JP4051747B2 - Manufacturing method of diffraction element - Google Patents

Manufacturing method of diffraction element Download PDF

Info

Publication number
JP4051747B2
JP4051747B2 JP01281798A JP1281798A JP4051747B2 JP 4051747 B2 JP4051747 B2 JP 4051747B2 JP 01281798 A JP01281798 A JP 01281798A JP 1281798 A JP1281798 A JP 1281798A JP 4051747 B2 JP4051747 B2 JP 4051747B2
Authority
JP
Japan
Prior art keywords
liquid crystal
thin film
polymer liquid
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01281798A
Other languages
Japanese (ja)
Other versions
JPH11211905A (en
Inventor
弘昌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP01281798A priority Critical patent/JP4051747B2/en
Priority to KR10-2000-7003571A priority patent/KR100497586B1/en
Priority to US09/509,532 priority patent/US6618116B1/en
Priority to PCT/JP1998/004445 priority patent/WO1999018459A1/en
Publication of JPH11211905A publication Critical patent/JPH11211905A/en
Application granted granted Critical
Publication of JP4051747B2 publication Critical patent/JP4051747B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、回折素子の製造方法に関する。
【0002】
【従来の技術】
従来、高分子液晶を使用した回折素子を次のように作していた。すなわち、ガラスなどの透明基板面に配向処理を施し、この透明基板面上に液晶を薄く塗布し、光重合により硬化させ高分子液晶薄膜とした。この高分子液晶薄膜に断面が凹凸状の格子をドライエッチングなどを施すことにより形成し、その凹凸部に等方性媒質(光学的な等方性媒質をいう)を充填した。この回折素子は、高分子液晶薄膜が複屈折性を有することにより、入射する光の偏光方向に応じて回折効率が異なる偏光性の回折素子となる。
【0003】
もし、回折素子の等方性媒質の屈折率(ns )が、複屈折媒体である高分子液晶薄膜の常光屈折率(no )又は異常光屈折率(ne )に等しい場合、等しい屈折率方向の偏光に対しては回折素子は機能しない。
例えばns =no のとき、この回折素子は常光屈折率方向の偏光を回折せず高い透過率を示し透過する。これに対して異常光屈折率方向の偏光に対しては回折素子が機能し高い回折効率が得られる。
【0004】
光ヘッド装置にこの偏光型の回折素子を用いる場合には、回折素子と光記録媒体である光ディスクとの間に1/4波長板を挿入して、回折素子を通過するときの直線偏光の方向を往路と復路で90度回転させることにより往復効率を高くできる。
【0005】
しかし、この高分子液晶の薄膜を作する際に配向処理を施した基板に重合前のモノマー状態である液晶を塗布したとき、得られる配向状態を安定化させることが難しかった。配向状態が安定しないと重合後の実質的な複屈折性状態が変化し屈折率が安定せず所望の回折効率が得られず回折素子が歩留まりよく得られない問題があった。また、高分子液晶の膜厚の制御も困難であり、この膜厚が変動すると回折効率が変動し、回折素子の製造歩留まりの低下を招いていた。
【0006】
【発明が解決しようとする課題】
本発明の目的は、従来技術の前述のような問題を解決し、高分子液晶薄膜を使用した回折素子の製造方法を新規に提供することである。
【0007】
【課題を解決するための手段】
本発明は、高分子液晶薄膜に断面が凹凸状の格子を形成し該凹凸状の格子部に等方性媒質を充填する回折素子の製造方法において、対向する2枚の基板の少なくとも一方の対向面に配向処理を施し、該対向する基板間にスペーサと高分子液晶薄膜となる液晶とを挟持して、該液晶を配向させ硬化して高分子液晶薄膜とした後、少なくとも一方の基板を取り外して該高分子液晶薄膜に断面が凹凸状の格子を形成し、該凹凸状の格子部に等方性媒質を充填することを特徴とする回折素子の製造方法を提供する。
【0008】
さらに、該対向する2枚の基板に該配向処理を施した後に少なくとも一方の基板の対向面に離型処理を施すことを特徴とする上記の回折素子の製造方法を提供する
【0009】
【発明の実施の形態】
本発明においては、対向する2枚の基板の対向面、すなわち液晶に接する面に配向処理を施す場合、1枚の基板に施してもよいし2枚の基板に施してもよいが、2枚の基板に施す方が液晶の分子配向を制御しやすく好ましい。ここで使用する配向処理としては基板表面又はその表面に付着されたポリイミド膜、ポリアミド膜の高分子膜やSiO2 などの無機膜などへのラビング処理、又はSiOの斜め蒸着処理などが代表的である。
【0010】
本発明で用いる高分子液晶薄膜を形成するための液晶は、液晶性を示すモノマー、オリゴマーその他の反応性化合物などの組成物であり、基板への配向処理により組成物として液晶配列するものであれば使用できる。以下の説明では液晶のモノマーがこれらを代表するものとして説明する。
【0011】
この対向する2枚の基板間にスペーサを配置して、所定の間隔を設けて基板を対向させ、その空隙に液晶のモノマーを注入し、硬化する手段によって液晶のモノマーを重合させて硬化し高分子液晶薄膜とする。
【0012】
液晶のモノマーを硬化する手段としては、可視光やUV(紫外)光などの光を照射したり、加熱による方法などがあるが、特に可視光やUV光などの光を照射する硬化方法は基板上で直接できて好ましい。したがって、ここでは光の照射によって液晶のモノマーを重合して硬化するものとして説明する。なお、液晶が未重合で高分子化してないことを明確にするために「液晶」の代わりに「液晶のモノマー」と表現する。
【0013】
高分子液晶薄膜の製造の工程の一例を図1に示す。図1(a)は所定の間隔を設けて、対向する2枚の基板を示す側面図であり、図1(b)は対向する2枚の基板間に液晶のモノマーを注入し、UV光などの光を照射して液晶のモノマーを高分子液晶薄膜とした様子を示す側面図であり、図1(c)は対向する2枚の基板の一枚の基板を外した様子を示す側面図である。図中、1は高分子液晶薄膜、2は基板、11は配向処理膜、12はスペーサである。
【0014】
液晶のモノマーの注入方式としては、真空注入法を採用してもよいし、毛細管現象を利用した方法で大気圧中で行ってもよい。この場合、これに先立ってスペーサをあらかじめ1枚目の基板上に散布してから2枚目の基板を積層すればよい。また、1枚目の基板にスペーサと液晶のモノマーの混合物を滴下した後、2枚目の基板を積層してプレスしてもよい。
【0015】
さらに、1枚目の基板にスペーサを散布した後液晶のモノマーを滴下して2枚目の基板を積層してプレスし薄膜化してもよい。基板としては透明なガラス板やプラスチック板などが使用できるが、硬度や耐久性などに優れる点で、ガラス板が好ましい。
【0016】
そして対向する基板間にこの間隔を一定に保持する手段と高分子液晶薄膜となる液晶のモノマーを挟持する。使用する液晶のモノマーとして、アクリル酸又はメタクリル酸などのエステル類中から選ぶのが好ましい。
このうち、液晶のモノマーに反応基を付加し、重合して高分子化する材料(側鎖形高分子液晶)であるアクリル酸系のものが好ましい。この高分子液晶は、材料そのものの複屈折性が大きいことに加え、この液晶のモノマーは基板の配向処理に対して敏感に反応し重合後の複屈折性を大きくしやすい、という優れた特徴を有する。
【0017】
高分子液晶薄膜の厚さに分布があると、上記のように回折効率にバラツキが発生して好ましくない。したがって、対向する基板の間隔を一定に保持する手段としてスペーサを用いる。このスペーサとしては、剛性と耐久性を有するガラス、アルミナ、シリカなどの無機物又はプラスチックの球形、粒状、繊維状などのスペーサであればその機能を果たすが、ガラスのスペーサが特に剛性と耐久性に優れており好ましい。通常、高分子液晶薄膜の厚さは1〜5μmで使用される。
【0018】
このガラスとしては、球形のSiO2 ガラスがよく、その個数は直径が5μm以下の場合、1cm2 当たり10個〜20万個がよい。10個より少ないと基板間の間隔を一定に保持することが困難であり20万個より多いと光散乱を招き、光ヘッド装置に装着した際に迷光が発生してよくない。好ましくは1千個〜1万個であり、この場合上記の不具合を有効に回避できる。
【0019】
液晶のモノマーを配向させた後に行う光照射には、上記のように可視光やUV光などが使用されるが、効率よく硬化させるためにUV光が好ましい。このように光照射を行うことによって、配向状態を維持したまま、液晶のモノマーを硬化させうる。
【0020】
硬化後対向する2枚の基板のうち少なくとも一方の基板を取り外す(図1(c))。この場合、取り外す基板に高分子液晶薄膜が付着するのを防ぐために、取り外す基板の内面、すなわち液晶のモノマーに接する面に離型処理を施すことが好ましい。
対向する2枚の基板のうち、1枚の基板の内面に配向処理を施した場合は、配向処理をしていない方の基板の内面に離型処理を施すことが、液晶のモノマーの配向効果を高めるうえで好ましい。
離型処理のために使用される離型剤としては、フルオロシラン系、含フッ素脂肪族環構造を有する含フッ素重合体などが使用できる。
【0021】
このように製造された高分子液晶薄膜に、断面が凹凸状の格子が形成されこの凹凸部に等方性媒質が充填されて回折素子が得られる。
すなわち、高分子液晶薄膜にフォトリソグラフィによるエッチング法や格子形状を有する金型によるプレス方式などによって、断面が凹凸状の格子を形成する。この断面凹凸状の格子が形成された凹凸状の格子部に、屈折率が高分子液晶薄膜の常光屈折率(no )又は異常光屈折率(ne )に等しい等方性媒質を充填し硬化する。等方性媒質としては例えば光重合型のアクリル系樹脂やエポキシ系樹脂などを使用できる。
【0022】
このように屈折率を選ぶことによって、回折素子を通過する光の偏光方向に応じて、回折素子を回折格子として機能したりしなかったりさせうる。
すなわち、屈折率が高分子液晶薄膜の常光屈折率(no )に等しい等方性媒質を凹凸部に充填した場合、回折素子の常光屈折率を与える方向に直線偏光した光を回折素子に入射したとき、高分子液晶薄膜と等方性媒質との間に屈折率差がなく回折効果を生じない。
【0023】
しかし、この方向と90度の角度をなす異常光屈折率を与える方向に直線偏光した光を回折素子に入射したとき、高分子液晶薄膜と等方性媒質との間に屈折率差があり回折効果を生じる。異常光屈折率(ne )に等しい等方性媒質を凹凸部に充填した場合も同様である。
【0024】
高分子液晶薄膜の常光屈折率(no )にも異常光屈折率(ne )にも等しくない屈折率の等方性媒質を凹凸部に充填する方法もある。この場合は、光記録媒体である光ディスクに複屈折性があったとき、後述の図5の回折素子と組み合わせることにより光ディスクによって反射される信号光の強度を低下させない効果がある。
【0025】
本発明の製造方法で製造した回折素子は、高分子液晶の分子軸の一方向への配向性がよいため、屈折率が回折素子内で均一で高くさらに高分子液晶薄膜の厚みが均一であるために、高くて一様な回折効率が得られるという優れた特性を有する。
【0026】
また、本発明による回折素子の一例を示す側面図である図2のように凹部の高分子液晶薄膜1を基板2上に残したまま完全に除去せず回折素子を形成することもできる。この場合、残留した高分子液晶薄膜中を光が透過する際に入射角度等により偏光方向が変わることがある。このため、本発明による回折素子の別の一例を示す側面図である図4のように凹部の高分子液晶薄膜1を完全に除去する、すなわち凹部が高分子液晶薄膜1を貫通して基板2の表面を露出することが好ましい。図2及び図4において、3は等方性媒質である。
【0027】
本発明による回折素子の他の一例を示す側面図である図5では1/4波長板10が回折素子と一体に設けられている。1、2及び3はそれぞれ上記のものと同じである。
【0028】
さらに、本発明の製造方法で製造した回折素子を光ヘッド装置に装着する。すなわち、半導体レーザからの出射光を光記録媒体へ導き、光記録媒体からの反射光を回折素子で回折させてこの回折光を光検出器により検出する光ヘッド装置の回折素子として、本発明の製造方法で製造した回折素子を用いる。
【0029】
本発明の回折素子をホログラムビームスプリッタとして光ヘッド装置に用いた場合の概略を示す側面図を図3に示す。光源である半導体レーザ5から出た光は、ホログラムビームスプリッタである回折素子4を透過し、対物レンズ7で光ディスク8上に集光され光ディスク8からの反射光は再び対物レンズ7を透過し、ホログラムビームスプリッタにより回折され受光素子6に到達する。
【0030】
このホログラムビームスプリッタと光ディスク8との間に1/4波長板10を挿入することにより、往路と復路で半導体レーザ5から出射した直線偏光の偏光方向を90度回転させることができ、これにより、往路の偏光方向の光に対しては透過率が高く、復路の偏光方向の光に対しては回折効率が高くなって光の利用効率を高めうる。
【0031】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。
高分子液晶薄膜の製造方法の各プロセスの側面図を図1の(a)、(b)及び(c)に示した。
【0032】
まず図1(a)に示すように、対向する直径が3インチの2枚のガラスの基板2の内面上にポリイミドの薄膜を形成しその後ラビング処理として2枚の基板間で平行な一方向にこすり配向処理を行い配向処理膜11とした。この対向する2枚のガラスの基板2のうち一方の基板の配向処理膜11上にフルオロシラン系の離型剤を塗布(図示せず)した。
【0033】
他方の基板には直径2.0μmのSiO2 製の球形のスペーサ12を6000個/cm2 の密度で散布した後、この2枚の基板の内面の間隔が2μmになるように張り合わせた。次に図1(b)に示すように、この2枚の基板の空隙部に真空注入法により、アクリル酸系の液晶のモノマーを注入した。
【0034】
この状態で、液晶の配向状態を観察するとラビング方向に整然と液晶のモノマーの分子軸が配向していることが観察され、良好な配向状態であることが確認された。次に、ガラス基板を通して600mJのUV光を照射し液晶のモノマーを光重合させ硬化して高分子液晶薄膜1を形成した。高分子液晶の配向状態も均一で良好なものであった。
【0035】
さらに図1(c)に示すように、離型処理を施した方の基板を取り外した。その結果、離型処理を行っていない基板の高分子液晶は剥がれることなく基板に残り、この基板側に高分子液晶薄膜1を形成できた。その配向状態は、基板を取り外す前と同様に良好であった。また、高分子液晶薄膜1の膜厚は約2μmであり設計通りの均一な膜厚を得ることができた。
【0036】
その後、基板上の複屈折性材料である高分子液晶薄膜1にフォトリソグラフィによるエッチング法により断面が凹凸状の格子(図4)で、ラビング方向に平行な長手方向を有する格子を形成しアクリル系の等方性媒質3で充填し硬化した。
【0037】
このときの等方性媒質3の屈折率は高分子液晶薄膜1の常光屈折率に等しいものであった。そして、この基板を外寸4mm×4mmに切断することにより偏光性の回折素子であるホログラムビームスプリッタを得た。
【0038】
こうして製造したホログラムビームスプリッタを図3に示す光ヘッド装置の回折素子4として組み込んだ。この光ヘッド装置に搭載したホログラムビームスプリッタは、往路の光である半導体レーザ5から出射した直線の偏光に対しては高い透過率95%を示し、復路の光である光ディスク8で反射して1/4波長板10を透過して、往路の光と偏光方向が90度回転した偏光に対しては高い±1次の回折効率36%を示した。
【0039】
したがって、0.95×0.36=0.34、すなわち34%の高い光利用効率を得ることができ、しかもこのホログラムビームスプリッタの回折効率は面内で均一であった。
【0040】
【発明の効果】
本発明の製造方法を採用することにより、液晶のモノマーは良好に安定して配向し、さらに膜厚を所望のものとする手段を採っているため、作製された高分子液晶薄膜は屈折率も安定し高く、さらに膜厚を均一にできる。
したがって、この高分子液晶薄膜を使用して製造した断面が凹凸状の格子に等方性媒質を充填した本発明の製造方法により製造した回折素子は、回折効率が高くかつ回折効率は面内均一である特徴を有する。
【0041】
また、本発明によれば、容易に膜厚が均一な高分子液晶薄膜が得られるので、回折素子の製造の歩留まりを向上させうる。
さらに、本発明の製造方法により製造した回折素子を光ヘッド装置に組み込むことによって、光ヘッド装置は光利用効率の高い、回折効率の安定した装置となる。
【図面の簡単な説明】
【図1】本発明における高分子液晶薄膜製造の工程の一例を示す側面図。(a)所定の間隔を設けて対向する基板を示す側面図。(b)対向する基板間に液晶のモノマーを注入し、高分子液晶薄膜化した様子を示す側面図。(c)対向する基板から一枚の基板を外した様子を示す側面図。
【図2】本発明による回折素子の一例を示す側面図。
【図3】本発明のヘッド装置の概略を示す側面図。
【図4】本発明による回折素子の別の一例を示す側面図。
【図5】本発明による回折素子の他の一例を示す側面図。
【符号の説明】
1:高分子液晶薄膜
2:基板
3:等方性媒質
4:回折素子(ホログラムビームスプリッタ)
5:半導体レーザ
6:受光素子
7:対物レンズ
8:光ディスク
10:1/4波長板
11:配向処理膜
12:スペーサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production how diffraction element.
[0002]
[Prior art]
Has been conventionally a diffraction element using a liquid crystal polymer was made work as follows. That is, an alignment treatment was performed on a transparent substrate surface such as glass, and a liquid crystal was thinly applied on the transparent substrate surface and cured by photopolymerization to obtain a polymer liquid crystal thin film. This polymer liquid crystal thin film was formed by subjecting a lattice having an uneven cross section to dry etching or the like, and filling the uneven portion with an isotropic medium (referred to as an optical isotropic medium). This diffractive element is a polarizing diffractive element having different diffraction efficiency depending on the polarization direction of incident light because the polymer liquid crystal thin film has birefringence.
[0003]
If the refractive index (n s ) of the isotropic medium of the diffractive element is equal to the ordinary refractive index (n o ) or extraordinary refractive index (n e ) of the polymer liquid crystal thin film that is a birefringent medium, equal refraction The diffractive element does not function for polarized light in the rate direction.
For example, when the n s = n o, the diffraction element is transmitted showed high transmittance does not diffract the polarization of the ordinary refractive index direction. On the other hand, the diffractive element functions for polarized light in the direction of extraordinary refractive index and high diffraction efficiency is obtained.
[0004]
When this polarization type diffraction element is used in an optical head device, a direction of linearly polarized light when passing through the diffraction element by inserting a quarter-wave plate between the diffraction element and an optical disk as an optical recording medium The reciprocation efficiency can be increased by rotating 90 degrees on the forward and return paths.
[0005]
However, this time the polymer liquid crystal of the thin film crystal was applied as a monomer state before polymerization substrate subjected to orientation treatment in the work made, it is difficult to stabilize the alignment state obtained. If the orientation state is not stable, the substantial birefringence state after polymerization is changed, the refractive index is not stable, the desired diffraction efficiency cannot be obtained, and the diffraction element cannot be obtained with a high yield. In addition, it is difficult to control the film thickness of the polymer liquid crystal. When the film thickness varies, the diffraction efficiency varies, leading to a decrease in the manufacturing yield of the diffraction element.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problem of the prior art, it is to provide a manufacturing how diffraction element using a polymer liquid crystal film to the new.
[0007]
[Means for Solving the Problems]
The present invention relates to a method for manufacturing a diffraction element in which a grating having a concavo-convex section is formed on a polymer liquid crystal thin film and an isotropic medium is filled in the concavo-convex grating portion, and at least one of two opposing substrates is opposed. The surface is subjected to alignment treatment, a spacer and a liquid crystal to be a polymer liquid crystal thin film are sandwiched between the opposing substrates, the liquid crystal is aligned and cured to form a polymer liquid crystal thin film, and then at least one substrate is removed. A diffraction element manufacturing method is provided, wherein a grating having a concavo-convex section is formed in the polymer liquid crystal thin film, and an isotropic medium is filled in the concavo-convex grating portion.
[0008]
Further, the present invention provides a method for manufacturing the above-described diffraction element, wherein after the alignment treatment is performed on the two opposing substrates, a mold release treatment is performed on the facing surface of at least one of the substrates .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, when the alignment treatment is performed on the opposing surfaces of the two opposing substrates, that is, the surface in contact with the liquid crystal, it may be applied to one substrate or two substrates. It is preferable to apply it to the substrate because it is easy to control the molecular orientation of the liquid crystal. The alignment treatment used here is typically a rubbing treatment on a substrate surface or a polyimide film attached to the surface, a polyamide film polymer film or an inorganic film such as SiO 2 , or an oblique deposition process of SiO. is there.
[0010]
The liquid crystal for forming the polymer liquid crystal thin film used in the present invention is a composition such as a monomer, oligomer or other reactive compound exhibiting liquid crystallinity, and the liquid crystal is aligned as a composition by alignment treatment on the substrate. Can be used. In the following description, the liquid crystal monomer will be described as representative.
[0011]
A spacer is arranged between the two substrates facing each other, the substrates are opposed to each other with a predetermined interval, a liquid crystal monomer is injected into the gap, and the liquid crystal monomer is polymerized and cured by means of curing. A molecular liquid crystal thin film is used.
[0012]
As a means for curing the monomer of the liquid crystal, there are methods such as irradiation with light such as visible light and UV (ultraviolet) light, and heating methods. In particular, the curing method for irradiation with light such as visible light and UV light is a substrate. This is preferable because it can be directly performed. Accordingly, here, it is assumed that the monomer of the liquid crystal is polymerized and cured by light irradiation. In order to clarify that the liquid crystal is not polymerized and not polymerized, the term “liquid crystal monomer” is used instead of “liquid crystal”.
[0013]
An example of the manufacturing process of the polymer liquid crystal thin film is shown in FIG. FIG. 1A is a side view showing two substrates facing each other with a predetermined interval, and FIG. 1B is a diagram in which a liquid crystal monomer is injected between the two substrates facing each other, UV light or the like. It is a side view which shows a mode that the liquid crystal monomer was made into the polymer liquid crystal thin film by irradiating the light of FIG. 1, and FIG.1 (c) is a side view which shows a mode that the board | substrate of one of two opposing substrates was removed. is there. In the figure, 1 is a polymer liquid crystal thin film, 2 is a substrate, 11 is an alignment treatment film, and 12 is a spacer.
[0014]
As a liquid crystal monomer injection method, a vacuum injection method may be employed, or a method utilizing a capillary phenomenon may be performed at atmospheric pressure. In this case, prior to this, spacers may be spread on the first substrate in advance and then the second substrate may be laminated. Alternatively, after dropping a mixture of a spacer and a liquid crystal monomer onto the first substrate, the second substrate may be stacked and pressed.
[0015]
Further, after dispersing spacers on the first substrate, a liquid crystal monomer may be dropped and the second substrate may be stacked and pressed to form a thin film. As the substrate, a transparent glass plate, a plastic plate, or the like can be used, but a glass plate is preferable in terms of excellent hardness and durability.
[0016]
Then, a means for keeping the distance constant between the opposing substrates and a liquid crystal monomer to be a polymer liquid crystal thin film are sandwiched. The liquid crystal monomer to be used is preferably selected from esters such as acrylic acid or methacrylic acid.
Among these, an acrylic acid type material which is a material (side chain polymer liquid crystal) which is polymerized by adding a reactive group to a liquid crystal monomer and polymerizing is preferable. In addition to the high birefringence of the material itself, this polymer liquid crystal has an excellent feature that the monomer of this liquid crystal reacts sensitively to the alignment treatment of the substrate and tends to increase the birefringence after polymerization. Have.
[0017]
If there is a distribution in the thickness of the polymer liquid crystal thin film, the diffraction efficiency varies as described above, which is not preferable. Accordingly, a spacer is used as a means for keeping the distance between the opposing substrates constant. This spacer can function as long as it is made of glass, alumina, silica, or other inorganic or plastic spherical, granular, or fibrous spacers that have rigidity and durability. However, glass spacers are particularly rigid and durable. It is excellent and preferable. Usually, the thickness of the polymer liquid crystal thin film is 1 to 5 μm.
[0018]
As this glass, spherical SiO 2 glass is preferable, and when the diameter is 5 μm or less, it is preferable that the number is 10 to 200,000 per 1 cm 2 . If the number is less than 10, it is difficult to keep the distance between the substrates constant. If the number is more than 200,000, light scattering is caused, and stray light may not be generated when the optical head device is mounted. The number is preferably from 1,000 to 10,000, and in this case, the above-mentioned problems can be effectively avoided.
[0019]
Visible light, UV light or the like is used as described above for light irradiation performed after aligning the liquid crystal monomer, but UV light is preferred for efficient curing. By performing light irradiation in this manner, the monomer of the liquid crystal can be cured while maintaining the alignment state.
[0020]
After curing, at least one of the two opposing substrates is removed (FIG. 1C). In this case, in order to prevent the polymer liquid crystal thin film from adhering to the substrate to be removed, it is preferable to perform mold release treatment on the inner surface of the substrate to be removed, that is, the surface in contact with the liquid crystal monomer.
When the alignment treatment is applied to the inner surface of one of the two substrates facing each other, the release effect is applied to the inner surface of the substrate not subjected to the alignment treatment. It is preferable to increase the value.
As the release agent used for the release treatment, a fluorosilane-based, fluorine-containing polymer having a fluorine-containing aliphatic ring structure, or the like can be used.
[0021]
A diffractive element is obtained by forming a grating having a concave-convex cross section in the polymer liquid crystal thin film thus manufactured and filling the concave-convex portion with an isotropic medium.
That is, a lattice having an uneven cross section is formed on the polymer liquid crystal thin film by an etching method using photolithography or a pressing method using a mold having a lattice shape. Uneven grating portion the cross corrugated grating is formed, the refractive index is filled with equal isotropic medium to the ordinary refractive index of the polymer liquid crystal film (n o) or the extraordinary refractive index (n e) Harden. As the isotropic medium, for example, a photopolymerizable acrylic resin or epoxy resin can be used.
[0022]
By selecting the refractive index in this way, the diffractive element may or may not function as a diffraction grating depending on the polarization direction of light passing through the diffractive element.
That is, the incident if the refractive index is filled into the concave-convex portion equal isotropic medium to the ordinary refractive index of the polymer liquid crystal film (n o), the light linearly polarized in a direction giving the ordinary refractive index of the diffraction element in the diffraction element In this case, there is no difference in refractive index between the polymer liquid crystal thin film and the isotropic medium, so that a diffraction effect does not occur.
[0023]
However, when light linearly polarized in a direction giving an extraordinary refractive index that forms an angle of 90 degrees with this direction is incident on the diffraction element, there is a refractive index difference between the polymer liquid crystal thin film and the isotropic medium. Produces an effect. The same applies when the concavo-convex portion is filled with an isotropic medium equal to the extraordinary light refractive index (n e ).
[0024]
There is a method of filling the isotropic medium polymer ordinary refractive index of the liquid crystal film (n o) also extraordinary refractive index (n e) in the not equal refractive index to the uneven portion. In this case, when the optical disk that is an optical recording medium has birefringence, the intensity of the signal light reflected by the optical disk is not lowered by combining with the diffraction element shown in FIG.
[0025]
The diffractive element manufactured by the manufacturing method of the present invention has good alignment in one direction of the molecular axis of the polymer liquid crystal, so the refractive index is uniform and high in the diffractive element, and the thickness of the polymer liquid crystal thin film is uniform. Therefore, it has an excellent characteristic that high and uniform diffraction efficiency can be obtained.
[0026]
Further, as shown in FIG. 2 which is a side view showing an example of the diffraction element according to the present invention, the diffractive element can be formed without completely removing the polymer liquid crystal thin film 1 in the recessed portion while remaining on the substrate 2. In this case, when the light passes through the remaining polymer liquid crystal thin film, the polarization direction may change depending on the incident angle or the like. Therefore, as shown in FIG. 4 which is a side view showing another example of the diffractive element according to the present invention, the polymer liquid crystal thin film 1 in the concave portion is completely removed, that is, the concave portion penetrates the polymer liquid crystal thin film 1 and the substrate 2. It is preferable to expose the surface. 2 and 4, 3 is an isotropic medium.
[0027]
In FIG. 5, which is a side view showing another example of the diffraction element according to the present invention, a quarter-wave plate 10 is provided integrally with the diffraction element. 1, 2 and 3 are the same as described above.
[0028]
Furthermore, the diffraction element manufactured by the manufacturing method of the present invention is mounted on the optical head device. That is, as a diffractive element of an optical head device according to the present invention, light emitted from a semiconductor laser is guided to an optical recording medium, reflected light from the optical recording medium is diffracted by a diffractive element, and the diffracted light is detected by a photodetector. The diffraction element manufactured by the manufacturing method is used.
[0029]
FIG. 3 is a side view showing an outline when the diffraction element of the present invention is used as a hologram beam splitter in an optical head device. The light emitted from the semiconductor laser 5 as the light source passes through the diffraction element 4 as the hologram beam splitter, is condensed on the optical disc 8 by the objective lens 7, and the reflected light from the optical disc 8 passes through the objective lens 7 again. It is diffracted by the hologram beam splitter and reaches the light receiving element 6.
[0030]
By inserting the quarter wavelength plate 10 between the hologram beam splitter and the optical disk 8, the polarization direction of the linearly polarized light emitted from the semiconductor laser 5 can be rotated by 90 degrees in the forward path and the backward path, The transmittance is high for the light in the forward polarization direction, and the diffraction efficiency is high for the light in the polarization direction of the return path, so that the light utilization efficiency can be increased.
[0031]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
Side views of each process of the method for producing a polymer liquid crystal thin film are shown in FIGS. 1 (a), (b) and (c).
[0032]
First, as shown in FIG. 1 (a), a polyimide thin film is formed on the inner surfaces of two glass substrates 2 having a diameter of 3 inches facing each other, and is then rubbed in one direction parallel to the two substrates. By rubbing alignment treatment, an alignment treatment film 11 was obtained. A fluorosilane release agent was applied (not shown) on the alignment treatment film 11 of one of the two glass substrates 2 facing each other.
[0033]
On the other substrate, spherical spacers 12 made of SiO 2 having a diameter of 2.0 μm were sprayed at a density of 6000 pieces / cm 2 , and the two substrates were bonded so that the distance between the inner surfaces was 2 μm. Next, as shown in FIG. 1B, acrylic acid-based liquid crystal monomer was injected into the gap between the two substrates by vacuum injection.
[0034]
When the alignment state of the liquid crystal was observed in this state, it was observed that the molecular axes of the liquid crystal monomers were aligned in the rubbing direction, and it was confirmed that the alignment state was good. Next, the polymer liquid crystal thin film 1 was formed by irradiating 600 mJ of UV light through a glass substrate to photopolymerize and cure the liquid crystal monomer. The alignment state of the polymer liquid crystal was also uniform and good.
[0035]
Furthermore, as shown in FIG.1 (c), the board | substrate of which the mold release process was performed was removed. As a result, the polymer liquid crystal on the substrate that had not been subjected to the mold release treatment remained on the substrate without peeling off, and the polymer liquid crystal thin film 1 could be formed on this substrate side. The orientation state was as good as before the substrate was removed. The film thickness of the polymer liquid crystal thin film 1 was about 2 μm, and a uniform film thickness as designed could be obtained.
[0036]
Thereafter, the polymer liquid crystal thin film 1 which is a birefringent material on the substrate is formed into a lattice having an uneven cross section (FIG. 4) by a photolithography etching method and having a longitudinal direction parallel to the rubbing direction. The isotropic medium 3 was filled and cured.
[0037]
The refractive index of the isotropic medium 3 at this time was equal to the ordinary refractive index of the polymer liquid crystal thin film 1. Then, the substrate was cut into an outer dimension of 4 mm × 4 mm to obtain a hologram beam splitter which is a polarizing diffraction element.
[0038]
The hologram beam splitter thus manufactured was incorporated as the diffraction element 4 of the optical head device shown in FIG. The hologram beam splitter mounted on this optical head device shows a high transmittance of 95% with respect to the linearly polarized light emitted from the semiconductor laser 5 which is the outgoing light, and is reflected by the optical disk 8 which is the backward light. A high ± first-order diffraction efficiency of 36% was exhibited for the light transmitted through the / 4 wavelength plate 10 and polarized light whose polarization direction was rotated by 90 degrees.
[0039]
Therefore, 0.95 × 0.36 = 0.34, that is, a high light utilization efficiency of 34% can be obtained, and the diffraction efficiency of this hologram beam splitter is uniform in the plane.
[0040]
【The invention's effect】
By adopting the production method of the present invention, the liquid crystal monomer is well and stably oriented, and further, the film thickness of the prepared polymer liquid crystal thin film has a refractive index. It is stable and high, and the film thickness can be made uniform.
Therefore, the diffractive element manufactured by the manufacturing method of the present invention in which an isotropic medium is filled in an uneven cross-sectional grating manufactured using this polymer liquid crystal thin film has a high diffraction efficiency and a uniform diffraction efficiency. It has the characteristic which is.
[0041]
In addition, according to the present invention, a polymer liquid crystal thin film having a uniform film thickness can be easily obtained, so that the yield of manufacturing diffraction elements can be improved.
Furthermore, by incorporating the diffraction element manufactured by the manufacturing method of the present invention into the optical head device, the optical head device becomes a device with high light utilization efficiency and stable diffraction efficiency.
[Brief description of the drawings]
FIG. 1 is a side view showing an example of a process for producing a polymer liquid crystal thin film according to the present invention. (A) The side view which shows the board | substrate which provides predetermined spacing and opposes. (B) The side view which shows a mode that the monomer of the liquid crystal was inject | poured between the board | substrates which opposes, and it made the polymer liquid crystal thin film. (C) The side view which shows a mode that one board | substrate was removed from the board | substrate which opposes.
FIG. 2 is a side view showing an example of a diffraction element according to the present invention.
FIG. 3 is a side view schematically showing the head device of the present invention.
FIG. 4 is a side view showing another example of the diffraction element according to the present invention.
FIG. 5 is a side view showing another example of the diffraction element according to the present invention.
[Explanation of symbols]
1: Polymer liquid crystal thin film 2: Substrate 3: Isotropic medium 4: Diffraction element (hologram beam splitter)
5: Semiconductor laser 6: Light receiving element 7: Objective lens 8: Optical disk 10: 1/4 wavelength plate 11: Orientation treatment film 12: Spacer

Claims (2)

高分子液晶薄膜に断面が凹凸状の格子を形成し該凹凸状の格子部に等方性媒質を充填する回折素子の製造方法において、対向する2枚の基板の少なくとも一方の対向面に配向処理を施し、該対向する基板間にスペーサと高分子液晶薄膜となる液晶とを挟持して、該液
晶を配向させ硬化して高分子液晶薄膜とした後、少なくとも一方の基板を取り外して該高分子液晶薄膜に断面が凹凸状の格子を形成し、該凹凸状の格子部に等方性媒質を充填することを特徴とする回折素子の製造方法。
In a method for manufacturing a diffractive element in which a lattice having a concavo-convex shape is formed on a polymer liquid crystal thin film and an isotropic medium is filled in the concavo-convex lattice portion, at least one opposing surface of two opposing substrates is subjected to an alignment treatment And sandwiching a spacer and a liquid crystal to be a polymer liquid crystal thin film between the opposing substrates, aligning and curing the liquid crystal to form a polymer liquid crystal thin film, and then removing at least one substrate A method for manufacturing a diffraction element, comprising: forming a grating having a concave-convex section in a liquid crystal thin film, and filling the concave-convex grating portion with an isotropic medium.
該対向する2枚の基板に該配向処理を施した後に少なくとも一方の基板の対向面に離型処理を施すことを特徴とする請求項1記載の回折素子の製造方法。  2. The method of manufacturing a diffraction element according to claim 1, wherein after the alignment treatment is performed on the two opposing substrates, a mold release process is performed on the facing surface of at least one of the substrates.
JP01281798A 1997-10-02 1998-01-26 Manufacturing method of diffraction element Expired - Fee Related JP4051747B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP01281798A JP4051747B2 (en) 1998-01-26 1998-01-26 Manufacturing method of diffraction element
KR10-2000-7003571A KR100497586B1 (en) 1997-10-02 1998-10-01 Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
US09/509,532 US6618116B1 (en) 1997-10-02 1998-10-01 Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
PCT/JP1998/004445 WO1999018459A1 (en) 1997-10-02 1998-10-01 Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01281798A JP4051747B2 (en) 1998-01-26 1998-01-26 Manufacturing method of diffraction element

Publications (2)

Publication Number Publication Date
JPH11211905A JPH11211905A (en) 1999-08-06
JP4051747B2 true JP4051747B2 (en) 2008-02-27

Family

ID=11815950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01281798A Expired - Fee Related JP4051747B2 (en) 1997-10-02 1998-01-26 Manufacturing method of diffraction element

Country Status (1)

Country Link
JP (1) JP4051747B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091715A (en) * 1999-09-27 2001-04-06 Nippon Mitsubishi Oil Corp Composite diffraction device
JP4792679B2 (en) * 2001-08-24 2011-10-12 旭硝子株式会社 Isolator and variable voltage attenuator

Also Published As

Publication number Publication date
JPH11211905A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
KR100497586B1 (en) Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
KR100642951B1 (en) Optical head device and production method thereof
US20110216255A1 (en) Polarization diffraction grating, method for manufacturing the same, and optical pickup apparatus using the polarization diffraction grating
KR101330860B1 (en) Liquid crystal element, optical head device, and variable optical modulation element
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
JP4051747B2 (en) Manufacturing method of diffraction element
JPH1164615A (en) Diffraction element
JP2003315540A (en) Polarization diffraction element and method for manufacturing the same
JP3982025B2 (en) Manufacturing method of diffraction element
KR20050091757A (en) Liquid crystal component
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP3528381B2 (en) Optical head device
JPH09185837A (en) Optical head device
JP3713778B2 (en) Optical head device
JP4626026B2 (en) Optical head device
JPH10188321A (en) Polarizing diffraction grating and optical head device using the same
JP2002365417A (en) Polarizing diffractive element and method for manufacturing the same
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JP3829356B2 (en) Optical head device
JP2005353207A (en) Polarizing hologram element, optical pickup device, and manufacturing method for them
JPH11312329A (en) Polarizing diffraction element and optical head device
JP4364083B2 (en) Optical head device
JPH09274188A (en) Optical modulation element and optical head device
JP2003029014A (en) Polarizing diffraction element
JPH1021576A (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees