JP3978821B2 - Diffraction element - Google Patents

Diffraction element Download PDF

Info

Publication number
JP3978821B2
JP3978821B2 JP22401797A JP22401797A JP3978821B2 JP 3978821 B2 JP3978821 B2 JP 3978821B2 JP 22401797 A JP22401797 A JP 22401797A JP 22401797 A JP22401797 A JP 22401797A JP 3978821 B2 JP3978821 B2 JP 3978821B2
Authority
JP
Japan
Prior art keywords
film
light
liquid crystal
refractive index
birefringent film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22401797A
Other languages
Japanese (ja)
Other versions
JPH1164615A (en
Inventor
弘昌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP22401797A priority Critical patent/JP3978821B2/en
Publication of JPH1164615A publication Critical patent/JPH1164615A/en
Application granted granted Critical
Publication of JP3978821B2 publication Critical patent/JP3978821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CD、CD−ROM、ビデオディスクなどの光ディスクおよび光磁気ディスクなどに光学的情報を書き込んだり、光学的情報を読み取るための光ヘッド装置に使用する回折素子に関する。
【0002】
【従来の技術】
光ディスクおよび光磁気ディスクなどの光記録媒体に光学的情報を書き込んだり、光記録媒体から光学的情報を読み取ったりするのに光ヘッド装置が用いられる。光ヘッド装置は、ディスク状の光記録媒体の記録面から反射された信号光を光検出部へ導光(ビームスプリット)するための光学部品を備えている。この光学部品としては、従来、回折素子またはホログラム素子を用いたものと、プリズム式ビームスプリッタを用いたものとが知られていた。
【0003】
光ヘッド装置用の従来の回折素子またはホログラム素子は、ガラスやプラスチックの基板上に、矩形の断面を有するレリーフ状の格子をドライエッチング法または射出成形法よって形成したものであり、格子で光を回折しビームスプリット機能を付与していた。
【0004】
これらの回折素子またはホログラム素子のうち、ドライエッチング法を用いるものの例を図4に示す。
下面側に低反射コート1を施されたガラス基板2そのものの上面、または、ガラス基板2上に蒸着法やスパッタ法などの真空プロセスを用いて成膜されたSiO2 などの無機薄膜3の上面に、フォトリソグラフィにより、格子状のフォトレジストマスクを作製し、この状態で、ドライエッチングを行って無機薄膜3の部分に無機薄膜3の格子である無機格子4を形成し、さらに、無機格子4の上に残存しているフォトレジストを除去してから、低反射コート5を施すことにより回折素子を作成し、偏光無依存型の等方性回折素子として使用する。
【0005】
このような等方性回折素子における光の利用効率は10%程度と低く、光の利用効率を10%よりも上げようとする場合には、偏光を利用することが考えられる。
【0006】
そこで、偏光を利用した光利用効率の高いホログラム(回折素子)を備えた光ヘッド装置が特開平9−180236に提案されている。この提案の偏光性回折素子は図5のものである。まず、ガラス基板6上に、後述する液晶7などの複屈折性材料の常光屈折率または異常光屈折率とほぼ等しい屈折率を有する無機系の等方性薄膜8を成膜し、つぎに、フォトリソグラフィにより、等方性薄膜8の上に、格子状のフォトレジストマスクを作製し、この状態で、ドライエッチングを行って無機格子9を形成し、さらに、無機格子9の上に残存したフォトレジストを除去してから、配向膜10を塗布焼成して配向処理を施した後、同様の配向処理を実施した配向膜11を有する対向基板12を向かい合わせるとともに、シール材13を介在させて熱圧着し、内部に液晶7などの複屈折性材料を充填し封止することにより回折素子部14を形成し、さらに、ガラス基板6の下面側に有機系位相差フィルム15を貼り付けたガラス基板16を挟み込むように取り付けて位相差板部17を形成し、両面に低反射コート18、19を施す。
【0007】
【発明が解決しようとする課題】
上記図5の偏光性の回折素子の場合に、通常の液晶7は、格子における凹凸部の延長方向、すなわち、格子方向に沿って配向されるため、格子方向と直交する偏光に対しては液晶7の常光屈折率が対応し、格子方向と平行な偏光に対しては液晶7の異常光屈折率が対応する。したがって、上記光ヘッド装置では、入射光の偏光方向に対して格子方向は、平行または垂直のいずれかとなり、かつ、回折素子部14内でほぼ一様な方向であるという制約があった。
【0008】
また、液晶7を封入するのに、ガラス基板6と対向基板12とシール材13が必要となるため、有効径に対して素子サイズ上の問題となっていた。
さらに、偏光切り替えのための位相差板部17を合わせ持つ回折素子において、位相差板部17に安価な有機系位相差フィルム15を用いる場合には、有機系位相差フィルム15単体が持つ透過波面歪みや、回折素子部14に充填する液晶7との反応に対する信頼性が問題となり、これを解消するためにガラスが3枚必要となり、回折素子の薄型化、軽量化上の問題となっていた。
【0009】
本発明は、上述の各問題を解決し、位相差板を内蔵でき、軽量小型で、かつ、格子方向と入射偏光方向とのなす角度に制約がなく、工業的生産が可能で高い光利用効率を有する回折素子を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、回折素子の製造方法であって、前記回折素子は、透明基板と、透明基板上に形成された、複屈折性膜の断面が凹凸状の格子と、前記格子の凹部に充填された、屈折率が前記複屈折性膜の常光屈折率または異常光屈折率とほぼ等しい屈折率を有する等方性材料とを備える回折素子であって、前記複屈折性膜は高分子液晶からなる複屈折性膜であって、前記製造方法は、前記透明基板上に高分子液晶からなり完全に固化した複屈折性膜を形成する工程と、前記複屈折性膜をフォトリソグラフィによるエッチングにより格子を形成する工程と、前記複屈折成膜からなる格子に前記等方性材料を充填する工程と、を備えることを特徴とする回折素子の製造方法を提供する。この場合、前記フォトリソグラフィによるエッチングにより格子を形成する工程が、前記複屈折性膜上に保護膜を形成する工程と、前記保護膜上に格子状をしたフォトレジストマスクを形成し、このフォトレジストマスクを用いてエッチングして前記保護膜からなる選択マスクを作製する工程と、前記保護膜からなる選択マスクを用いて前記複屈折成膜からなる格子を作製する工程と、を備えることが好ましく、また、前記保護膜がSiO 膜であることが好ましい
【0012】
【発明の実施の形態】
本発明においては、水晶基板などの光学的な位相差を有する基板、または、位相差膜を形成されたガラス基板などの透明基板上に、一様に配向した光硬化性を有する高分子液晶からなる複屈折性膜を形成する。この複屈折性膜を構成する高分子液晶の配向方向としては、透明基板に対して水平で、かつ、入射直線偏光に対して垂直/平行のいずれでもよく、どちらの場合でも高透過とできる。
【0013】
成膜し配向した高分子液晶による複屈折性膜に、断面が凹凸状の格子を形成する。格子を形成する手段としては、フォトリソグラフィよるエッチング方式や、格子形状を有する金型によるプレス方式などが使用できる。
【0014】
この際、格子を複屈折性膜に形成したため、格子方向が、高分子液晶の配向方向および入射直線偏光方向によって制約を受けないので、任意の方向を選択でき、高分子液晶による複屈折性膜における屈折率楕円体の屈折率長軸方向に対して平行でも垂直でもない方向とすることができる。また、回折素子を複数の領域に分け、各領域について方向の異なる格子を形成することもできる。
【0015】
形成された格子の凹凸部には等方性媒体を充填する。等方性媒体の屈折率は、入射直線偏光方向と複屈折性膜を構成する高分子液晶の配向方向との関係によって決まる。例えば、入射直線偏光と高分子液晶の配向方向とを垂直とした場合には、高分子液晶の常光屈折率と屈折率のほぼ等しい等方性媒体にて凹部を充填し、また、入射直線偏光と高分子液晶の配向方向とを平行とした場合には、高分子液晶の異常光屈折率と屈折率のほぼ等しい等方性媒体にて凹部を充填する。充填する等方性材料としては、光硬化型のポリマー、熱硬化型のポリマーなどが使用でき、例えばアクリル系紫外線硬化型接着剤などが使用できる。
【0016】
等方性媒体の充填時に、回折素子全体の透過波面歪みを抑制するためには低反射コートを施したカバーガラスなどで挟み込んで硬化させる方法が容易である。しかし、回折素子の薄型化、軽量化のために、カバーガラスなしで硬化させる方が望ましい。また、前記回折素子に位相差板部を一体化することができ、光ヘッド装置および回折素子の小型、軽量化のために望ましい。そこで、位相差を有する透明基板として、水晶の透明基板を使用できる。
【0017】
また、水晶の透明基板の代わりに有機系位相差フィルムを貼り付けたガラス製の透明基板も使用できる。有機系位相差フィルムの代わりに透明基板に対して水平配向された光硬化性を有する高分子液晶などの有機系位相差材料も使用できる。これらの、位相差を有する基板または有機系位相差材料を1/4波長板(直線偏光を円偏光に変換する)として用いる場合は、これらの材料の位相差が使用波長の(n+1/4)倍となるよう調整し、複屈折性材料の光学軸と入射直線偏光の方向を45゜の角度をなすように配置する。ここでnは0以上の整数である。
【0018】
また、光ヘッド装置が2種類の光源、例えば波長650nmの半導体レーザと波長780nmの半導体レーザを備え、同一の集光レンズを用いて、DVDの読み出しとCDの読み出しにそれぞれ使い分ける場合、DVDとCDのディスクの厚さの違いによって発生する集光時の収差を改善するために、CDの読み出し時に、外周部の光量を落とす方法が知られており、そのための手段の一つとして波長選択性の開口径制限部を用いることが知られている。本発明においては、この目的のために、2つの光源の波長によって20%以上透過率の異なる波長選択性の開口径制限部を使用する。
【0019】
例えば、650nmの波長の光に対しては90%以上を透過し、780nmの波長の光に対しては90%以上を反射するダイクロイックミラーなどの光学多層膜からなる波長選択性の開口径制限部を、有効領域内のCDデータの読み出しを行う際に切り捨てられる素子の外周部に一体化して設置でき、これによって、部品点数の削減や、光ヘッド装置の小型軽量化などの効果が得られる。
【0020】
本発明の回折素子は、従来の回折素子に比べて格子パターンのデザイン自由度も高いうえに、様々な用途の光学部品を積層一体化できるので、軽量化かつ薄型化が可能である。
【0021】
位相差板および波長選択性の開口径制限部を合わせ持つ回折素子の場合、波長が650nmの半導体レーザからのS波のレーザ光は、往路(光源側から光記録媒体側へ向かう方向)においては、まず、波長選択性の開口径制限部を透過して、高分子液晶による複屈折性膜の全ての有効領域に入射する。すると、P波に対応する方向に配向された高分子液晶の凸部の屈折率は1.5(常光屈折率)程度であり、凹部もほぼ屈折率が1.5であるため、レーザ光は回折しないで透過し、位相差を持つ複屈折性の基板または位相差膜によって直線偏光が円偏光へ変換される。
【0022】
復路(光記録媒体側から光源側へ向かう方向)においては、レーザ光は、光記録媒体で反射されて逆回りの円偏光となって回折素子へ入射し、位相差を持つ複屈折性基板または位相差膜によって、今度は往路と直交する直線偏光に変化されP波となる。すると、P波に対応する方向に配向された高分子液晶によって形成される凸部の屈折率は1.6(異常光屈折率)程度であり、凹部の屈折率はほぼ1.5であるため、回折素子として機能し、光の回折が起こる。
【0023】
これに対し、波長が780nmのレーザ光に対しては、上記の波長選択性の開口径制限部が機能するため、中央部のみが回折素子の回折素子部へ入射する。そして、往路では波長が650nmの場合と同様に屈折率差がほとんどないため、光は回折しないで下方へ透過する。ここで、位相差板は、650nmの波長に対し、1/4波長板となるように調整されているため780nmの波長に対しては約1/5波長板として機能し、結果として光記録媒体からの戻り光は完全なP波にはならないが、その大部分は回折する。
【0024】
また、本発明の位相差板の位相差を650nmの波長に対しては5/4波長板となり、780nmの波長に対して4/4波長板となるようにすることにより、650nmの波長に対しては機能し、780nmの波長に対しては機能せずにほとんどが透過する回折素子とすることもできる。この場合、波長780nmの光源の前に、別途に、回折素子を設置してもよく、650nmの入射偏光方向に対して780nmの入射偏光方向を20〜45°傾けることにより往路復路ともに回折させてもよい。
【0025】
本発明の回折素子は、光源側の面に他の格子を形成してもよく、その場合には3ビーム法によるトラッキングエラー検出ができて好ましい。
本発明の回折素子における格子の凹凸部(光学的異方性回折素子)のパターンは、光記録媒体からの戻り光のビーム形状が所望の形状になるように、回折素子面内で曲率をつけたり、格子間隔に分布をつけたりすることもできる。
【0026】
本発明の回折素子に対しては、半導体レーザ、YAGレーザなどの固体レーザや、He−Neレーザなどの気体レーザなど、各種の光源が使用できる。小型軽量化、連続発振、保守点検などの面では半導体レーザを使用するのが好ましい。また、半導体レーザなどの光源部に非線形光学素子を組み込んだ高調波発生装置を使用して、青色レーザなどの短波長レーザを用いると、高密度の光記録および読み取りができる。
【0027】
本発明の回折素子を搭載した光ヘッド装置を使用する光記録媒体は、光により情報を記録および/または読み取ることができる媒体である。その例としてはCD、CD−ROM、DVDなどの光ディスク、および、光磁気ディスク、相変化型光ディスクなどが挙げられる。
【0028】
【実施例】
[実施例1]
実施例1を図1、図2を参照しつつ説明する。CDで使われる650nmの波長の光に対して1/4波長の位相差を有する、直径3インチ、厚さ0.4mmの水晶の透明基板20によって位相差板部21を構成し、位相差板部21を構成する水晶の透明基板20の光記録媒体側の面(図中下側の面)に低反射コート22を施した。
【0029】
つぎに、水晶の透明基板20の光源側の面(図中上側の面)にポリイミド配向膜23を形成し、ポリイミド配向膜23に水晶の透明基板20の光学軸に対して45゜の方向にラビングを施し、まず、光硬化性を有する高分子液晶の未重合の液体をポリイミド配向膜23上に滴下した。つぎに、表面にポリイミドを塗布し水晶の透明基板20のラビング方向と180゜のラビングを施した後に離型化処理を施した図示しない対向ガラス基板を用いて、未重合の高分子液晶を水平配向状態にし、さらに、光量600mJの紫外光を照射して重合を行い、その後、上記の図示しない対向ガラス基板を離型除去して、厚さ3.5μmの水平配向された高分子液晶による複屈折性膜24を形成し、さらに光量3000mJの紫外光を照射して追加重合を行った後、140℃にて30分間アニール(焼鈍)を実施して複屈折性膜24を完全に固化した。
【0030】
この、高分子液晶による複屈折性膜24上に、スパッタ法により保護膜としてSiO2 膜25を約50nm成膜した。つぎに、SiO2 膜25の上に、フォトリソグラフィにより格子のストライプ方向がラビング方向に対して+45゜および−45゜の角度をなす2つの領域を備えたピッチ6μmの格子状をしたフォトレジストマスクを形成した。
【0031】
そして、まず、格子状をしたフォトレジストマスクを利用し、流量100SCCMのCF4 ガスなどのフッ化炭素ガスを用いて、圧力0.2Torr、出力300Wの条件下で5分間の反応性イオンエッチングを実施し、SiO2 膜25にフォトレジストマスクの格子パターンを転写し、SiO2 の選択マスク26を作製した。
【0032】
つぎに、作製したSiO2 の選択マスク26を利用し、流量100SCCMのO2 ガスを用いて、圧力0.2Torr、出力300Wの条件下で20分間のアッシング(灰化処理)を行い、反応性イオンエッチングで残存したフォトレジストマスクを除去すると同時に、図2に示す深さ3.5μm、ピッチ6μmの格子27を高分子液晶による複屈折性膜24に作製した。
【0033】
その後、今回、複屈折性膜24に用いた高分子液晶(常光屈折率no =1.5、異常光屈折率ne =1.6)の常光屈折率no と等しい屈折率(n=1.5)を有する紫外線硬化型の等方性材料28を充填し、光量5000mJの紫外光照射により硬化重合させ、回折素子部29を形成した。
【0034】
さらに、厚さ0.3mmのガラス基板30における、中心の2.18mmφの部分を除いた外周部分に、真空蒸着法およびリフトオフ法で、DVDで使われる650nmの波長の光を90%以上透過し、かつ、CDで使われる780nmの波長の光を90%以上反射する光学多層膜31を形成するとともに、中心の2.18mmφの部分に中央部と外周部分の位相を補正するためのSiO2 コート32を形成して波長選択性の開口径制限部33を構成し、波長選択性の開口径制限部33のガラス基板30で等方性材料28をカバーし、光量5000mJの紫外光を照射して等方性材料28を硬化重合させるとともに、波長選択性の開口径制限部33を一体化し、さらに、波長選択性の開口径制限部33の上から低反射コート34を施した。最後に、ダイシングにより切断して、外径4mm×4mm、厚さ約0.7mmの回折素子35を作製した。
【0035】
こうして作製された回折素子35の特性を調べたところ、高分子液晶による複屈折性膜24のラビング方向と垂直な方向の偏光に対しては、図示しない半導体レーザ(光源)からのDVDと同じ波長650nmのS波(図1において紙面に平行な偏光方向の光)の透過率は92%であることが確認された。図示しない光記録媒体からの反射光は、位相差板部21を往復で2度透過することにより、P波(紙面に垂直な偏光方向の光)となって回折格子部29へ入射し、その+1次回折光の回折効率が38%、−1次回折光の回折効率が35%で、合計73%となることが確認された。
【0036】
したがって、往復効率は、0.92×0.73=67%となり、実用上充分に高い回折効率が得られた。また、CDと同じ780nmのレーザ光に対しては、中央の2.18mmφの部分のみに対して、往路の透過率が91%、復路の+1次回折光の回折効率が17%、−1次回折光の回折効率が19%で合計36%となることが確認された。したがって、往復効率は、0.91×0.36=33%となった。透過光の波面収差は、回折素子35の光の入出射面の中心部(直径2mmの円形の範囲)で、0.020λrms (自乗平均)以下であった。
【0037】
[実施例2]
実施例2を図3を参照しつつ説明する。光記録媒体側の面(図中下側の面)に低反射コート36を施された直径3インチ、厚さ0.5mmのガラス製の透明基板37を用意し、ガラス製の透明基板37の光源側の面(図中上側の面)に、ポリイミド配向膜38を形成し、ポリイミド配向膜38にラビングによる水平配向処理を施した後、ポリイミド配向膜38上に未重合の光硬化性の高分子液晶を塗布し、重合後の高分子液晶の屈折率差(Δn≒0.1)に基づき、位相差がDVDの使用波長である650nmのほぼ5/4波長倍となるように紫外光によって高分子液晶を重合硬化させ、約8μmの高分子液晶による位相差膜39を形成し、位相差板部40を構成した。その後、スパッタ法により高分子液晶による位相差膜39の上に保護膜として50nmのSiO2 膜41を成膜した。
【0038】
つぎに、SiO2 膜41の上に、再びポリイミド配向膜42を形成し、ポリイミド配向膜42に位相差板部40の光学軸に対して45゜の方向に水平配向するようにラビング処理を実施した。そして、ポリイミド配向膜42上に未重合の光硬化性の高分子液晶を塗布し、図示しない対向ガラス基板を用いて、高分子液晶を水平配向状態にした後、光量600mJの紫外光を照射して重合を行い、その後、対向ガラス基板を離型除去して、厚さ3.5μmの水平配向した高分子液晶による複屈折性膜43を形成し、さらに光量3000mJの紫外光を照射して追加重合を行った後、140℃にて30分間アニールを実施して、高分子液晶による複屈折性膜43を完全に固化した。
【0039】
この高分子液晶による複屈折性膜43上に、スパッタ法によりSiO2 膜44を約50nm成膜した。つぎに、フォトリソグラフィにより格子の方向がラビング方向に対して45゜をなすピッチ6μmの格子状をしたフォトレジストマスクを形成した。
【0040】
そして、まず、格子状のフォトレジストマスクを利用し、流量100SCCMのCF4 ガスなどのフッ化ガスを用いて、圧力0.2Torr、出力300Wの条件下で5分間の反応性イオンエッチングを実施し、SiO2 膜44にフォトレジストマスクのパターンを転写し、SiO2 の選択マスク45を作製した。
【0041】
つぎに、作製したSiO2 の選択マスク45を利用し、流量100SCCMのO2 ガスを用いて、圧力0.2Torr、出力300Wの条件下で20分間のアッシングを行い、反応性イオンエッチングで残存したフォトレジストを除去すると同時に、深さ3.5μm、ピッチ6μmの格子46を高分子液晶による複屈折性膜43に作製した。
【0042】
その後、今回、複屈折性膜43に用いた高分子液晶(常光屈折率no =1.5、異常光屈折率ne =1.6)の常光屈折率no と等しい屈折率(n=1.5)を有する紫外線硬化型の等方性材料47を塗布、充填し、光量5000mJの紫外光照射により硬化重合させ、回折格子部48を形成した。そして、等方性材料47の上から保護膜として50nmのSiO2 膜49を形成し、SiO2 膜49の上に低反射コート50を施した後、ダイシングにより切断して、外径4mm×4mm、厚さ約0.5mmの回折素子51を作製した。
【0043】
こうして作製された回折素子51の特性を調べたところ、回折格子部48を構成する高分子液晶による複屈折性膜43のラビング方向と垂直な方向の偏光に対しては、図示しない半導体レーザ(光源)からのDVDと同じ波長650nmのS波(図1において紙面に平行な偏光方向の光)の透過率は91%であることが確認された。図示しない光記録媒体からの反射光は、位相差板を往復で2度透過することにより、P波(紙面に垂直な偏光方向の光)となって回折格子部48へ入射し、その+1次回折光の回折効率が37%、−1次回折光の回折効率が35%で、合計72%となることが確認された。
【0044】
したがって、往復効率は、0.91×0.72=66%となり、実用上充分に高い回折効率が得られた。透過光の波面収差は、回折素子51の光の入出射面の中心部(直径2mmの円形の範囲)で、0.025λrms (自乗平均)以下であった。
【0045】
【発明の効果】
本発明の回折素子によれば、位相差板部を内蔵でき、軽量小型で、かつ、格子方向と入射偏光方向とのなす角度に制約がなく、工業的生産が可能で高い光利用効率を有する回折素子を提供できるという優れた効果を奏する。
【図面の簡単な説明】
【図1】実施例1の回折素子の側方断面図。
【図2】図1のII−II矢視図。
【図3】実施例2の回折素子の側方断面図。
【図4】ドライエッチング法を用いた回折素子またはホログラム素子の側方断面図。
【図5】偏光性回折素子を示す側方断面図。
【符号の説明】
20、37:透明基板
24、43:複屈折性膜
27、46:格子
28、47:等方性材料
33:波長選択性の開口径制限部
39:位相差膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diffractive element used for an optical head device for writing optical information on optical disks such as CDs, CD-ROMs, video disks, and magneto-optical disks, and reading optical information.
[0002]
[Prior art]
An optical head device is used for writing optical information on an optical recording medium such as an optical disk and a magneto-optical disk and reading optical information from the optical recording medium. The optical head device includes an optical component for guiding (beam splitting) signal light reflected from a recording surface of a disk-shaped optical recording medium to a light detection unit. Conventionally known optical components include those using a diffraction element or a hologram element and those using a prism type beam splitter.
[0003]
A conventional diffraction element or hologram element for an optical head device is formed by forming a relief-like grating having a rectangular cross section on a glass or plastic substrate by a dry etching method or an injection molding method. The beam was diffracted and a beam splitting function was added.
[0004]
Among these diffraction elements or hologram elements, an example using a dry etching method is shown in FIG.
The upper surface of the glass substrate 2 itself provided with the low reflection coating 1 on the lower surface side, or the upper surface of the inorganic thin film 3 such as SiO 2 formed on the glass substrate 2 by using a vacuum process such as vapor deposition or sputtering. In addition, a lattice-like photoresist mask is prepared by photolithography, and in this state, dry etching is performed to form an inorganic lattice 4 that is a lattice of the inorganic thin film 3 in the inorganic thin film 3 portion. After removing the photoresist remaining on the substrate, a low reflection coating 5 is applied to create a diffraction element, which is used as a polarization-independent isotropic diffraction element.
[0005]
In such an isotropic diffractive element, the light utilization efficiency is as low as about 10%, and it is conceivable to use polarized light when the light utilization efficiency is to be increased beyond 10%.
[0006]
In view of this, an optical head device provided with a hologram (diffraction element) having high light utilization efficiency using polarized light is proposed in Japanese Patent Laid-Open No. 9-180236. The proposed polarizing diffraction element is that shown in FIG. First, an inorganic isotropic thin film 8 having a refractive index substantially equal to an ordinary light refractive index or an extraordinary light refractive index of a birefringent material such as a liquid crystal 7 described later is formed on a glass substrate 6, and then, A lattice-like photoresist mask is formed on the isotropic thin film 8 by photolithography, and in this state, dry etching is performed to form the inorganic lattice 9, and the photoresidue remaining on the inorganic lattice 9 is further formed. After removing the resist, the alignment film 10 is applied and baked to perform the alignment process, and then the counter substrate 12 having the alignment film 11 subjected to the same alignment process is faced to each other, and the sealing material 13 is interposed therebetween to heat the film. A glass substrate in which a diffractive element portion 14 is formed by sealing and filling a birefringent material such as a liquid crystal 7 inside, and an organic retardation film 15 is attached to the lower surface side of the glass substrate 6 Attached so as to sandwich the 6 form a phase feedboard unit 17 performs low-reflective coating 18, 19 on both sides.
[0007]
[Problems to be solved by the invention]
In the case of the polarizing diffractive element shown in FIG. 5, the normal liquid crystal 7 is aligned along the extending direction of the concavo-convex portion in the grating, that is, along the grating direction. 7 corresponds to the ordinary light refractive index, and the extraordinary light refractive index of the liquid crystal 7 corresponds to the polarized light parallel to the lattice direction. Therefore, in the above optical head device, there is a restriction that the grating direction is either parallel or perpendicular to the polarization direction of incident light and is substantially uniform in the diffraction element section 14.
[0008]
Further, since the glass substrate 6, the counter substrate 12, and the sealing material 13 are necessary to enclose the liquid crystal 7, there has been a problem in the element size with respect to the effective diameter.
Further, in the diffraction element having the retardation plate portion 17 for switching the polarization, when an inexpensive organic retardation film 15 is used for the retardation plate portion 17, the transmitted wavefront of the organic retardation film 15 alone is provided. The distortion and the reliability with respect to the reaction with the liquid crystal 7 filled in the diffractive element portion 14 become problems, and three glasses are necessary to solve this problem, which has been a problem in reducing the thickness and weight of the diffractive element. .
[0009]
The present invention solves the above-mentioned problems, can incorporate a phase difference plate, is lightweight and compact, has no restrictions on the angle between the grating direction and the incident polarization direction, can be industrially produced, and has high light utilization efficiency. An object of the present invention is to provide a diffraction element having
[0010]
[Means for Solving the Problems]
The present invention relates to a method for manufacturing a diffraction element, wherein the diffraction element is filled in a transparent substrate, a grating formed on the transparent substrate with a birefringent film having a concavo-convex cross section, and a concave portion of the grating. And a birefringent element comprising an isotropic material having a refractive index substantially equal to an ordinary refractive index or an extraordinary refractive index of the birefringent film, wherein the birefringent film is made of a polymer liquid crystal. A birefringent film comprising the steps of: forming a birefringent film made of a polymer liquid crystal on the transparent substrate and completely solidifying; and etching the birefringent film by photolithography. There is provided a method for manufacturing a diffraction element, comprising: a step of forming; and a step of filling the isotropic material into a grating made of the birefringent film . In this case, the step of forming a lattice by etching by photolithography includes a step of forming a protective film on the birefringent film and a photoresist mask having a lattice shape on the protective film. Preferably, the method includes a step of producing a selective mask made of the protective film by etching using a mask, and a step of producing a grating made of the birefringent film using the selective mask made of the protective film, The protective film is preferably a SiO 2 film .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, from a polymer liquid crystal having photo-curability uniformly oriented on a substrate having an optical retardation such as a quartz substrate or a transparent substrate such as a glass substrate on which a retardation film is formed. A birefringent film is formed. The alignment direction of the polymer liquid crystal constituting the birefringent film may be either horizontal with respect to the transparent substrate and vertical / parallel to the incident linearly polarized light. In either case, high transmission can be achieved.
[0013]
A lattice having a concavo-convex cross section is formed on a birefringent film made of polymer liquid crystal that is formed and oriented. As a means for forming a lattice, an etching method using photolithography, a press method using a mold having a lattice shape, or the like can be used.
[0014]
At this time, since the grating is formed in the birefringent film, the grating direction is not restricted by the alignment direction of the polymer liquid crystal and the incident linear polarization direction, so any direction can be selected, and the birefringent film by the polymer liquid crystal The refractive index ellipsoid can be in a direction that is neither parallel nor perpendicular to the major axis direction of the refractive index. Further, the diffraction element can be divided into a plurality of regions, and a grating having a different direction can be formed for each region.
[0015]
An isotropic medium is filled in the uneven portions of the formed lattice. The refractive index of the isotropic medium is determined by the relationship between the incident linear polarization direction and the alignment direction of the polymer liquid crystal constituting the birefringent film. For example, when the incident linearly polarized light and the orientation direction of the polymer liquid crystal are perpendicular, the concave portion is filled with an isotropic medium in which the ordinary refractive index and refractive index of the polymer liquid crystal are approximately equal, and the incident linearly polarized light And the alignment direction of the polymer liquid crystal are parallel, the recess is filled with an isotropic medium having an approximately equal refractive index and refractive index of the polymer liquid crystal. As the isotropic material to be filled, a photocurable polymer, a thermosetting polymer, or the like can be used. For example, an acrylic ultraviolet curable adhesive can be used.
[0016]
In order to suppress the transmitted wavefront distortion of the entire diffractive element at the time of filling the isotropic medium, a method of sandwiching and curing with a cover glass having a low reflection coating is easy. However, in order to reduce the thickness and weight of the diffractive element, it is desirable to cure it without a cover glass. Further, a retardation plate can be integrated with the diffraction element, which is desirable for reducing the size and weight of the optical head device and the diffraction element. Therefore, a quartz transparent substrate can be used as a transparent substrate having a phase difference.
[0017]
Moreover, the glass transparent substrate which affixed the organic type phase difference film instead of the quartz transparent substrate can also be used. Instead of the organic retardation film, an organic retardation material such as a polymer liquid crystal having photo-curing property that is horizontally aligned with respect to the transparent substrate can also be used. When using a substrate having retardation or an organic retardation material as a quarter-wave plate (converting linearly polarized light to circularly polarized light), the phase difference of these materials is (n + 1/4) of the wavelength used. The optical axis of the birefringent material and the direction of incident linearly polarized light are arranged at an angle of 45 °. Here, n is an integer of 0 or more.
[0018]
In addition, when the optical head device includes two types of light sources, for example, a semiconductor laser with a wavelength of 650 nm and a semiconductor laser with a wavelength of 780 nm, and the same condenser lens is used for DVD reading and CD reading, respectively, DVD and CD In order to improve the aberration at the time of condensing that occurs due to the difference in the thickness of the disk, there is known a method of reducing the amount of light at the outer periphery during reading of the CD, and one of the means for this is wavelength selectivity. It is known to use an opening diameter limiting portion. In the present invention, for this purpose, a wavelength-selective aperture diameter limiter having a transmittance of 20% or more depending on the wavelengths of the two light sources is used.
[0019]
For example, a wavelength-selective aperture diameter limiting unit made of an optical multilayer film such as a dichroic mirror that transmits 90% or more of light having a wavelength of 650 nm and reflects 90% or more of light having a wavelength of 780 nm. Can be integrated and installed on the outer periphery of the element that is discarded when reading out the CD data in the effective area, thereby obtaining the effects of reducing the number of parts and reducing the size and weight of the optical head device.
[0020]
The diffractive element of the present invention has a higher degree of freedom in designing a grating pattern than conventional diffractive elements, and optical components for various applications can be laminated and integrated, so that the weight and thickness can be reduced.
[0021]
In the case of a diffractive element having both a retardation plate and a wavelength-selective aperture diameter limiter, the S-wave laser beam from a semiconductor laser having a wavelength of 650 nm is in the forward path (the direction from the light source side to the optical recording medium side). First, the light passes through the wavelength-selective aperture diameter limiting portion and enters all effective regions of the birefringent film made of the polymer liquid crystal. Then, the refractive index of the convex portion of the polymer liquid crystal aligned in the direction corresponding to the P wave is about 1.5 (ordinary refractive index), and the refractive index of the concave portion is also about 1.5. Linearly polarized light is converted into circularly polarized light by a birefringent substrate or retardation film that transmits without being diffracted and has a phase difference.
[0022]
In the return path (in the direction from the optical recording medium side to the light source side), the laser light is reflected by the optical recording medium, becomes reverse circularly polarized light, and enters the diffractive element. By the retardation film, this time the light is changed to linearly polarized light orthogonal to the forward path and becomes a P wave. Then, the refractive index of the convex portion formed by the polymer liquid crystal aligned in the direction corresponding to the P wave is about 1.6 (abnormal light refractive index), and the refractive index of the concave portion is about 1.5. It functions as a diffraction element, and light diffraction occurs.
[0023]
On the other hand, for the laser beam having a wavelength of 780 nm, since the above-described wavelength-selective aperture diameter limiting portion functions, only the central portion enters the diffraction element portion of the diffraction element. Since there is almost no difference in refractive index in the forward path as in the case where the wavelength is 650 nm, the light is transmitted downward without being diffracted. Here, since the retardation plate is adjusted to be a quarter wavelength plate with respect to the wavelength of 650 nm, the retardation plate functions as an about 1/5 wavelength plate with respect to the wavelength of 780 nm, and as a result, an optical recording medium. The return light from the light does not become a perfect P wave, but most of it is diffracted.
[0024]
In addition, the retardation of the retardation plate of the present invention is a 5/4 wavelength plate for a wavelength of 650 nm, and is a 4/4 wavelength plate for a wavelength of 780 nm. It is also possible to make a diffractive element that functions and does not function for a wavelength of 780 nm and transmits most of it. In this case, a diffractive element may be separately provided in front of the light source having a wavelength of 780 nm. By diffracting the incident polarization direction of 780 nm with respect to the incident polarization direction of 650 nm by 20 to 45 °, both the outward and return paths are diffracted. Also good.
[0025]
The diffraction element of the present invention may be formed with another grating on the surface on the light source side, and in that case, tracking error detection by the three-beam method is preferable.
The pattern of the concavo-convex portion (optically anisotropic diffractive element) of the grating in the diffraction element of the present invention has a curvature in the plane of the diffractive element so that the beam shape of the return light from the optical recording medium becomes a desired shape. It is also possible to give a distribution to the lattice spacing.
[0026]
Various light sources such as a solid-state laser such as a semiconductor laser and a YAG laser, and a gas laser such as a He—Ne laser can be used for the diffraction element of the present invention. It is preferable to use a semiconductor laser in terms of reduction in size and weight, continuous oscillation, maintenance and inspection. In addition, when a harmonic generation device incorporating a nonlinear optical element in a light source unit such as a semiconductor laser is used and a short wavelength laser such as a blue laser is used, high-density optical recording and reading can be performed.
[0027]
An optical recording medium using an optical head device equipped with the diffraction element of the present invention is a medium on which information can be recorded and / or read by light. Examples thereof include optical disks such as CDs, CD-ROMs, and DVDs, magneto-optical disks, and phase change optical disks.
[0028]
【Example】
[Example 1]
A first embodiment will be described with reference to FIGS. A phase difference plate portion 21 is constituted by a crystal transparent substrate 20 having a diameter of 3 inches and a thickness of 0.4 mm and having a phase difference of ¼ wavelength with respect to light having a wavelength of 650 nm used in a CD. A low reflection coating 22 was applied to the optical recording medium side surface (the lower surface in the figure) of the quartz transparent substrate 20 constituting the portion 21.
[0029]
Next, a polyimide alignment film 23 is formed on the light source side surface (upper surface in the figure) of the crystal transparent substrate 20, and the polyimide alignment film 23 is oriented at 45 ° to the optical axis of the crystal transparent substrate 20. First, an unpolymerized liquid of a polymer liquid crystal having photocurability was dropped on the polyimide alignment film 23. Next, an unpolymerized polymer liquid crystal is horizontally applied using a counter glass substrate (not shown) which has been subjected to a release treatment after applying polyimide on the surface and rubbing the crystal transparent substrate 20 in the rubbing direction and 180 °. In the aligned state, polymerization is performed by irradiating with ultraviolet light having a light amount of 600 mJ, and then the above-mentioned counter glass substrate (not shown) is removed from the mold, and then the composite liquid crystal is formed by a horizontally aligned polymer liquid crystal having a thickness of 3.5 μm. The refractive film 24 was formed, and after additional polymerization was performed by irradiating ultraviolet light having a light amount of 3000 mJ, annealing (annealing) was performed at 140 ° C. for 30 minutes to completely solidify the birefringent film 24.
[0030]
On this birefringent film 24 made of polymer liquid crystal, a SiO 2 film 25 of about 50 nm was formed as a protective film by sputtering. Next, on the SiO 2 film 25, a photoresist mask having a lattice shape of 6 μm pitch having two regions in which the stripe direction of the lattice forms an angle of + 45 ° and −45 ° with respect to the rubbing direction by photolithography. Formed.
[0031]
First, reactive ion etching is performed for 5 minutes under the conditions of a pressure of 0.2 Torr and an output of 300 W using a fluorocarbon gas such as a CF 4 gas having a flow rate of 100 SCCM, using a lattice-shaped photoresist mask. Then, the lattice pattern of the photoresist mask was transferred to the SiO 2 film 25 to produce a SiO 2 selection mask 26.
[0032]
Next, ashing is performed for 20 minutes under the conditions of a pressure of 0.2 Torr and an output of 300 W using an O 2 gas having a flow rate of 100 SCCM, using the produced SiO 2 selection mask 26, and reactive. At the same time as removing the remaining photoresist mask by ion etching, a grating 27 having a depth of 3.5 μm and a pitch of 6 μm shown in FIG.
[0033]
Thereafter, this, ordinary refractive index n o is equal to the refractive index of the liquid crystal polymer used in the birefringent film 24 (ordinary refractive index n o = 1.5, extraordinary refractive index n e = 1.6) (n = 1.5) and is cured and polymerized by irradiation with ultraviolet light with a light amount of 5000 mJ to form a diffraction element portion 29.
[0034]
Furthermore, the outer peripheral portion of the glass substrate 30 with a thickness of 0.3 mm excluding the central 2.18 mmφ portion transmits 90% or more of light having a wavelength of 650 nm, which is used in a DVD, by a vacuum deposition method and a lift-off method. In addition, an optical multilayer film 31 that reflects 90% or more of light having a wavelength of 780 nm used in a CD is formed, and an SiO 2 coat for correcting the phase of the central portion and the outer peripheral portion in the central 2.18 mmφ portion 32 is formed to constitute a wavelength-selective opening diameter restricting portion 33, the isotropic material 28 is covered with the glass substrate 30 of the wavelength-selective opening diameter restricting portion 33, and ultraviolet light having a light amount of 5000 mJ is irradiated. The isotropic material 28 was cured and polymerized, the wavelength-selective opening diameter restricting portion 33 was integrated, and the low-reflection coating 34 was applied on the wavelength-selective opening diameter restricting portion 33. Finally, it was cut by dicing to produce a diffraction element 35 having an outer diameter of 4 mm × 4 mm and a thickness of about 0.7 mm.
[0035]
When the characteristics of the diffractive element 35 thus manufactured were examined, the same wavelength as that of a DVD from a semiconductor laser (light source) (not shown) was applied to polarized light in a direction perpendicular to the rubbing direction of the birefringent film 24 by polymer liquid crystal. It was confirmed that the transmittance of S wave of 650 nm (light having a polarization direction parallel to the paper surface in FIG. 1) was 92%. Reflected light from an optical recording medium (not shown) passes through the retardation plate 21 twice in a reciprocating manner, and becomes a P wave (light having a polarization direction perpendicular to the paper surface) and enters the diffraction grating 29. It was confirmed that the diffraction efficiency of the + 1st order diffracted light was 38% and the diffraction efficiency of the −1st order diffracted light was 35%, which was 73% in total.
[0036]
Therefore, the reciprocal efficiency was 0.92 × 0.73 = 67%, and a sufficiently high diffraction efficiency was obtained in practical use. For the same 780 nm laser light as CD, the forward transmittance is 91%, the + 1st order diffracted light diffraction efficiency is 17%, and the −1st order diffracted light is only for the central 2.18 mmφ portion. Was found to be a total of 36% at 19%. Therefore, the round-trip efficiency was 0.91 × 0.36 = 33%. The wavefront aberration of the transmitted light was 0.020λ rms (root mean square) or less at the central portion (circular range of 2 mm in diameter) of the light incident / exit surface of the diffraction element 35.
[0037]
[Example 2]
A second embodiment will be described with reference to FIG. A glass transparent substrate 37 having a diameter of 3 inches and a thickness of 0.5 mm is prepared by applying a low-reflection coating 36 to the optical recording medium side surface (lower surface in the figure). A polyimide alignment film 38 is formed on the light source side surface (upper surface in the drawing), and after the horizontal alignment treatment by rubbing is performed on the polyimide alignment film 38, an unpolymerized photo-curing high on the polyimide alignment film 38. Molecular liquid crystal is applied, and based on the refractive index difference (Δn≈0.1) of the polymer liquid crystal after polymerization, UV light is used so that the phase difference is about 5/4 times the 650 nm wavelength used for DVD. The polymer liquid crystal was polymerized and cured to form a retardation film 39 made of a polymer liquid crystal having a thickness of about 8 μm. After that, a 50 nm SiO 2 film 41 was formed as a protective film on the retardation film 39 made of polymer liquid crystal by sputtering.
[0038]
Next, a polyimide alignment film 42 is formed again on the SiO 2 film 41, and a rubbing process is performed so that the polyimide alignment film 42 is horizontally aligned in a direction of 45 ° with respect to the optical axis of the retardation plate 40. did. Then, an unpolymerized photocurable polymer liquid crystal is applied on the polyimide alignment film 42, and the polymer liquid crystal is horizontally aligned using a counter glass substrate (not shown), and then irradiated with ultraviolet light having a light amount of 600 mJ. Then, the opposing glass substrate is released and removed to form a birefringent film 43 made of a horizontally oriented polymer liquid crystal having a thickness of 3.5 μm, and further irradiated with ultraviolet light having a light intensity of 3000 mJ. After the polymerization, annealing was performed at 140 ° C. for 30 minutes to completely solidify the birefringent film 43 made of polymer liquid crystal.
[0039]
An SiO 2 film 44 having a thickness of about 50 nm was formed on the birefringent film 43 made of the polymer liquid crystal by sputtering. Next, a photoresist mask having a lattice shape with a pitch of 6 μm in which the direction of the lattice is 45 ° with respect to the rubbing direction is formed by photolithography.
[0040]
First, reactive ion etching is performed for 5 minutes under the conditions of a pressure of 0.2 Torr and an output of 300 W using a lattice-like photoresist mask and a fluoride gas such as CF 4 gas having a flow rate of 100 SCCM. Then, a photoresist mask pattern was transferred to the SiO 2 film 44 to produce a SiO 2 selection mask 45.
[0041]
Next, ashing was performed for 20 minutes under the conditions of a pressure of 0.2 Torr and an output of 300 W using O 2 gas having a flow rate of 100 SCCM using the produced SiO 2 selection mask 45, and remained by reactive ion etching. Simultaneously with the removal of the photoresist, a grating 46 having a depth of 3.5 μm and a pitch of 6 μm was formed on the birefringent film 43 of polymer liquid crystal.
[0042]
Thereafter, this, ordinary refractive index n o is equal to the refractive index of the polymer liquid crystal used in the birefringent film 43 (ordinary refractive index n o = 1.5, extraordinary refractive index n e = 1.6) (n = 1.5) is applied and filled, and is cured and polymerized by irradiation with ultraviolet light with a light amount of 5000 mJ to form a diffraction grating portion 48. Then, a SiO 2 film 49 having a thickness of 50 nm is formed as a protective film on the isotropic material 47, and the low reflection coating 50 is applied on the SiO 2 film 49, and then cut by dicing to have an outer diameter of 4 mm × 4 mm. A diffraction element 51 having a thickness of about 0.5 mm was produced.
[0043]
The characteristics of the diffractive element 51 thus manufactured were examined. As a result, a semiconductor laser (light source) (not shown) was used for polarized light in a direction perpendicular to the rubbing direction of the birefringent film 43 by the polymer liquid crystal constituting the diffraction grating portion 48. The transmittance of the S wave having the same wavelength as that of the DVD from 650 nm (light having a polarization direction parallel to the paper surface in FIG. 1) was 91%. Reflected light from an optical recording medium (not shown) passes through the retardation plate twice in a reciprocating manner, and enters a diffraction grating portion 48 as a P wave (light having a polarization direction perpendicular to the paper surface). It was confirmed that the diffraction efficiency of the folded light was 37% and the diffraction efficiency of the −1st order diffracted light was 35%, which was 72% in total.
[0044]
Therefore, the round-trip efficiency was 0.91 × 0.72 = 66%, and a sufficiently high diffraction efficiency was obtained in practical use. The wavefront aberration of the transmitted light was 0.025λ rms (root mean square) or less at the center of the light incident / exit surface of the diffractive element 51 (circular range with a diameter of 2 mm).
[0045]
【The invention's effect】
According to the diffractive element of the present invention, a retardation plate can be built in, light and small, and there is no restriction on the angle between the grating direction and the incident polarization direction, industrial production is possible, and high light utilization efficiency is achieved. There is an excellent effect that a diffractive element can be provided.
[Brief description of the drawings]
1 is a side cross-sectional view of a diffraction element according to Embodiment 1. FIG.
FIG. 2 is a view taken along arrow II-II in FIG.
3 is a side cross-sectional view of the diffraction element of Example 2. FIG.
FIG. 4 is a side sectional view of a diffraction element or a hologram element using a dry etching method.
FIG. 5 is a side sectional view showing a polarizing diffraction element.
[Explanation of symbols]
20, 37: transparent substrate 24, 43: birefringent film 27, 46: grating 28, 47: isotropic material 33: wavelength selective aperture diameter restricting part 39: retardation film

Claims (3)

回折素子の製造方法であって、
前記回折素子は、透明基板と、透明基板上に形成された、複屈折性膜の断面が凹凸状の格子と、前記格子の凹部に充填された、屈折率が前記複屈折性膜の常光屈折率または異常光 屈折率とほぼ等しい屈折率を有する等方性材料とを備える回折素子であって、
前記複屈折性膜は高分子液晶からなる複屈折性膜であって、
前記製造方法は、
前記透明基板上に高分子液晶からなり完全に固化した複屈折性膜を形成する工程と、
前記複屈折性膜をフォトリソグラフィによるエッチングにより格子を形成する工程と、
前記複屈折成膜からなる格子に前記等方性材料を充填する工程と、を備えることを特徴とする回折素子の製造方法。
A method of manufacturing a diffraction element,
The diffractive element includes a transparent substrate, a grating formed on the transparent substrate with a birefringent film having a concavo-convex cross section, and a refractive index of the birefringent film filled in a concave portion of the birefringent film. A diffractive element comprising an isotropic material having a refractive index substantially equal to the refractive index or extraordinary light refractive index,
The birefringent film is a birefringent film made of a polymer liquid crystal,
The manufacturing method includes:
Forming a completely solidified birefringent film made of a polymer liquid crystal on the transparent substrate;
Forming a grating by photolithography etching the birefringent film;
And a step of filling the isotropic material with a grating made of the birefringent film.
前記フォトリソグラフィによるエッチングにより格子を形成する工程が、
前記複屈折性膜上に保護膜を形成する工程と、
前記保護膜上に格子状をしたフォトレジストマスクを形成し、このフォトレジストマスクを用いてエッチングして前記保護膜からなる選択マスクを作製する工程と、
前記保護膜からなる選択マスクを用いて前記複屈折成膜からなる格子を作製する工程と、
を備える請求項1に記載の回折素子の製造方法。
Forming a lattice by etching by photolithography,
Forming a protective film on the birefringent film;
Forming a lattice-shaped photoresist mask on the protective film, and etching using the photoresist mask to produce a selective mask made of the protective film;
Producing a grating made of the birefringent film using a selection mask made of the protective film;
A method for manufacturing a diffraction element according to claim 1.
前記保護膜がSiO膜である請求項2に記載の回折素子の製造方法。The method for manufacturing a diffraction element according to claim 2, wherein the protective film is a SiO 2 film.
JP22401797A 1997-08-20 1997-08-20 Diffraction element Expired - Lifetime JP3978821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22401797A JP3978821B2 (en) 1997-08-20 1997-08-20 Diffraction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22401797A JP3978821B2 (en) 1997-08-20 1997-08-20 Diffraction element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007034478A Division JP2007179069A (en) 2007-02-15 2007-02-15 Optical head device

Publications (2)

Publication Number Publication Date
JPH1164615A JPH1164615A (en) 1999-03-05
JP3978821B2 true JP3978821B2 (en) 2007-09-19

Family

ID=16807286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22401797A Expired - Lifetime JP3978821B2 (en) 1997-08-20 1997-08-20 Diffraction element

Country Status (1)

Country Link
JP (1) JP3978821B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560906B2 (en) * 2000-01-31 2010-10-13 旭硝子株式会社 Optical head device
JP4743460B2 (en) * 2000-03-14 2011-08-10 コニカミノルタホールディングス株式会社 Optical component and optical pickup device
JP2002311242A (en) 2001-04-18 2002-10-23 Ricoh Co Ltd Polarized light separating element, semiconductor laser unit and optical pickup device
JP4599763B2 (en) * 2001-06-06 2010-12-15 旭硝子株式会社 Optical head device
WO2004081620A1 (en) 2003-03-13 2004-09-23 Asahi Glass Company Limited Diffraction element and optical device
US7420735B2 (en) * 2004-07-26 2008-09-02 Nippon Sheet Glass Co., Ltd. Transmission type diffraction grating
JP4830685B2 (en) * 2006-07-13 2011-12-07 パナソニック株式会社 Method for manufacturing wavelength selective polarization hologram element
JP5532597B2 (en) * 2008-12-12 2014-06-25 Jsr株式会社 Manufacturing method of polarizing diffractive element and polarizing diffractive element
CN113325508B (en) * 2021-05-19 2022-12-13 哈尔滨工程大学 Method for manufacturing fiber grating based on photo-polymerization material
CN114924413A (en) * 2022-04-28 2022-08-19 歌尔光学科技有限公司 Optical waveguide structure, preparation method of optical waveguide structure and head-mounted display device

Also Published As

Publication number Publication date
JPH1164615A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
KR100642951B1 (en) Optical head device and production method thereof
WO1999018459A1 (en) Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
JP3978821B2 (en) Diffraction element
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
JP4300784B2 (en) Optical head device
JP3671768B2 (en) Optical head device
JPH09304750A (en) Optical modulation element and optical head device
JP2003288733A (en) Aperture-limiting element and optical head device
JP2000249831A (en) Optical device and optical head device
JP3982025B2 (en) Manufacturing method of diffraction element
JP4349335B2 (en) Optical head device
JP4599763B2 (en) Optical head device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP2007179069A (en) Optical head device
JP4427877B2 (en) Aperture limiting element and optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP3528381B2 (en) Optical head device
JP3713778B2 (en) Optical head device
JP3968593B2 (en) Optical head device
JPH09185837A (en) Optical head device
JP4051747B2 (en) Manufacturing method of diffraction element
JP2004069977A (en) Diffraction optical element and optical head unit
JPH10188321A (en) Polarizing diffraction grating and optical head device using the same
JPH1021576A (en) Optical head device
JP2005310236A (en) Wavelength selective polarization hologram element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

EXPY Cancellation because of completion of term