JPH11211905A - Production of diffracting element and optical head device using the same diffracting element - Google Patents

Production of diffracting element and optical head device using the same diffracting element

Info

Publication number
JPH11211905A
JPH11211905A JP10012817A JP1281798A JPH11211905A JP H11211905 A JPH11211905 A JP H11211905A JP 10012817 A JP10012817 A JP 10012817A JP 1281798 A JP1281798 A JP 1281798A JP H11211905 A JPH11211905 A JP H11211905A
Authority
JP
Japan
Prior art keywords
liquid crystal
thin film
diffraction element
light
polymer liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10012817A
Other languages
Japanese (ja)
Other versions
JP4051747B2 (en
Inventor
Hiromasa Sato
弘昌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP01281798A priority Critical patent/JP4051747B2/en
Priority to US09/509,532 priority patent/US6618116B1/en
Priority to PCT/JP1998/004445 priority patent/WO1999018459A1/en
Priority to KR10-2000-7003571A priority patent/KR100497586B1/en
Publication of JPH11211905A publication Critical patent/JPH11211905A/en
Application granted granted Critical
Publication of JP4051747B2 publication Critical patent/JP4051747B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Liquid Crystal Substances (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polarization type diffracting element with which diffraction efficiency is improved and in-plane distribution is made uniform. SOLUTION: On one of opposed two substrates 2, an oriented processing film 11 is formed and between the opposed substrates 2, a spacer 12 for keeping the interval constant and a liquid crystal to be a high molecular liquid crystal thin film 1, are held while orienting the liquid crystal. After the liquid crystal is hardened into high molecular liquid crystal thin film 1 by light radiation, one substrate is detached, a grating having a rugged end face is formed on the high molecular liquid crystal thin film 1, and the rugged parts are filled with isotropic media. Thus, the monomer of the liquid crystal is satisfactorily stabilized and oriented, further, since a means for providing the desired film thickness is adopted, the produced high molecular liquid crystal film is stabilized in a refraction factor as well and further, the film thickness can be made uniform as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回折素子の製造方
法及びこの回折素子を用いた光ヘッド装置に関する。
The present invention relates to a method for manufacturing a diffraction element and an optical head device using the diffraction element.

【0002】[0002]

【従来の技術】従来、高分子液晶を使用した回折素子を
次のように作成していた。すなわち、ガラスなどの透明
基板面に配向処理を施し、この透明基板面上に液晶を薄
く塗布し、光重合により硬化させ高分子液晶薄膜とし
た。この高分子液晶薄膜に断面が凹凸状の格子をドライ
エッチングなどを施すことにより形成し、その凹凸部に
等方性媒質(光学的な等方性媒質をいう)を充填した。
この回折素子は、高分子液晶薄膜が複屈折性を有するこ
とにより、入射する光の偏光方向に応じて回折効率が異
なる偏光性の回折素子となる。
2. Description of the Related Art Conventionally, a diffraction element using a polymer liquid crystal has been prepared as follows. That is, an orientation treatment was performed on a transparent substrate surface such as glass, and a liquid crystal was thinly applied on the transparent substrate surface and cured by photopolymerization to obtain a polymer liquid crystal thin film. The polymer liquid crystal thin film was formed with a lattice having an uneven cross section by performing dry etching or the like, and the uneven portion was filled with an isotropic medium (referred to as an optical isotropic medium).
Since the polymer liquid crystal thin film has birefringence, this diffraction element becomes a polarization diffraction element having a different diffraction efficiency depending on the polarization direction of incident light.

【0003】もし、回折素子の等方性媒質の屈折率(n
s )が、複屈折媒体である高分子液晶薄膜の常光屈折率
(no )又は異常光屈折率(ne )に等しい場合、等し
い屈折率方向の偏光に対しては回折素子は機能しない。
例えばns =no のとき、この回折素子は常光屈折率方
向の偏光を回折せず高い透過率を示し透過する。これに
対して異常光屈折率方向の偏光に対しては回折素子が機
能し高い回折効率が得られる。
If the refractive index (n) of an isotropic medium of a diffraction element
s) is equal to the ordinary refractive index of the polymer liquid crystal film is a birefringent medium (n o) or the extraordinary refractive index (n e), the diffraction element to the polarization of the same refractive index direction does not function.
For example, when the n s = n o, the diffraction element is transmitted showed high transmittance does not diffract the polarization of the ordinary refractive index direction. On the other hand, the diffraction element functions for polarized light in the extraordinary light refractive index direction, and high diffraction efficiency can be obtained.

【0004】光ヘッド装置にこの偏光型の回折素子を用
いる場合には、回折素子と光記録媒体である光ディスク
との間に1/4波長板を挿入して、回折素子を通過する
ときの直線偏光の方向を往路と復路で90度回転させる
ことにより往復効率を高くできる。
When this polarization type diffraction element is used in an optical head device, a quarter-wave plate is inserted between the diffraction element and an optical disk as an optical recording medium, and a straight line passes through the diffraction element. The reciprocation efficiency can be increased by rotating the direction of polarized light by 90 degrees between the forward path and the return path.

【0005】しかし、この高分子液晶の薄膜を作成する
際に配向処理を施した基板に重合前のモノマー状態であ
る液晶を塗布したとき、得られる配向状態を安定化させ
ることが難しかった。配向状態が安定しないと重合後の
実質的な複屈折性状態が変化し屈折率が安定せず所望の
回折効率が得られず回折素子が歩留まりよく得られない
問題があった。また、高分子液晶の膜厚の制御も困難で
あり、この膜厚が変動すると回折効率が変動し、回折素
子の製造歩留まりの低下を招いていた。
However, when a liquid crystal, which is a monomer state before polymerization, is applied to a substrate that has been subjected to an alignment treatment when forming a thin film of the polymer liquid crystal, it is difficult to stabilize the obtained alignment state. If the orientation state is not stable, a substantial birefringence state after polymerization changes, the refractive index is not stabilized, a desired diffraction efficiency cannot be obtained, and a diffraction element cannot be obtained with a high yield. In addition, it is difficult to control the thickness of the polymer liquid crystal, and if the thickness varies, the diffraction efficiency varies, leading to a decrease in the manufacturing yield of the diffraction element.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、従来
技術の前述のような問題を解決し、高分子液晶薄膜を使
用した回折素子の製造方法及びこの回折素子を使用した
光ヘッド装置を新規に提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for manufacturing a diffraction element using a polymer liquid crystal thin film and an optical head device using this diffraction element. It is a new offer.

【0007】[0007]

【課題を解決するための手段】本発明は、高分子液晶薄
膜に断面が凹凸状の格子を形成し該凹凸状の格子部に等
方性媒質を充填する回折素子の製造方法において、対向
する2枚の基板の少なくとも一方の対向面に配向処理を
施し、該対向する基板間にスペーサと高分子液晶薄膜と
なる液晶とを挟持して、該液晶を配向させ硬化して高分
子液晶薄膜とした後、少なくとも一方の基板を取り外し
て該高分子液晶薄膜に断面が凹凸状の格子を形成し、該
凹凸状の格子部に等方性媒質を充填することを特徴とす
る回折素子の製造方法を提供する。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing a diffraction element in which a lattice having an uneven cross section is formed in a polymer liquid crystal thin film, and the uneven lattice portion is filled with an isotropic medium. At least one of the two substrates is subjected to an alignment treatment, and a spacer and a liquid crystal to be a polymer liquid crystal thin film are sandwiched between the opposed substrates, and the liquid crystal is aligned and cured to form a polymer liquid crystal thin film. And then removing at least one substrate to form a lattice having an uneven cross section on the polymer liquid crystal thin film, and filling the uneven lattice portion with an isotropic medium. I will provide a.

【0008】さらに、該対向する2枚の基板に該配向処
理を施した後に少なくとも一方の基板の対向面に離型処
理を施すことを特徴とする上記の回折格子の製造方法を
提供する。また、半導体レーザからの出射光を光記録媒
体に導き、該光記録媒体からの反射光を回折素子で回折
させて光検出器により検出する光ヘッド装置において、
回折素子として上記の製造方法で製造した回折素子を用
いることを特徴とする光ヘッド装置を提供する。
Further, the present invention provides the above-described method for producing a diffraction grating, wherein the two substrates facing each other are subjected to the alignment treatment, and then the mold release treatment is performed on the facing surface of at least one of the substrates. Further, an optical head device that guides light emitted from a semiconductor laser to an optical recording medium, diffracts reflected light from the optical recording medium with a diffraction element, and detects the light with a photodetector,
An optical head device using a diffraction element manufactured by the above manufacturing method as a diffraction element is provided.

【0009】[0009]

【発明の実施の形態】本発明においては、対向する2枚
の基板の対向面、すなわち液晶に接する面に配向処理を
施す場合、1枚の基板に施してもよいし2枚の基板に施
してもよいが、2枚の基板に施す方が液晶の分子配向を
制御しやすく好ましい。ここで使用する配向処理として
は基板表面又はその表面に付着されたポリイミド膜、ポ
リアミド膜の高分子膜やSiO2 などの無機膜などへの
ラビング処理、又はSiOの斜め蒸着処理などが代表的
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, when an alignment process is performed on the opposing surfaces of two opposing substrates, that is, the surface in contact with the liquid crystal, it may be applied to one substrate or to two substrates. However, it is preferable to apply it to two substrates because the molecular alignment of the liquid crystal can be easily controlled. Typical examples of the alignment treatment used here include a rubbing treatment on a substrate surface or a polyimide film adhered to the surface thereof, a polymer film of a polyamide film or an inorganic film such as SiO 2 , or an oblique vapor deposition treatment of SiO. is there.

【0010】本発明で用いる高分子液晶薄膜を形成する
ための液晶は、液晶性を示すモノマー、オリゴマーその
他の反応性化合物などの組成物であり、基板への配向処
理により組成物として液晶配列するものであれば使用で
きる。以下の説明では液晶のモノマーがこれらを代表す
るものとして説明する。
The liquid crystal for forming the polymer liquid crystal thin film used in the present invention is a composition such as a monomer, an oligomer or other reactive compound exhibiting liquid crystallinity. Anything can be used. In the following description, the monomer of the liquid crystal will be described as being representative thereof.

【0011】この対向する2枚の基板間にスペーサを配
置して、所定の間隔を設けて基板を対向させ、その空隙
に液晶のモノマーを注入し、硬化する手段によって液晶
のモノマーを重合させて硬化し高分子液晶薄膜とする。
A spacer is arranged between the two opposing substrates, the substrates are opposing each other at a predetermined interval, a liquid crystal monomer is injected into the gap, and the liquid crystal monomer is polymerized by a curing means. Cures to a polymer liquid crystal thin film.

【0012】液晶のモノマーを硬化する手段としては、
可視光やUV(紫外)光などの光を照射したり、加熱に
よる方法などがあるが、特に可視光やUV光などの光を
照射する硬化方法は基板上で直接できて好ましい。した
がって、ここでは光の照射によって液晶のモノマーを重
合して硬化するものとして説明する。なお、液晶が未重
合で高分子化してないことを明確にするために「液晶」
の代わりに「液晶のモノマー」と表現する。
Means for curing the liquid crystal monomer include:
There are methods such as irradiation with light such as visible light and UV (ultraviolet) light, and a method by heating. In particular, a curing method of irradiating light such as visible light and UV light is preferable because it can be performed directly on the substrate. Therefore, description will be made here assuming that the monomer of the liquid crystal is polymerized and cured by light irradiation. In order to clarify that the liquid crystal is not polymerized because it is not polymerized,
Instead of "monomer of liquid crystal".

【0013】高分子液晶薄膜の製造の工程の一例を図1
に示す。図1(a)は所定の間隔を設けて、対向する2
枚の基板を示す側面図であり、図1(b)は対向する2
枚の基板間に液晶のモノマーを注入し、UV光などの光
を照射して液晶のモノマーを高分子液晶薄膜とした様子
を示す側面図であり、図1(c)は対向する2枚の基板
の一枚の基板を外した様子を示す側面図である。図中、
1は高分子液晶薄膜、2は基板、11は配向処理膜、1
2はスペーサである。
FIG. 1 shows an example of a process for producing a polymer liquid crystal thin film.
Shown in FIG. 1 (a) shows a case in which two
FIG. 1B is a side view showing two substrates, and FIG.
FIG. 1C is a side view showing a state in which a liquid crystal monomer is injected between two substrates and irradiated with light such as UV light to convert the liquid crystal monomer into a polymer liquid crystal thin film. FIG. It is a side view which shows a mode that one board | substrate was removed. In the figure,
1 is a polymer liquid crystal thin film, 2 is a substrate, 11 is an alignment treatment film, 1
2 is a spacer.

【0014】液晶のモノマーの注入方式としては、真空
注入法を採用してもよいし、毛細管現象を利用した方法
で大気圧中で行ってもよい。この場合、これに先立って
スペーサをあらかじめ1枚目の基板上に散布してから2
枚目の基板を積層すればよい。また、1枚目の基板にス
ペーサと液晶のモノマーの混合物を滴下した後、2枚目
の基板を積層してプレスしてもよい。
As a method of injecting the monomer of the liquid crystal, a vacuum injection method may be employed, or the method may be carried out at atmospheric pressure by a method utilizing a capillary phenomenon. In this case, prior to this, a spacer is sprayed on the first substrate in advance, and then
The second substrate may be stacked. After the mixture of the spacer and the liquid crystal monomer is dropped on the first substrate, the second substrate may be laminated and pressed.

【0015】さらに、1枚目の基板にスペーサを散布し
た後液晶のモノマーを滴下して2枚目の基板を積層して
プレスし薄膜化してもよい。基板としては透明なガラス
板やプラスチック板などが使用できるが、硬度や耐久性
などに優れる点で、ガラス板が好ましい。
Further, after the spacers are scattered on the first substrate, the monomer of the liquid crystal may be dropped, and the second substrate may be laminated and pressed to reduce the thickness. As the substrate, a transparent glass plate, a plastic plate, or the like can be used, but a glass plate is preferable because of its excellent hardness and durability.

【0016】そして対向する基板間にこの間隔を一定に
保持する手段と高分子液晶薄膜となる液晶のモノマーを
挟持する。使用する液晶のモノマーとして、アクリル酸
又はメタクリル酸などのエステル類中から選ぶのが好ま
しい。このうち、液晶のモノマーに反応基を付加し、重
合して高分子化する材料(側鎖形高分子液晶)であるア
クリル酸系のものが好ましい。この高分子液晶は、材料
そのものの複屈折性が大きいことに加え、この液晶のモ
ノマーは基板の配向処理に対して敏感に反応し重合後の
複屈折性を大きくしやすい、という優れた特徴を有す
る。
Means for keeping the distance constant between the opposing substrates and a liquid crystal monomer to be a polymer liquid crystal thin film are sandwiched. As the monomer of the liquid crystal used, it is preferable to select from esters such as acrylic acid or methacrylic acid. Among them, an acrylic acid-based material which is a material (side-chain high-molecular liquid crystal) which adds a reactive group to a monomer of a liquid crystal and polymerizes to form a polymer is preferable. In addition to the high birefringence of the material itself, this polymer liquid crystal has the excellent characteristic that the monomer of this liquid crystal reacts sensitively to the alignment treatment of the substrate and easily increases the birefringence after polymerization. Have.

【0017】高分子液晶薄膜の厚さに分布があると、上
記のように回折効率にバラツキが発生して好ましくな
い。したがって、対向する基板の間隔を一定に保持する
手段としてスペーサを用いる。このスペーサとしては、
剛性と耐久性を有するガラス、アルミナ、シリカなどの
無機物又はプラスチックの球形、粒状、繊維状などのス
ペーサであればその機能を果たすが、ガラスのスペーサ
が特に剛性と耐久性に優れており好ましい。通常、高分
子液晶薄膜の厚さは1〜5μmで使用される。
If the thickness of the polymer liquid crystal thin film has a distribution, the diffraction efficiency varies as described above, which is not preferable. Therefore, a spacer is used as a means for keeping the distance between the opposing substrates constant. As this spacer,
Spherical, granular, or fibrous spacers made of inorganic or plastic materials such as glass, alumina, and silica having the rigidity and durability can perform their functions, but glass spacers are particularly preferred because they have excellent rigidity and durability. Usually, the thickness of the polymer liquid crystal thin film is 1 to 5 μm.

【0018】このガラスとしては、球形のSiO2 ガラ
スがよく、その個数は直径が5μm以下の場合、1cm
2 当たり10個〜20万個がよい。10個より少ないと
基板間の間隔を一定に保持することが困難であり20万
個より多いと光散乱を招き、光ヘッド装置に装着した際
に迷光が発生してよくない。好ましくは1千個〜1万個
であり、この場合上記の不具合を有効に回避できる。
As this glass, a spherical SiO 2 glass is preferable, and the number thereof is 1 cm when the diameter is 5 μm or less.
Two to two hundred thousand are good. If the number is less than 10, it is difficult to keep the distance between the substrates constant. If the number is more than 200,000, light scattering is caused, and stray light may not be generated when the optical head device is mounted. Preferably, the number is from 1,000 to 10,000, and in this case, the above problem can be effectively avoided.

【0019】液晶のモノマーを配向させた後に行う光照
射には、上記のように可視光やUV光などが使用される
が、効率よく硬化させるためにUV光が好ましい。この
ように光照射を行うことによって、配向状態を維持した
まま、液晶のモノマーを硬化させうる。
For light irradiation performed after aligning the liquid crystal monomer, visible light or UV light is used as described above, but UV light is preferable for efficient curing. By performing light irradiation in this manner, the monomer of the liquid crystal can be cured while maintaining the alignment state.

【0020】硬化後対向する2枚の基板のうち少なくと
も一方の基板を取り外す(図1(c))。この場合、取
り外す基板に高分子液晶薄膜が付着するのを防ぐため
に、取り外す基板の内面、すなわち液晶のモノマーに接
する面に離型処理を施すことが好ましい。対向する2枚
の基板のうち、1枚の基板の内面に配向処理を施した場
合は、配向処理をしていない方の基板の内面に離型処理
を施すことが、液晶のモノマーの配向効果を高めるうえ
で好ましい。離型処理のために使用される離型剤として
は、フルオロシラン系、含フッ素脂肪族環構造を有する
含フッ素重合体などが使用できる。
After curing, at least one of the two opposing substrates is removed (FIG. 1C). In this case, in order to prevent the polymer liquid crystal thin film from adhering to the substrate to be removed, it is preferable to perform a release treatment on the inner surface of the substrate to be removed, that is, the surface in contact with the monomer of the liquid crystal. When the alignment treatment is performed on the inner surface of one of the two substrates opposed to each other, the release treatment is performed on the inner surface of the substrate that has not been subjected to the alignment treatment. It is preferable in increasing the value. As the release agent used for the release treatment, a fluorosilane type, a fluorinated polymer having a fluorinated aliphatic ring structure, or the like can be used.

【0021】このように製造された高分子液晶薄膜に、
断面が凹凸状の格子が形成されこの凹凸部に等方性媒質
が充填されて回折素子が得られる。すなわち、高分子液
晶薄膜にフォトリソグラフィによるエッチング法や格子
形状を有する金型によるプレス方式などによって、断面
が凹凸状の格子を形成する。この断面凹凸状の格子が形
成された凹凸状の格子部に、屈折率が高分子液晶薄膜の
常光屈折率(no )又は異常光屈折率(ne )に等しい
等方性媒質を充填し硬化する。等方性媒質としては例え
ば光重合型のアクリル系樹脂やエポキシ系樹脂などを使
用できる。
The polymer liquid crystal thin film thus manufactured is
A grating having a concave-convex section is formed, and the concave-convex portion is filled with an isotropic medium to obtain a diffraction element. That is, a lattice having an uneven cross section is formed on the polymer liquid crystal thin film by an etching method using photolithography or a pressing method using a mold having a lattice shape. Uneven grating portion the cross corrugated grating is formed, the refractive index is filled with equal isotropic medium to the ordinary refractive index of the polymer liquid crystal film (n o) or the extraordinary refractive index (n e) To cure. As the isotropic medium, for example, a photopolymerization type acrylic resin or epoxy resin can be used.

【0022】このように屈折率を選ぶことによって、回
折素子を通過する光の偏光方向に応じて、回折素子を回
折格子として機能したりしなかったりさせうる。すなわ
ち、屈折率が高分子液晶薄膜の常光屈折率(no )に等
しい等方性媒質を凹凸部に充填した場合、回折素子の常
光屈折率を与える方向に直線偏光した光を回折素子に入
射したとき、高分子液晶薄膜と等方性媒質との間に屈折
率差がなく回折効果を生じない。
By selecting the refractive index in this manner, the diffraction element may or may not function as a diffraction grating depending on the polarization direction of light passing through the diffraction element. That is, the incident if the refractive index is filled into the concave-convex portion equal isotropic medium to the ordinary refractive index of the polymer liquid crystal film (n o), the light linearly polarized in a direction giving the ordinary refractive index of the diffraction element in the diffraction element In this case, there is no difference in refractive index between the polymer liquid crystal thin film and the isotropic medium, and no diffraction effect occurs.

【0023】しかし、この方向と90度の角度をなす異
常光屈折率を与える方向に直線偏光した光を回折素子に
入射したとき、高分子液晶薄膜と等方性媒質との間に屈
折率差があり回折効果を生じる。異常光屈折率(ne
に等しい等方性媒質を凹凸部に充填した場合も同様であ
る。
However, when light that is linearly polarized in a direction that gives an extraordinary refractive index at an angle of 90 degrees to this direction is incident on the diffraction element, the refractive index difference between the polymer liquid crystal thin film and the isotropic medium is increased. There is a diffraction effect. Extraordinary light refractive index ( ne )
The same applies to the case where the uneven portion is filled with an isotropic medium equal to.

【0024】高分子液晶薄膜の常光屈折率(no )にも
異常光屈折率(ne )にも等しくない屈折率の等方性媒
質を凹凸部に充填する方法もある。この場合は、光記録
媒体である光ディスクに複屈折性があったとき、後述の
図5の回折素子と組み合わせることにより光ディスクに
よって反射される信号光の強度を低下させない効果があ
る。
[0024] There is also a method of filling the isotropic medium polymer ordinary refractive index of the liquid crystal film (n o) also extraordinary refractive index (n e) in the not equal refractive index to the uneven portion. In this case, when the optical disc as the optical recording medium has birefringence, there is an effect that the intensity of the signal light reflected by the optical disc is not reduced by combining the optical disc with the diffraction element shown in FIG.

【0025】本発明の製造方法で製造した回折素子は、
高分子液晶の分子軸の一方向への配向性がよいため、屈
折率が回折素子内で均一で高くさらに高分子液晶薄膜の
厚みが均一であるために、高くて一様な回折効率が得ら
れるという優れた特性を有する。
The diffraction element manufactured by the manufacturing method of the present invention is
The polymer molecules have good orientation in one direction of the molecular axis, so the refractive index is uniform and high in the diffraction element, and the uniform thickness of the polymer liquid crystal film provides high and uniform diffraction efficiency. It has excellent characteristics that it can be used.

【0026】また、本発明による回折素子の一例を示す
側面図である図2のように凹部の高分子液晶薄膜1を基
板2上に残したまま完全に除去せず回折素子を形成する
こともできる。この場合、残留した高分子液晶薄膜中を
光が透過する際に入射角度等により偏光方向が変わるこ
とがある。このため、本発明による回折素子の別の一例
を示す側面図である図4のように凹部の高分子液晶薄膜
1を完全に除去する、すなわち凹部が高分子液晶薄膜1
を貫通して基板2の表面を露出することが好ましい。図
2及び図4において、3は等方性媒質である。
Further, as shown in FIG. 2, which is a side view showing an example of the diffraction element according to the present invention, it is also possible to form the diffraction element without completely removing the concave portion of the polymer liquid crystal thin film 1 on the substrate 2 while leaving it on the substrate 2. it can. In this case, when light passes through the remaining polymer liquid crystal thin film, the polarization direction may change depending on the incident angle or the like. Therefore, as shown in FIG. 4 which is a side view showing another example of the diffraction element according to the present invention, the polymer liquid crystal thin film 1 in the concave portion is completely removed, that is, the polymer liquid crystal thin film 1
To expose the surface of the substrate 2. 2 and 4, reference numeral 3 denotes an isotropic medium.

【0027】本発明による回折素子の他の一例を示す側
面図である図5では1/4波長板10が回折素子と一体
に設けられている。1、2及び3はそれぞれ上記のもの
と同じである。
In FIG. 5, which is a side view showing another example of the diffraction element according to the present invention, a quarter-wave plate 10 is provided integrally with the diffraction element. 1, 2 and 3 are the same as above.

【0028】さらに、本発明の製造方法で製造した回折
素子を光ヘッド装置に装着する。すなわち、半導体レー
ザからの出射光を光記録媒体へ導き、光記録媒体からの
反射光を回折素子で回折させてこの回折光を光検出器に
より検出する光ヘッド装置の回折素子として、本発明の
製造方法で製造した回折素子を用いる。
Further, the diffraction element manufactured by the manufacturing method of the present invention is mounted on an optical head device. That is, the present invention is used as a diffractive element of an optical head device for guiding outgoing light from a semiconductor laser to an optical recording medium, diffracting reflected light from the optical recording medium with a diffractive element, and detecting this diffracted light with a photodetector. A diffraction element manufactured by the manufacturing method is used.

【0029】本発明の回折素子をホログラムビームスプ
リッタとして光ヘッド装置に用いた場合の概略を示す側
面図を図3に示す。光源である半導体レーザ5から出た
光は、ホログラムビームスプリッタである回折素子4を
透過し、対物レンズ7で光ディスク8上に集光され光デ
ィスク8からの反射光は再び対物レンズ7を透過し、ホ
ログラムビームスプリッタにより回折され受光素子6に
到達する。
FIG. 3 is a side view schematically showing the case where the diffraction element of the present invention is used as a hologram beam splitter in an optical head device. Light emitted from a semiconductor laser 5 as a light source passes through a diffraction element 4 as a hologram beam splitter, and is condensed on an optical disk 8 by an objective lens 7, and reflected light from the optical disk 8 passes through the objective lens 7 again. The light is diffracted by the hologram beam splitter and reaches the light receiving element 6.

【0030】このホログラムビームスプリッタと光ディ
スク8との間に1/4波長板10を挿入することによ
り、往路と復路で半導体レーザ5から出射した直線偏光
の偏光方向を90度回転させることができ、これによ
り、往路の偏光方向の光に対しては透過率が高く、復路
の偏光方向の光に対しては回折効率が高くなって光の利
用効率を高めうる。
By inserting the quarter-wave plate 10 between the hologram beam splitter and the optical disk 8, the polarization direction of the linearly polarized light emitted from the semiconductor laser 5 can be rotated by 90 degrees in the forward path and the return path. Accordingly, the transmittance is high for the light in the forward polarization direction, and the diffraction efficiency is high for the light in the return polarization direction, so that the light use efficiency can be increased.

【0031】[0031]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。高分子液晶薄膜の製造方法の各プロセ
スの側面図を図1の(a)、(b)及び(c)に示し
た。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1A, 1B and 1C show side views of each process of the method for producing a polymer liquid crystal thin film.

【0032】まず図1(a)に示すように、対向する直
径が3インチの2枚のガラスの基板2の内面上にポリイ
ミドの薄膜を形成しその後ラビング処理として2枚の基
板間で平行な一方向にこすり配向処理を行い配向処理膜
11とした。この対向する2枚のガラスの基板2のうち
一方の基板の配向処理膜11上にフルオロシラン系の離
型剤を塗布(図示せず)した。
First, as shown in FIG. 1A, a polyimide thin film is formed on the inner surfaces of two glass substrates 2 having a diameter of 3 inches and opposed to each other. A rubbing orientation treatment was performed in one direction to obtain an orientation treatment film 11. A fluorosilane-based release agent was applied (not shown) on the alignment treatment film 11 of one of the two glass substrates 2 facing each other.

【0033】他方の基板には直径2.0μmのSiO2
製の球形のスペーサ12を6000個/cm2 の密度で
散布した後、この2枚の基板の内面の間隔が2μmにな
るように張り合わせた。次に図1(b)に示すように、
この2枚の基板の空隙部に真空注入法により、アクリル
酸系の液晶のモノマーを注入した。
The other substrate was made of SiO 2 having a diameter of 2.0 μm.
After scattering spherical spacers 12 made of 6000 at a density of 6000 pieces / cm 2 , the two substrates were bonded together such that the distance between the inner surfaces of the two substrates became 2 μm. Next, as shown in FIG.
An acrylic acid-based liquid crystal monomer was injected into the gap between the two substrates by a vacuum injection method.

【0034】この状態で、液晶の配向状態を観察すると
ラビング方向に整然と液晶のモノマーの分子軸が配向し
ていることが観察され、良好な配向状態であることが確
認された。次に、ガラス基板を通して600mJのUV
光を照射し液晶のモノマーを光重合させ硬化して高分子
液晶薄膜1を形成した。高分子液晶の配向状態も均一で
良好なものであった。
In this state, when the alignment state of the liquid crystal was observed, it was observed that the molecular axis of the monomer of the liquid crystal was aligned in the rubbing direction, and it was confirmed that the liquid crystal was in a good alignment state. Next, UV light of 600 mJ was passed through a glass substrate.
The liquid crystal monomer was photopolymerized and cured by irradiation with light to form a polymer liquid crystal thin film 1. The alignment state of the polymer liquid crystal was uniform and excellent.

【0035】さらに図1(c)に示すように、離型処理
を施した方の基板を取り外した。その結果、離型処理を
行っていない基板の高分子液晶は剥がれることなく基板
に残り、この基板側に高分子液晶薄膜1を形成できた。
その配向状態は、基板を取り外す前と同様に良好であっ
た。また、高分子液晶薄膜1の膜厚は約2μmであり設
計通りの均一な膜厚を得ることができた。
Further, as shown in FIG. 1C, the substrate subjected to the release treatment was removed. As a result, the polymer liquid crystal of the substrate that had not been subjected to the release treatment remained on the substrate without being peeled off, and the polymer liquid crystal thin film 1 could be formed on the substrate side.
The orientation was as good as before the substrate was removed. The thickness of the polymer liquid crystal thin film 1 was about 2 μm, and a uniform thickness as designed was obtained.

【0036】その後、基板上の複屈折性材料である高分
子液晶薄膜1にフォトリソグラフィによるエッチング法
により断面が凹凸状の格子(図4)で、ラビング方向に
平行な長手方向を有する格子を形成しアクリル系の等方
性媒質3で充填し硬化した。
Thereafter, a lattice having an uneven cross section (FIG. 4) having a longitudinal direction parallel to the rubbing direction is formed on the polymer liquid crystal thin film 1 as a birefringent material on the substrate by an etching method using photolithography. It was filled with an acrylic isotropic medium 3 and cured.

【0037】このときの等方性媒質3の屈折率は高分子
液晶薄膜1の常光屈折率に等しいものであった。そし
て、この基板を外寸4mm×4mmに切断することによ
り偏光性の回折素子であるホログラムビームスプリッタ
を得た。
At this time, the refractive index of the isotropic medium 3 was equal to the ordinary light refractive index of the polymer liquid crystal thin film 1. Then, this substrate was cut into an outer dimension of 4 mm × 4 mm to obtain a hologram beam splitter as a polarizing diffractive element.

【0038】こうして製造したホログラムビームスプリ
ッタを図3に示す光ヘッド装置の回折素子4として組み
込んだ。この光ヘッド装置に搭載したホログラムビーム
スプリッタは、往路の光である半導体レーザ5から出射
した直線の偏光に対しては高い透過率95%を示し、復
路の光である光ディスク8で反射して1/4波長板10
を透過して、往路の光と偏光方向が90度回転した偏光
に対しては高い±1次の回折効率36%を示した。
The hologram beam splitter thus manufactured was incorporated as the diffraction element 4 of the optical head device shown in FIG. The hologram beam splitter mounted on this optical head device shows a high transmittance of 95% for linearly polarized light emitted from the semiconductor laser 5 which is light on the outward path, and reflects the light on the optical disk 8 which is light on the return path to generate 1%. / 4 wavelength plate 10
And a high ± 1st-order diffraction efficiency of 36% was shown for the outgoing light and polarized light whose polarization direction was rotated by 90 degrees.

【0039】したがって、0.95×0.36=0.3
4、すなわち34%の高い光利用効率を得ることがで
き、しかもこのホログラムビームスプリッタの回折効率
は面内で均一であった。
Therefore, 0.95 × 0.36 = 0.3
4, that is, a high light use efficiency of 34% was obtained, and the diffraction efficiency of this hologram beam splitter was uniform in the plane.

【0040】[0040]

【発明の効果】本発明の製造方法を採用することによ
り、液晶のモノマーは良好に安定して配向し、さらに膜
厚を所望のものとする手段を採っているため、作製され
た高分子液晶薄膜は屈折率も安定し高く、さらに膜厚を
均一にできる。したがって、この高分子液晶薄膜を使用
して製造した断面が凹凸状の格子に等方性媒質を充填し
た本発明の製造方法により製造した回折素子は、回折効
率が高くかつ回折効率は面内均一である特徴を有する。
According to the manufacturing method of the present invention, the monomer of the liquid crystal is oriented in a stable and stable manner, and a means for making the film thickness desired is adopted. The thin film has a stable and high refractive index and can have a uniform thickness. Therefore, the diffraction element manufactured by the manufacturing method of the present invention in which an isotropic medium is filled in a lattice having an uneven cross section manufactured using this polymer liquid crystal thin film has a high diffraction efficiency and a uniform in-plane diffraction efficiency. It has the following features.

【0041】また、本発明によれば、容易に膜厚が均一
な高分子液晶薄膜が得られるので、回折素子の製造の歩
留まりを向上させうる。さらに、本発明の製造方法によ
り製造した回折素子を光ヘッド装置に組み込むことによ
って、光ヘッド装置は光利用効率の高い、回折効率の安
定した装置となる。
Further, according to the present invention, a polymer liquid crystal thin film having a uniform thickness can be easily obtained, so that the production yield of the diffraction element can be improved. Further, by incorporating the diffraction element manufactured by the manufacturing method of the present invention into an optical head device, the optical head device becomes a device having high light use efficiency and stable diffraction efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における高分子液晶薄膜製造の工程の一
例を示す側面図。(a)所定の間隔を設けて対向する基
板を示す側面図。(b)対向する基板間に液晶のモノマ
ーを注入し、高分子液晶薄膜化した様子を示す側面図。
(c)対向する基板から一枚の基板を外した様子を示す
側面図。
FIG. 1 is a side view showing an example of a process for producing a polymer liquid crystal thin film according to the present invention. (A) A side view showing a substrate facing at a predetermined interval. (B) A side view showing a state in which a liquid crystal monomer is injected between opposing substrates to make a polymer liquid crystal thin film.
(C) A side view showing a state in which one substrate is removed from an opposing substrate.

【図2】本発明による回折素子の一例を示す側面図。FIG. 2 is a side view showing an example of the diffraction element according to the present invention.

【図3】本発明のヘッド装置の概略を示す側面図。FIG. 3 is a side view schematically showing a head device according to the present invention.

【図4】本発明による回折素子の別の一例を示す側面
図。
FIG. 4 is a side view showing another example of the diffraction element according to the present invention.

【図5】本発明による回折素子の他の一例を示す側面
図。
FIG. 5 is a side view showing another example of the diffraction element according to the present invention.

【符号の説明】[Explanation of symbols]

1:高分子液晶薄膜 2:基板 3:等方性媒質 4:回折素子(ホログラムビームスプリッタ) 5:半導体レーザ 6:受光素子 7:対物レンズ 8:光ディスク 10:1/4波長板 11:配向処理膜 12:スペーサ 1: Polymer liquid crystal thin film 2: Substrate 3: Isotropic medium 4: Diffractive element (hologram beam splitter) 5: Semiconductor laser 6: Light receiving element 7: Objective lens 8: Optical disk 10: 1/4 wavelength plate 11: Alignment processing Membrane 12: Spacer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高分子液晶薄膜に断面が凹凸状の格子を形
成し該凹凸状の格子部に等方性媒質を充填する回折素子
の製造方法において、対向する2枚の基板の少なくとも
一方の対向面に配向処理を施し、該対向する基板間にス
ペーサと高分子液晶薄膜となる液晶とを挟持して、該液
晶を配向させ硬化して高分子液晶薄膜とした後、少なく
とも一方の基板を取り外して該高分子液晶薄膜に断面が
凹凸状の格子を形成し、該凹凸状の格子部に等方性媒質
を充填することを特徴とする回折素子の製造方法。
In a method for manufacturing a diffraction element, a lattice having an uneven cross section is formed in a thin film of a polymer liquid crystal and an isotropic medium is filled in the uneven lattice portion, at least one of two opposing substrates is provided. After subjecting the facing surface to an orientation treatment, a spacer and a liquid crystal to be a polymer liquid crystal thin film are sandwiched between the opposed substrates, and the liquid crystal is oriented and cured to form a polymer liquid crystal thin film. A method for manufacturing a diffraction element, comprising: removing the polymer liquid crystal thin film to form a lattice having an uneven cross section, and filling the uneven lattice portion with an isotropic medium.
【請求項2】該対向する2枚の基板に該配向処理を施し
た後に少なくとも一方の基板の対向面に離型処理を施す
ことを特徴とする請求項1記載の回折格子の製造方法。
2. The method of manufacturing a diffraction grating according to claim 1, wherein after performing the alignment process on the two opposing substrates, a mold release process is performed on a facing surface of at least one of the substrates.
【請求項3】半導体レーザからの出射光を光記録媒体に
導き、該光記録媒体からの反射光を回折素子で回折させ
て光検出器により検出する光ヘッド装置において、回折
素子として請求項1又は2記載の製造方法で製造した回
折素子を用いることを特徴とする光ヘッド装置。
3. An optical head device for guiding light emitted from a semiconductor laser to an optical recording medium, diffracting reflected light from the optical recording medium by a diffraction element, and detecting the light with a photodetector, wherein the diffraction element is used. Or an optical head device using a diffraction element manufactured by the manufacturing method according to 2.
JP01281798A 1997-10-02 1998-01-26 Manufacturing method of diffraction element Expired - Fee Related JP4051747B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP01281798A JP4051747B2 (en) 1998-01-26 1998-01-26 Manufacturing method of diffraction element
US09/509,532 US6618116B1 (en) 1997-10-02 1998-10-01 Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
PCT/JP1998/004445 WO1999018459A1 (en) 1997-10-02 1998-10-01 Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
KR10-2000-7003571A KR100497586B1 (en) 1997-10-02 1998-10-01 Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01281798A JP4051747B2 (en) 1998-01-26 1998-01-26 Manufacturing method of diffraction element

Publications (2)

Publication Number Publication Date
JPH11211905A true JPH11211905A (en) 1999-08-06
JP4051747B2 JP4051747B2 (en) 2008-02-27

Family

ID=11815950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01281798A Expired - Fee Related JP4051747B2 (en) 1997-10-02 1998-01-26 Manufacturing method of diffraction element

Country Status (1)

Country Link
JP (1) JP4051747B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066232A (en) * 2001-08-24 2003-03-05 Asahi Glass Co Ltd Multilayer diffraction polarizer and composite liquid crystal element
EP1219979A4 (en) * 1999-09-27 2006-06-07 Nippon Mitsubishi Oil Corp Composite diffraction device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1219979A4 (en) * 1999-09-27 2006-06-07 Nippon Mitsubishi Oil Corp Composite diffraction device
JP2003066232A (en) * 2001-08-24 2003-03-05 Asahi Glass Co Ltd Multilayer diffraction polarizer and composite liquid crystal element

Also Published As

Publication number Publication date
JP4051747B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
US6618116B1 (en) Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
KR100642951B1 (en) Optical head device and production method thereof
US20110216255A1 (en) Polarization diffraction grating, method for manufacturing the same, and optical pickup apparatus using the polarization diffraction grating
KR101330860B1 (en) Liquid crystal element, optical head device, and variable optical modulation element
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
WO1997027583A1 (en) Optical head, method of manufacturing the same, and diffraction element suitable therefor
JP2011003262A (en) Polarization diffraction element
JPH1164615A (en) Diffraction element
JP4051747B2 (en) Manufacturing method of diffraction element
JP2003315540A (en) Polarization diffraction element and method for manufacturing the same
KR20050091757A (en) Liquid crystal component
JP3982025B2 (en) Manufacturing method of diffraction element
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP3528381B2 (en) Optical head device
JP3713778B2 (en) Optical head device
JP4626026B2 (en) Optical head device
JP3509399B2 (en) Optical head device
JPH11312329A (en) Polarizing diffraction element and optical head device
JPH09185837A (en) Optical head device
JP3829356B2 (en) Optical head device
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JP4364083B2 (en) Optical head device
JP2006512708A (en) Birefringent optical components
KR100974652B1 (en) Polarization diffraction device
JPH09127335A (en) Manufacture of optical head device and optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees