック液晶、Δn=
0.2915、常光屈折率=1.5266、異常光屈折
率=1.8181、固体液晶相への相転移温度≦−20
℃、アイソトロピック相への相転移温度=108℃)
を、注入した。前記開口部を封止用の樹脂で塞ぎ、光学
異方性回折格子を作製した。
Specifically, the following was performed. An epoxy resin containing an 8 μm spherical spacer was applied to the periphery of the second glass substrate, and the first glass substrate was mounted thereon. Then, a mixed liquid crystal composition (trade name “BL009” manufactured by Merck, nematic liquid crystal, Δn =
0.2915, ordinary light refractive index = 1.5266, extraordinary light refractive index = 1.8181, phase transition temperature to solid liquid crystal phase ≤ -20
℃, phase transition temperature to isotropic phase = 108 ℃)
Was injected. The opening was closed with a sealing resin to produce an optically anisotropic diffraction grating.

【0059】次いで、第1のガラス基板の外面(凸部を
設けた面と反対側の面)に、透明接着剤を用いてポリカ
ーボネート製の位相差素子を接着した。さらにその上に
UV硬化型アクリル樹脂を塗布した。さらにその上に第
3のガラス基板を載置し、紫外線を照射して第3のガラ
ス基板を位相差素子に積層接着した。さらに素子全体に
ついて、光の入射面及び光の出射面に反射防止膜を形成
し、回折素子を作製した。
Next, a polycarbonate phase difference element was bonded to the outer surface of the first glass substrate (the surface opposite to the surface provided with the convex portions) using a transparent adhesive. Further, a UV curable acrylic resin was applied thereon. Further, a third glass substrate was placed thereon, and the third glass substrate was laminated and adhered to the retardation element by irradiating ultraviolet rays. Further, with respect to the entire device, an antireflection film was formed on the light incidence surface and the light emission surface to produce a diffraction device.

【0060】この回折素子は、半導体レーザからの波長
678nmのS波(図1において紙面に垂直な偏光方向
の光)に対して85%の透過率であった。光ディスクか
らの復路でS波(紙面に垂直な偏光方向の光)に対して
は、1次回折光の回折効率が25%、−1次回折光の回
折効率が26%であった。
This diffractive element had a transmittance of 85% with respect to an S-wave having a wavelength of 678 nm from a semiconductor laser (light having a polarization direction perpendicular to the paper surface in FIG. 1). For the S-wave (light in the polarization direction perpendicular to the paper surface) on the return path from the optical disk, the diffraction efficiency of the first-order diffracted light was 25% and the diffraction efficiency of the -1st-order diffracted light was 26%.

【0061】したがって往復効率は、0.85×0.5
1で計算すると43%となり、実用上充分に高い効率が
得られた。また透過光の波面収差は、回折素子の光の入
出射面の中心部(直径2mmの円形の範囲)で、0.0
15λrms (自乗平均)以下であった。
Therefore, the reciprocating efficiency is 0.85 × 0.5
When calculated with 1, it was 43%, and a sufficiently high efficiency for practical use was obtained. The wavefront aberration of the transmitted light is 0.0% at the center of the light entrance / exit surface of the diffractive element (circular range having a diameter of 2 mm).
15λ rms was (root mean square) or less.

【0062】[例2]第2の基板のラビング方向を第1
の基板に対して45°にし、液晶のツイスト角が45°
にした他は、例1と同様にして回折素子を作製した。
[Example 2] The rubbing direction of the second substrate was changed to the first direction.
45 ° to the substrate, and the twist angle of the liquid crystal is 45 °
A diffraction element was produced in the same manner as in Example 1 except for the above.

【0063】半導体レーザからの波長678nmのS波
とP波の中間の偏光方向(第2の基板のラビング方向に
は直交)を持つ入射光とした。この回折素子は、この入
射光に対して78%の透過率であった。光ディスクから
の復路でS波(紙面に垂直な偏光方向の光)に対して
は、1次回折光の回折効率が25%、−1次回折光の回
折効率が24%であった。
The incident light from the semiconductor laser having an intermediate polarization direction between the S-wave and the P-wave having a wavelength of 678 nm (perpendicular to the rubbing direction of the second substrate) was used. The diffractive element had a transmittance of 78% for the incident light. For the S-wave (light in the polarization direction perpendicular to the paper surface) on the return path from the optical disk, the diffraction efficiency of the first-order diffracted light was 25% and the diffraction efficiency of the -1st-order diffracted light was 24%.

【0064】したがって往復効率は、0.78×0.4
9で計算すると38%となり、実用上充分に高い効率が
得られた。また透過光の波面収差は、回折素子の光の入
出射面の中心部(直径2mmの円形の範囲)で、0.0
15λrms 以下であった。
Therefore, the reciprocating efficiency is 0.78 × 0.4
When calculated using 9, the efficiency was 38%, and a sufficiently high efficiency for practical use was obtained. The wavefront aberration of the transmitted light is 0.0% at the center of the light entrance / exit surface of the diffractive element (circular range having a diameter of 2 mm).
It was 15λ rms or less.

【0065】[例3]10mm×10mm角、厚さ0.
5mm、屈折率1.52の第1のガラス基板11上に、
反応性スパッタリング法によって屈折率1.8、厚さ
1.4μmのSiOxy (x≒0.7、y≒0.8)
の透明材料膜を形成した。
Example 3 10 mm × 10 mm square, thickness of 0.1 mm
5 mm, on a first glass substrate 11 having a refractive index of 1.52,
SiO x N y (x ≒ 0.7, y ≒ 0.8) having a refractive index of 1.8 and a thickness of 1.4 μm by a reactive sputtering method.
Was formed.

【0066】その後、フォトリソグラフィ法及びドライ
エッチング法によって、SiOxy の透明材料膜をピ
ッチ(周期)が10μmの凸部とし、その結果長手方向
に垂直な面における断面形状が矩形状の格子状の凸部1
3を形成した。その液晶に接する側の面にポリイミドの
配向膜を形成した。そのラビング方向が前記凸部の長手
方向(図2の図に垂直方向)に沿うようにした。
Thereafter, the transparent material film of SiO x N y is formed into a convex portion having a pitch (period) of 10 μm by a photolithography method and a dry etching method. As a result, a lattice having a rectangular cross section in a plane perpendicular to the longitudinal direction is obtained. Convex part 1
3 was formed. An alignment film of polyimide was formed on the surface in contact with the liquid crystal. The rubbing direction was set to be along the longitudinal direction of the projection (the direction perpendicular to the drawing of FIG. 2).

【0067】10mm×10mm角、厚み0.5mm、
屈折率1.52の第2のガラス基板12を用意し、その
液晶に接する側の面にポリイミドの配向膜を形成した。
そのラビング方向が前記凸部の長手方向と直交する(図
2の図に平行方向)ようにした。次いで、第1のガラス
基板と2のガラス基板とを相互の配向方向が直交する状
態で重ね合わせ、周辺部を液晶注入用の開口部を除いて
シールした。
10 mm × 10 mm square, 0.5 mm thick,
A second glass substrate 12 having a refractive index of 1.52 was prepared, and an alignment film of polyimide was formed on the surface in contact with the liquid crystal.
The rubbing direction was set so as to be orthogonal to the longitudinal direction of the projection (parallel to the drawing in FIG. 2). Next, the first glass substrate and the second glass substrate were overlapped with each other with their orientation directions orthogonal to each other, and the periphery was sealed except for the opening for injecting liquid crystal.

【0068】具体的には次のようにした。8μmの球状
スペーサを含むエポキシ樹脂を第2のガラス基板の周辺
部に塗布し、その上に第1のガラス基板を載置した。そ
の後、減圧雰囲気中で液晶として例1と同じ混合液晶組
成物を注入した。前記開口部を封止用の樹脂で塞ぎ、光
学異方性回折格子を作製した。
Specifically, the following was performed. An epoxy resin containing an 8 μm spherical spacer was applied to the periphery of the second glass substrate, and the first glass substrate was mounted thereon. Thereafter, the same mixed liquid crystal composition as in Example 1 was injected as a liquid crystal in a reduced pressure atmosphere. The opening was closed with a sealing resin to produce an optically anisotropic diffraction grating.

【0069】次いで、第1のガラス基板の外面(凸部を
設けた面と反対側の面)に、透明接着剤を用いてポリカ
ーボネート製の位相差素子を接着した。さらにその上に
UV硬化型アクリル樹脂を塗布した。さらにその上に第
3のガラス基板を載置し、紫外線を照射して第3のガラ
ス基板を位相差素子に積層接着した。さらに素子全体に
ついて、光の入射面及び光の出射面に反射防止膜を形成
し、回折素子を作製した。
Then, a polycarbonate retardation element was bonded to the outer surface of the first glass substrate (the surface opposite to the surface provided with the convex portions) using a transparent adhesive. Further, a UV curable acrylic resin was applied thereon. Further, a third glass substrate was placed thereon, and the third glass substrate was laminated and adhered to the retardation element by irradiating ultraviolet rays. Further, with respect to the entire device, an antireflection film was formed on the light incidence surface and the light emission surface to produce a diffraction device.

【0070】この回折素子は、半導体レーザからの波長
678nmのP波(図1において紙面に平行な偏光方向
の光)に対して86%の透過率であった。光ディスクか
らの復路でP波(紙面に平行な偏光方向の光)に対して
は、1次回折光の回折効率が26%、−1次回折光の回
折効率が27%であった。
This diffractive element had a transmittance of 86% with respect to a P-wave having a wavelength of 678 nm from a semiconductor laser (light having a polarization direction parallel to the paper surface in FIG. 1). For the P-wave (light in the polarization direction parallel to the paper surface) on the return path from the optical disk, the diffraction efficiency of the first-order diffracted light was 26% and the diffraction efficiency of the -1st-order diffracted light was 27%.

【0071】したがって往復効率は、0.86×0.5
3で計算すると46%となり、実用上充分に高い効率が
得られた。また透過光の波面収差は、回折素子の光の入
出射面の中心部(直径2mmの円形の範囲)で、0.0
15λrms 以下であった。
Therefore, the reciprocating efficiency is 0.86 × 0.5
3, which was 46%, which was a sufficiently high efficiency for practical use. The wavefront aberration of the transmitted light is 0.0% at the center of the light entrance / exit surface of the diffractive element (circular range having a diameter of 2 mm).
It was 15λ rms or less.

【0072】[0072]

【発明の効果】本発明では、液晶をツイストしているの
で、半導体レーザからの入射光がP波でもS波でも、さ
らにはその間の任意の偏光方向の光に対しても、光ヘッ
ド装置として、高い光の利用効率が得られる。本発明
は、本発明の効果を損しない範囲内で、種々の応用がで
きる。
According to the present invention, the liquid crystal is twisted, so that the incident light from the semiconductor laser can be a P-wave or an S-wave, or light of any polarization direction between them, as an optical head device. And high light use efficiency can be obtained. The present invention can be applied to various applications within a range that does not impair the effects of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光ヘッド装置の基本的な構成を示す模
式図。
FIG. 1 is a schematic diagram showing a basic configuration of an optical head device according to the present invention.

【図2】本発明で用いられる光学異方性回折格子の断面
図。
FIG. 2 is a sectional view of an optically anisotropic diffraction grating used in the present invention.

【符号の説明】[Explanation of symbols]

1:光源 2:光学異方性回折格子 3:位相差素子 4:回折素子 5:集光レンズ 6:光学記録媒体 7:光検出器 11:第1の基板 12:第2の基板 13:凸部 14:シール材 15:液晶 1: light source 2: optically anisotropic diffraction grating 3: phase difference element 4: diffraction element 5: condenser lens 6: optical recording medium 7: photodetector 11: first substrate 12: second substrate 13: convex Part 14: Sealing material 15: Liquid crystal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光源と光学記録媒体との間に回折素子を配
置した光ヘッド装置において、回折素子が、位相差素子
と、表面に格子状の凸部が形成された第1の基板と平ら
な第2の基板との間に液晶を充填してなる光学異方性回
折格子とを備えており、光学異方性回折格子の第1の基
板の凸部の屈折率が、液晶の常光屈折率又は異常光屈折
率のいずれかにほぼ等しく、凸部が形成された第1の基
板上の液晶配向方向が格子の長手方向に沿った方向であ
り、平らな第2の基板上の液晶配向方向が第1の基板の
液晶配向方向と平行でない回折素子であることを特徴と
する光ヘッド装置。
In an optical head device in which a diffraction element is arranged between a light source and an optical recording medium, the diffraction element is flat with a phase difference element and a first substrate having a lattice-shaped convex portion formed on the surface. An optically anisotropic diffraction grating filled with a liquid crystal between the liquid crystal and the second substrate, wherein the refractive index of the convex portion of the first substrate of the optically anisotropic diffraction grating is equal to the ordinary light refraction of the liquid crystal. The liquid crystal alignment direction on the first substrate on which the projections are formed is substantially equal to either the refractive index or the extraordinary light refractive index, and the liquid crystal alignment direction on the flat second substrate is the direction along the longitudinal direction of the lattice. An optical head device, comprising: a diffraction element whose direction is not parallel to the liquid crystal alignment direction of the first substrate.
【請求項2】回折素子が第2の基板上と第1の基板上で
液晶配向方向がほぼ直交していることを特徴とする請求
項1記載の光ヘッド装置。
2. The optical head device according to claim 1, wherein the liquid crystal alignment directions of the diffraction element on the second substrate and the first substrate are substantially orthogonal.
【請求項3】回折素子の第1の基板の表面に透明材料膜
が積層されており、凸部が透明材料膜で形成されている
ことを特徴とする請求項1又は2記載の光ヘッド装置。
3. The optical head device according to claim 1, wherein a transparent material film is laminated on the surface of the first substrate of the diffraction element, and the projection is formed of the transparent material film. .
【請求項4】回折素子の第1の基板の表面の透明材料膜
が、SiOxy (0≦x<2、0≦y<1.3)から
なることを特徴とする請求項3記載の光ヘッド装置。
4. The diffraction element according to claim 3, wherein the transparent material film on the surface of the first substrate is made of SiO x N y (0 ≦ x <2, 0 ≦ y <1.3). Optical head device.
JP16996696A 1996-06-28 1996-06-28 Optical head device Expired - Fee Related JP3509399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16996696A JP3509399B2 (en) 1996-06-28 1996-06-28 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16996696A JP3509399B2 (en) 1996-06-28 1996-06-28 Optical head device

Publications (2)

Publication Number Publication Date
JPH1021576A true JPH1021576A (en) 1998-01-23
JP3509399B2 JP3509399B2 (en) 2004-03-22

Family

ID=15896126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16996696A Expired - Fee Related JP3509399B2 (en) 1996-06-28 1996-06-28 Optical head device

Country Status (1)

Country Link
JP (1) JP3509399B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6639888B1 (en) 1998-02-03 2003-10-28 Fujitsu Limited Information reading and recording device for optical disk
WO2005045484A1 (en) 2003-11-07 2005-05-19 Asahi Glass Company, Limited Diffraction element and optical head device
US6917576B2 (en) 1999-08-26 2005-07-12 Asahi Glass Company, Limited Retarder and optical head device installing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6639888B1 (en) 1998-02-03 2003-10-28 Fujitsu Limited Information reading and recording device for optical disk
US6917576B2 (en) 1999-08-26 2005-07-12 Asahi Glass Company, Limited Retarder and optical head device installing the same
WO2005045484A1 (en) 2003-11-07 2005-05-19 Asahi Glass Company, Limited Diffraction element and optical head device
JP2005141033A (en) * 2003-11-07 2005-06-02 Asahi Glass Co Ltd Diffraction element and optical head system
CN100373181C (en) * 2003-11-07 2008-03-05 旭硝子株式会社 Diffraction element and optical head device
JP4561080B2 (en) * 2003-11-07 2010-10-13 旭硝子株式会社 Diffraction element and optical head device

Also Published As

Publication number Publication date
JP3509399B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
US6271966B1 (en) Optical head device including an optically anisotropic diffraction grating and process for its production
JPH09304748A (en) Liquid crystal lens and optical head device using the same
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
JP3624561B2 (en) Optical modulation element and optical head device
JP4300784B2 (en) Optical head device
JPH1164615A (en) Diffraction element
JP3509399B2 (en) Optical head device
JP3994450B2 (en) Manufacturing method of optical diffraction grating and optical head device using the same
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3550905B2 (en) Manufacturing method of diffraction element used for optical head device
JP2000249831A (en) Optical device and optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP3550873B2 (en) Optical head device
JP3713778B2 (en) Optical head device
JP3528381B2 (en) Optical head device
JPH09185837A (en) Optical head device
JP3829356B2 (en) Optical head device
JP4626026B2 (en) Optical head device
US20090268585A1 (en) Wavelength selecting wavelength plate and optical head device using it
JPH1048588A (en) Optical head device
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JPH09161303A (en) Optical head device
JPH10188321A (en) Polarizing diffraction grating and optical head device using the same
JPH09127335A (en) Manufacture of optical head device and optical head device
JPH10188332A (en) Optical head device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees