JP2004069977A - Diffraction optical element and optical head unit - Google Patents

Diffraction optical element and optical head unit Download PDF

Info

Publication number
JP2004069977A
JP2004069977A JP2002228719A JP2002228719A JP2004069977A JP 2004069977 A JP2004069977 A JP 2004069977A JP 2002228719 A JP2002228719 A JP 2002228719A JP 2002228719 A JP2002228719 A JP 2002228719A JP 2004069977 A JP2004069977 A JP 2004069977A
Authority
JP
Japan
Prior art keywords
light
optical element
wavelength
diffractive optical
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002228719A
Other languages
Japanese (ja)
Other versions
JP2004069977A5 (en
Inventor
Shinko Murakawa
村川 真弘
Yasunaga Nishikawa
西川 泰永
Naomitsu Umemura
梅村 尚充
Yoshiharu Oi
大井 好晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002228719A priority Critical patent/JP2004069977A/en
Publication of JP2004069977A publication Critical patent/JP2004069977A/en
Publication of JP2004069977A5 publication Critical patent/JP2004069977A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the light use efficiency of a CD/DVD compatible optical head unit and to make the head unit small-sized and lightweight by obtaining a wavelength-selective diffraction optical element which has a small decrease in diffraction efficiency even when its grating pitch becomes fine. <P>SOLUTION: The diffraction optical element is mounted on the optical head unit. This diffraction optical element is equipped with a diffraction grating 12 which has a staircase shape in the cross section and a diffraction grating 13 which has a rectangular shape in the cross section, on one surface of a transparent substrate 11. Then the optical head unit has wavelength selectivity such that one of different-wavelength light beams made incident on the diffraction optical element is diffracted and the light of the other wavelength is transmitted. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、回折光学素子および光ヘッド装置に関し、特に光ヘッド装置に関しては光記録媒体の情報の記録および再生を行う光ヘッド装置に関する。
【0002】
【従来の技術】
CDやDVDなどの光記録媒体(以後、光ディスクと記す)に情報の記録・再生を行う光ヘッド装置において、光源である半導体レーザからの出射光はレンズにより光ディスク上に集光され、光ディスクで反射し戻り光となる。この戻り光は回折光学素子またはビームスプリッタを用いて光検出器である受光素子へ導かれ、光ディスク上の情報が電気信号に変換される。
【0003】
同一の光ヘッド装置で、規格の異なる光ディスクであるCDおよびDVDを用いて、情報の記録・再生を行うため、CD/DVD互換光ヘッド装置が製品化されている。光ディスクの記録層として、光の反射・吸収に対して波長依存性の高い媒質が用いられるCD−R/RWなどの再生を前提とした光ヘッド装置においては、CD用には790nm波長帯の半導体レーザが用いられる。また、DVD用には660nm波長帯の半導体レーザが用いられている。
【0004】
【発明が解決しようとする課題】
CD/DVD互換光ヘッド装置において、規格の異なる光ディスクにて、情報の記録・再生を行うため、透過する光の波長によって回折効率を制御する波長選択性の回折光学素子が用いられる。さらに、光ディスクにて、情報を効率良く記録・再生するために、断面が矩形の格子の代わりに階段状の格子により鋸波状を近似した回折光学素子が用いられて、回折効率を向上することができる。しかしながら、CD/DVD互換光ヘッド装置の小型・軽量化にともない、波長選択性を有する階段状の回折格子の格子ピッチが細かくなり、入射光の偏光状態、入射角度によっては、断面が矩形の格子に比べて高い回折効率を得ることが困難となる問題があった。
【0005】
【課題を解決するための手段】
本発明は、上記の課題を解決するためになされたものであり、少なくとも1枚の透明基板と、透明基板の少なくとも1面に形成された回折格子からなる回折光学素子であって、回折格子は断面が階段状である格子と断面が矩形である格子を備え、回折光学素子に入射する2つの異なる波長の光のうち一方の波長の光を回折し、他方の波長の光を透過する波長選択性を有していることを特徴とする回折光学素子を提供する。
【0006】
また、前記回折光学素子は、異常光および常光のうちいずれか一方として入射する直線偏光を回折し、いずれか他方として入射する直線偏光を透過する偏光選択性を有している上記の回折光学素子を提供する。
【0007】
また、前記回折光学素子に波長板が一体化されている上記の回折光学素子を提供する。
【0008】
さらに、それぞれ異なる波長の光を出射する2つの光源と、前記異なる波長の光を光記録媒体に集光する対物レンズと、対物レンズにより集光され光記録媒体によって反射された光を検出する2つの光検出器とを備える光ヘッド装置であって、前記光ヘッド装置は前記光源と前記対物レンズとの間の光路中に、上記の回折光学素子を備えていることを特徴とする光ヘッド装置を提供する。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0010】
「第1実施態様」
本発明の第1実施態様の回折光学素子としては、1枚の透明基板の1面に形成された回折格子からなる回折光学素子であって、回折格子は断面が階段状である格子と断面が矩形である格子とを備えている。そして回折光学素子に入射する2つの異なる波長の光のうち一方の波長の光を回折し、他方の波長の光を透過する波長選択性を有している回折光学素子である。回折格子は1枚の透明基板の2面に分けて形成してもよいし、また2枚の透明基板の対向する面のうち一方の面または両面に形成してもよい。
【0011】
図1は、本発明の第1実施態様の回折光学素子の断面を示す模式図である。第1実施態様の回折光学素子は、ガラスや石英ガラスなどの光学的に等方である透明基板11の1面に、断面が階段状の回折格子12と、断面が矩形の回折格子13とが混在した構成である。
【0012】
回折格子12と回折格子13を構成する格子材料の屈折率をnとしたとき、階段状の回折格子12の1段の高さを、λ/(n−1)とすることで、波長λの光を透過し、他の波長λの光を回折する波長選択性を有することができる。
【0013】
このとき、波長λに対して回折格子12の1段の高さにより発生する位相差は、格子材料の屈折率波長分散を無視すると2π×(λ/λ)に近似される。2π×(λ/λ)と2π×m(ただし、mは自然数との差の絶対値が最も小さな値を位相差δとすると、波長λの回折効率を最大にする階段状の回折格子12の段数Nは、N×δが2πに最も近い場合である。
【0014】
例えば、λ=660nmおよびλ=790nmのとき、2π×(λ/λ)は2π×1.20のため、δ=2π×0.2となり、N=5となる。実際には格子材料の屈折率波長分散を考慮し、波長λの回折効率を最大にする回折格子12の段数Nが定まる。
しかし、階段状の回折格子12の格子ピッチが細かい場合、格子側壁による影響が大きくなって、波長λの光に対する透過率が低下してしまう。
【0015】
一方、矩形の回折格子13の高さも、λ/(n−1)の整数倍とすることで、波長λの光を透過し、波長λの光を回折する波長選択性を有することができる。
【0016】
一般に、格子高さが低く、格子側壁による影響が無視できる階段状の回折格子12の回折効率は矩形の回折格子13の回折効率よりも大きいが、格子ピッチ、入射偏光、入射角度の条件によっては格子側壁による影響が無視できないため、階段状の回折格子12の回折効率が、矩形の回折格子13の回折効率よりも低下する場合がある。
【0017】
そこで、階段状の回折格子12の回折効率が、矩形の回折格子13の回折効率よりも小さくなる格子領域に矩形の回折格子13を形成し、他の領域に階段状の回折格子12を形成することにより、回折光学素子全体で波長λの回折効率の低下を抑えるとともに、波長λの透過率の低下を抑えることができる。
【0018】
上述のように構成した本発明の第1実施態様の回折光学素子を用いることにより、回折効率の低下を抑えた波長選択性の回折学素子を実現することができる。
【0019】
「第2実施態様」
本発明の第2実施態様の回折光学素子は、異常光および常光のうちいずれか一方として入射する直線偏光を回折し、いずれか他方として入射する直線偏光を透過する偏光選択性を有している。すなわち、異常光として入射する直線偏光を回折する場合は、常光として入射する直線偏光を回折せず透過する。また、逆に常光として入射する直線偏光を回折する場合は、異常光として入射する直線偏光を回折せず透過する。
【0020】
図2は、本発明の第2実施態様の回折光学素子の断面を示す模式図である。第2実施態様の回折光学素子は、ガラスや石英ガラスなどの光学的に等方である透明基板21と27の間に、複屈折性材料からなる、断面が階段状の回折格子22と矩形の回折格子23と、等方性媒質24、波長板25、接着剤26を挟み込んだ構成である。
【0021】
2つの異なる波長λと波長λの異常光偏光が入射し、格子材料となる複屈折性材料の異常光屈折率をn、等方性媒質24の屈折率をn(≠n)としたとき、階段状の回折格子22の1段の高さをλ/(n−n)とすることで、波長λの異常光偏光を透過し、波長λの異常光偏光を回折する波長選択性を付与できる。
【0022】
実施態様1の場合と同様に、階段状の回折格子22の格子ピッチが細かい場合、格子側壁による影響が大きくなって、波長λの異常光偏光に対する透過率が低下する。一方、矩形の回折格子23の高さも、λ/(n−n)の自然数倍とすることで、波長λの異常光偏光を透過し、波長λの異常光偏光を回折する波長選択性を付与できる。
【0023】
一般に、格子高さが低く、格子側壁による影響が無視できる階段状の回折格子22の回折効率は矩形の回折格子23の回折効率よりも大きいが、格子ピッチ、入射偏光、入射角度の条件によっては格子側壁による影響が無視できないため、階段状の回折格子22の回折効率が、矩形の回折格子23の回折効率よりも低下することがある。
【0024】
そこで、階段状の回折格子22の回折効率が、矩形の回折格子23の回折効率よりも小さくなる格子領域に矩形の回折格子23を形成し、他の領域に階段状の回折格子22を形成することにより、回折光学素子全体で波長λの異常光偏光に対する回折効率の低下を抑えるとともに、波長λの異常光偏光に対する透過率の低下を抑えることができる。
【0025】
また、使用する波長帯において、等方性媒質24の屈折率nと格子材料となる複屈折性材料の常光屈折率nの大きさを一致させることで、第2実施態様の回折光学素子は、常光として入射する光を波長によらず直線透過させ、異常光として入射する光に対し波長選択性の回折光学素子として機能する、偏光選択性を有することができて好ましい。
【0026】
また、第2実施態様の回折光学素子を光が往復するとき、図2に示すように波長板25として4分の1波長板を一体化した回折光学素子として用いると、回折格子22および回折格子23に、往路にて入射する常光偏光が復路にて異常光入射とできて好ましい。
【0027】
その結果、波長λに対しては往路で透過し復路で回折光を発生する偏光回折格子の機能を有し、波長λに対しては往路および復路で直進透過する機能を有する。特に、使用する波長帯全域において4分の1波長板として機能する広帯域特性の波長板を用いた場合でも、波長λの偏光状態に関わらず入射光を直進透過する機能を有する。
【0028】
上述のように構成した本発明の第2実施態様の回折光学素子によると、偏光選択性を有し、かつ回折効率の低下を抑えた波長選択性の回折学素子を実現できる。
【0029】
「第3実施態様」
図3は、本発明の第3実施態様の光ヘッド装置を示す光学配置図であり、例えば第2実施態様の回折光学素子6を備えている。第3実施態様の光ヘッド装置はDVDおよびCDの光ディスク8の情報の記録・再生を行うCD/DVD互換光ヘッド装置であって、光源として、DVD用の波長λの直線偏光を出射する半導体レーザ1AとCD用の波長λの直線偏光を出射する半導体レーザ1Bとの2種の光源を備えている。
【0030】
半導体レーザ1Aを出射した直線偏光はビームスプリッタ4を透過し、コリメートレンズ5を透過する。一方、半導体レーザ1Bを出射した直線偏光はビームスプリッタ4を反射し、コリメートレンズ5を透過する。コリメートレンズ5を透過した2つの波長の直線偏光は、第2実施態様において説明した本発明の回折光学素子6に対し常光として入射する。
【0031】
したがって、前記2つの波長の直線偏光は、回折光学素子6に積層された4分の1波長板により回折光学素子6を直進透過して、円偏光になった後、対物レンズ7によって、光ディスク8上に集光される。ここで、ビームスプリッタ4として、DVD用の波長光を全透過、CD用の波長光を全反射させる波長選択性のビームスプリッタを用いることにより、半導体レーザからの光を効率良く利用できて好ましい。
【0032】
光ディスク8を反射した2つの波長の円偏光は、4分の1波長板により直線偏光となった後、回折光学素子6の回折格子に対し、異常光として入射する。DVD用の波長光は回折光学素子6によって、回折されコリメートレンズ5、ビームスプリッタ4を透過して、光検出器2Aに集光される。一方、CD用の波長光は回折光学素子6を直進透過し、コリメートレンズ5を透過、ビームスプリッタ4を反射して、ホログラム素子3により回折され、光検出器2Bに集光される。ここで、半導体レーザ1B、光検出器2B、ホログラム素子3を、ひとつの部品として集積したレーザホログラムユニットを用いることは、光ヘッド装置の部品点数を減らし、かつ小型・軽量化できて望ましい。
【0033】
上述のように構成された本発明の第3実施態様の光ヘッド装置は、小型・軽量化しても、回折光学素子6を用いることで、2つの半導体レーザ1A、1Bの出射光を効率良く利用できる。
【0034】
【実施例】
「例1」
本例は図1に示す第1の実施態様の回折光学素子の具体例である。ガラス製の透明基板11の1面に、断面が階段状の回折格子12と、断面が矩形の回折格子13をフォトリソグラフィとエッチングの技術を用いて作製した。さらに、波長780nmの光を透過、波長660nmの光を回折する波長選択性をもつように回折光学素子を作製した。
【0035】
階段状の回折格子12は、格子材料の屈折率1.45から空気の屈折率を引いた値0.45で、波長780nmを除算して得られた値1.73μmを1段の高さとし、3段からなる総高さ5.2μmの階段状の回折格子とした。
【0036】
一方、矩形の回折格子13の高さを、1.73μmの2倍の高さである3.47μmとした。その結果、波長780nmの光を透過、波長660nmの光を効率良く回折する回折光学素子を作製できた。
【0037】
さらに、格子ピッチ、入射偏光、入射角度に依存して、階段状の回折格子12による回折効率が、矩形の回折格子13による回折効率よりも小さくなる領域に矩形の回折格子13を、他の領域に階段状の回折格子12を形成した。これら回折格子分布の平面パターンを4図に示す。前記平面パターンは、4つの領域からなり、領域A、Aに階段状の回折格子12が、領域B、Bに矩形の回折格子13が形成されている。
上述のように構成した本例の回折光学素子によると、波長選択性を有し、かつ回折効率の高い回折学素子を作製することができた。
【0038】
「例2」
本例は図2に示す第2実施態様の回折光学素子の具体例である。本例の回折光学素子の作製方法を説明する。ガラス製の透明基板21の1面に、ポリイミドを膜状に塗布しラビング配向処理を施して配向膜(図示せず)としたのち、配向膜上に塗布した液晶モノマーを光重合硬化し高分子液晶層を形成した。高分子液晶の屈折率は、光重合硬化後に異常光屈折率nが約1.7、常光屈折率nが約1.5であった。つぎに、透明基板12に成膜した高分子液晶をフォトリソグラフィとエッチングの技術を用いて、断面が階段状の回折格子22と、断面が矩形の回折格子23を作製した。これら回折格子分布の平面パターンは、例1と同様図4に示されるものであった。
【0039】
さらに、上記2つの回折格子の隙間に等方性媒質24を充填する。このとき、等方性媒質24として屈折率nが約1.5である接着剤を用いて、回折格子の隙間を充填する同時に、波長板25を接着した。
【0040】
また、波長780nmの光を透過、波長660nmの光を回折する波長選択性をもつように、本例の回折光学素子において、階段状の回折格子22と矩形の回折格子23の高さを以下のように決めた。階段状の回折格子22は、格子材料の異常光屈折率1.7から接着剤24の屈折率を引いた値0.2で波長780nmを除して得られた値3.9μmを1段の高さとし、3段からなる総高さ11.7μmの階段状の回折格子とした。
【0041】
一方、矩形の回折格子23の高さを、3.9μmの2倍の高さである7.8μmとした。さらに、格子ピッチ、入射偏光、入射角度に依存して、階段状の回折格子22による回折効率が、矩形の回折格子23による回折効率よりも小さくなる領域に矩形の回折格子23を、他の領域に階段状の回折格子22を形成した。
【0042】
ここで、波長板25として、ポリカーボネートを一軸延伸して、本例の回折光学素子を透過する光の中心波長に対して4分の1波長に相当するリタデーション値を誘起したものを用いた。
次に、波長板25に接着剤26を塗布してガラスからなる透明基板27を積層した後、接着剤26を硬化させて、本例の回折光学素子を作製した。
【0043】
上述のように構成した本例の回折光学素子によると、波長選択性と偏光選択性を合わせもち、かつ回折効率の高い回折光学素子を作製できた。
【0044】
なお、階段状の回折格子と矩形の回折格子の分布の平面パターンは、上記のものに限定されず、使用状況に応じて種々変更すればよい。
【0045】
【発明の効果】
以上説明したように、CD/DVD互換光ヘッド装置を小型・軽量化する際に、波長選択性の回折光学素子として、格子ピッチ、入射偏光、入射角度に依存した条件に従って、階段状の回折格子と矩形の回折格子を混在させた回折光学素子を用いることで、光の利用効率を増した光ヘッド装置を実現できる。
【図面の簡単な説明】
【図1】本発明の第1実施態様の回折光学素子の断面図。
【図2】本発明の第2実施態様の回折光学素子の断面図。
【図3】本発明の第3実施態様の光ヘッド装置の光学配置図。
【図4】本発明の回折光学素子に形成された回折格子の平面パターンの1例を示す概念図。
【符号の説明】
1A、1B:半導体レーザ
2A、2B:光検出器
3:ホログラム素子
4:ビームスプリッタ
5:コリメートレンズ
6:回折光学素子
7:対物レンズ
8:光ディスク
11、21、27:透明基板
12、22:階段状の回折格子
13、23:矩形の回折格子
24、26:接着剤
25:波長板
、A、B、B:平面パターンの分割された領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diffractive optical element and an optical head device, and more particularly to an optical head device that records and reproduces information on an optical recording medium.
[0002]
[Prior art]
In an optical head device that records and reproduces information on an optical recording medium (hereinafter referred to as an optical disk) such as a CD or DVD, light emitted from a semiconductor laser as a light source is collected on the optical disk by a lens and reflected by the optical disk. It becomes the return light. The return light is guided to a light receiving element which is a photodetector using a diffractive optical element or a beam splitter, and information on the optical disk is converted into an electric signal.
[0003]
CD / DVD compatible optical head devices have been commercialized in order to record and reproduce information using CD and DVD, which are optical discs having different standards, with the same optical head device. In an optical head device based on reproduction such as a CD-R / RW in which a medium having a high wavelength dependency with respect to reflection / absorption of light is used as a recording layer of an optical disc, a semiconductor having a wavelength band of 790 nm is used for CD. A laser is used. A semiconductor laser having a wavelength band of 660 nm is used for DVD.
[0004]
[Problems to be solved by the invention]
In a CD / DVD compatible optical head device, a wavelength-selective diffractive optical element that controls diffraction efficiency according to the wavelength of transmitted light is used in order to record and reproduce information on optical discs having different standards. Furthermore, in order to efficiently record and reproduce information on an optical disk, a diffraction optical element approximating a sawtooth shape with a stepped grating instead of a rectangular grating can be used to improve the diffraction efficiency. it can. However, as the CD / DVD compatible optical head device becomes smaller and lighter, the grating pitch of the step-like diffraction grating having wavelength selectivity becomes finer, and the grating has a rectangular cross section depending on the polarization state and incident angle of incident light. There is a problem that it is difficult to obtain high diffraction efficiency as compared with the above.
[0005]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and is a diffractive optical element including at least one transparent substrate and a diffraction grating formed on at least one surface of the transparent substrate. Wavelength selection that diffracts light of one wavelength out of two different wavelengths incident on the diffractive optical element and transmits light of the other wavelength, with a grating having a stepped section and a rectangular section Provided is a diffractive optical element characterized by having a property.
[0006]
Further, the diffractive optical element has a polarization selectivity that diffracts linearly polarized light that is incident as either one of extraordinary light or ordinary light, and transmits linearly polarized light that is incident as one of the other. I will provide a.
[0007]
Further, the present invention provides the above diffractive optical element in which a wave plate is integrated with the diffractive optical element.
[0008]
Further, two light sources that emit light of different wavelengths, an objective lens that condenses the light of different wavelengths on an optical recording medium, and light that is collected by the objective lens and reflected by the optical recording medium 2 are detected. An optical head device comprising two photodetectors, wherein the optical head device comprises the diffractive optical element in the optical path between the light source and the objective lens. I will provide a.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
“First Embodiment”
The diffractive optical element according to the first embodiment of the present invention is a diffractive optical element including a diffraction grating formed on one surface of a transparent substrate, and the diffraction grating has a step-like grating and a cross section. And a rectangular grid. And it is a diffractive optical element which has the wavelength selectivity which diffracts the light of one wavelength among the light of two different wavelengths which injects into a diffractive optical element, and permeate | transmits the light of the other wavelength. The diffraction grating may be formed separately on two surfaces of one transparent substrate, or may be formed on one surface or both surfaces of the opposing surfaces of the two transparent substrates.
[0011]
FIG. 1 is a schematic view showing a cross section of the diffractive optical element according to the first embodiment of the present invention. In the diffractive optical element according to the first embodiment, a diffraction grating 12 having a stepped cross section and a diffraction grating 13 having a rectangular cross section are formed on one surface of an optically isotropic transparent substrate 11 such as glass or quartz glass. It is a mixed configuration.
[0012]
When the refractive index of the grating material constituting the diffraction grating 12 and the diffraction grating 13 is n, the height of one step of the stepped diffraction grating 12 is λ 2 / (n−1), so that the wavelength λ transmitted through the second light may have a wavelength selectivity of diffracting other wavelengths lambda 1 light.
[0013]
At this time, the phase difference generated by the height of one step of the diffraction grating 12 with respect to the wavelength λ 1 is approximated to 2π × (λ 2 / λ 1 ) when the refractive index wavelength dispersion of the grating material is ignored. 2π × (λ 2 / λ 1 ) and 2π × m (where m is the phase difference δ, where the absolute value of the difference from the natural number is the smallest), stepwise diffraction that maximizes the diffraction efficiency of the wavelength λ 1 The number of stages N of the grating 12 is when N × δ is closest to 2π.
[0014]
For example, when λ 1 = 660 nm and λ 2 = 790 nm, 2π × (λ 2 / λ 1 ) is 2π × 1.20, so δ = 2π × 0.2 and N = 5. Actually, taking into account the refractive index wavelength dispersion of the grating material, the number N of stages of the diffraction grating 12 that maximizes the diffraction efficiency of the wavelength λ 1 is determined.
However, when the grating pitch of the stair-like diffraction grating 12 is fine, the influence of the grating side wall becomes large, and the transmittance for light of wavelength λ 2 is lowered.
[0015]
On the other hand, the height of the rectangular diffraction grating 13 is also an integral multiple of λ 2 / (n−1), so that it has wavelength selectivity for transmitting light of wavelength λ 2 and diffracting light of wavelength λ 1. Can do.
[0016]
In general, the diffraction efficiency of the step-like diffraction grating 12 with a low grating height and negligible influence by the grating sidewalls is larger than the diffraction efficiency of the rectangular diffraction grating 13, but depending on the conditions of the grating pitch, incident polarization, and incident angle. Since the influence due to the grating side wall cannot be ignored, the diffraction efficiency of the stepped diffraction grating 12 may be lower than the diffraction efficiency of the rectangular diffraction grating 13.
[0017]
Therefore, the rectangular diffraction grating 13 is formed in a grating region where the diffraction efficiency of the stepped diffraction grating 12 is smaller than the diffraction efficiency of the rectangular diffraction grating 13, and the stepped diffraction grating 12 is formed in another region. As a result, it is possible to suppress a decrease in the diffraction efficiency of the wavelength λ 1 and a decrease in the transmittance of the wavelength λ 2 in the entire diffractive optical element.
[0018]
By using the diffractive optical element according to the first embodiment of the present invention configured as described above, it is possible to realize a wavelength-selective diffractive element that suppresses a decrease in diffraction efficiency.
[0019]
“Second Embodiment”
The diffractive optical element according to the second embodiment of the present invention has polarization selectivity that diffracts linearly polarized light that is incident as one of extraordinary light and ordinary light, and transmits linearly polarized light that is incident as either of the other. . That is, when diffracting linearly polarized light incident as extraordinary light, the linearly polarized light incident as ordinary light is transmitted without being diffracted. Conversely, when diffracting linearly polarized light incident as ordinary light, the linearly polarized light incident as extraordinary light is transmitted without being diffracted.
[0020]
FIG. 2 is a schematic diagram showing a cross section of the diffractive optical element according to the second embodiment of the present invention. The diffractive optical element according to the second embodiment has a rectangular diffraction grating 22 and a rectangular cross section made of a birefringent material between transparent optical substrates 21 and 27 such as glass and quartz glass. In this configuration, the diffraction grating 23, an isotropic medium 24, a wave plate 25, and an adhesive 26 are sandwiched.
[0021]
The extraordinary light polarized light having two different wavelengths λ 1 and λ 2 is incident, and the extraordinary refractive index of the birefringent material as the grating material is n e , and the refractive index of the isotropic medium 24 is n s (≠ ne). ), The height of one step of the stepped diffraction grating 22 is λ 2 / (n e −n s ), so that the extraordinary light polarized with wavelength λ 2 is transmitted and the extraordinary light with wavelength λ 1 is transmitted. Wavelength selectivity for diffracting polarized light can be imparted.
[0022]
As in the case of the first embodiment, when the grating pitch of the stepped diffraction grating 22 is fine, the influence of the grating side wall becomes large, and the transmittance for the extraordinary light polarized light having the wavelength λ 2 is lowered. On the other hand, the height of the rectangle of the diffraction grating 23, by a natural number multiple of λ 2 / (n e -n s ), passes through the extraordinarily polarized light of wavelength lambda 2, the wavelength lambda 1 of the extraordinarily polarized beam diffraction Wavelength selectivity can be imparted.
[0023]
In general, the diffraction efficiency of the step-like diffraction grating 22 where the grating height is low and the influence of the grating sidewall can be ignored is larger than the diffraction efficiency of the rectangular diffraction grating 23, but depending on the conditions of the grating pitch, incident polarization, and incident angle. Since the influence due to the grating side wall cannot be ignored, the diffraction efficiency of the step-like diffraction grating 22 may be lower than the diffraction efficiency of the rectangular diffraction grating 23.
[0024]
Therefore, the rectangular diffraction grating 23 is formed in a grating region where the diffraction efficiency of the stepped diffraction grating 22 is smaller than the diffraction efficiency of the rectangular diffraction grating 23, and the stepped diffraction grating 22 is formed in another region. Accordingly, it is possible to suppress a decrease in the diffraction efficiency with respect to the extraordinary light polarized light having the wavelength λ 1 and a decrease in the transmittance with respect to the extraordinary light polarized light having the wavelength λ 2 in the entire diffractive optical element.
[0025]
In the wavelength band to be used, the refractive index n s of the isotropic medium 24 and the ordinary refractive index n o of the birefringent material serving as the grating material are matched to each other, so that the diffractive optical element according to the second embodiment is used. Is preferable because it can transmit light linearly as ordinary light linearly regardless of the wavelength and has polarization selectivity that functions as a wavelength-selective diffractive optical element with respect to light incident as abnormal light.
[0026]
When the light travels back and forth through the diffractive optical element of the second embodiment, as shown in FIG. 2, when the diffractive optical element is integrated with a quarter wave plate as the wave plate 25, the diffraction grating 22 and the diffraction grating are used. 23, normal light polarized light incident on the forward path is preferable because abnormal light can be incident on the return path.
[0027]
As a result, it has a function of a polarization diffraction grating that transmits the wavelength λ 1 in the forward path and generates diffracted light in the return path, and has a function of linearly transmitting the wavelength λ 2 in the forward path and the return path. In particular, even when a waveplate broadband characteristic that functions as a quarter-wave plate in the entire wavelength range to be used, has the function of linearly transmits incident light regardless of the polarization state of the wavelength lambda 2.
[0028]
According to the diffractive optical element of the second embodiment of the present invention configured as described above, it is possible to realize a wavelength-selective diffractive element that has polarization selectivity and suppresses a decrease in diffraction efficiency.
[0029]
“Third embodiment”
FIG. 3 is an optical layout diagram showing the optical head device according to the third embodiment of the present invention, and includes, for example, the diffractive optical element 6 according to the second embodiment. The optical head device of the third embodiment is a CD / DVD compatible optical head device for recording / reproducing information on DVD and CD optical discs 8 and is a semiconductor that emits linearly polarized light of wavelength λ 1 for DVD as a light source. and a two light source the semiconductor laser 1B for emitting a linearly polarized light having a wavelength lambda 2 of the laser 1A and CD.
[0030]
The linearly polarized light emitted from the semiconductor laser 1A passes through the beam splitter 4 and passes through the collimating lens 5. On the other hand, the linearly polarized light emitted from the semiconductor laser 1 </ b> B reflects the beam splitter 4 and passes through the collimator lens 5. The linearly polarized light having two wavelengths transmitted through the collimator lens 5 enters the diffractive optical element 6 of the present invention described in the second embodiment as ordinary light.
[0031]
Therefore, the linearly polarized light of the two wavelengths passes through the diffractive optical element 6 straight by the quarter-wave plate laminated on the diffractive optical element 6 and becomes circularly polarized light. Focused on top. Here, it is preferable to use a wavelength-selective beam splitter that totally transmits the wavelength light for DVD and totally reflects the wavelength light for CD, as the beam splitter 4 can efficiently use the light from the semiconductor laser.
[0032]
The two-wavelength circularly polarized light reflected from the optical disk 8 becomes linearly polarized light by the quarter-wave plate and then enters the diffraction grating of the diffractive optical element 6 as extraordinary light. The wavelength light for DVD is diffracted by the diffractive optical element 6, passes through the collimating lens 5 and the beam splitter 4, and is collected on the photodetector 2 </ b> A. On the other hand, the wavelength light for CD passes straight through the diffractive optical element 6, passes through the collimator lens 5, reflects off the beam splitter 4, is diffracted by the hologram element 3, and is collected on the photodetector 2B. Here, it is desirable to use a laser hologram unit in which the semiconductor laser 1B, the photodetector 2B, and the hologram element 3 are integrated as one component because the number of components of the optical head device can be reduced and the size and weight can be reduced.
[0033]
Even if the optical head device according to the third embodiment of the present invention configured as described above is reduced in size and weight, the light emitted from the two semiconductor lasers 1A and 1B can be efficiently used by using the diffractive optical element 6. it can.
[0034]
【Example】
"Example 1"
This example is a specific example of the diffractive optical element of the first embodiment shown in FIG. A diffraction grating 12 having a stepped cross section and a diffraction grating 13 having a rectangular cross section were produced on one surface of a transparent substrate 11 made of glass using photolithography and etching techniques. Further, a diffractive optical element was fabricated so as to have wavelength selectivity for transmitting light having a wavelength of 780 nm and diffracting light having a wavelength of 660 nm.
[0035]
The step-like diffraction grating 12 has a value 0.45 obtained by subtracting the refractive index of air from the refractive index 1.45 of the grating material, and a value of 1.73 μm obtained by dividing the wavelength of 780 nm as one step height. A stepped diffraction grating having a total height of 5.2 μm consisting of three steps was used.
[0036]
On the other hand, the height of the rectangular diffraction grating 13 was set to 3.47 μm, which is twice as high as 1.73 μm. As a result, a diffractive optical element that transmits light having a wavelength of 780 nm and efficiently diffracts light having a wavelength of 660 nm could be produced.
[0037]
Furthermore, depending on the grating pitch, incident polarization, and incident angle, the rectangular diffraction grating 13 is placed in a region where the diffraction efficiency by the step-like diffraction grating 12 is smaller than the diffraction efficiency by the rectangular diffraction grating 13, and other regions. A stepped diffraction grating 12 was formed. The plane pattern of these diffraction grating distributions is shown in FIG. The plane pattern consists of four regions, stepped diffraction grating 12 in the area A 1, A 2 is a diffraction grating 13 of the rectangular region B 1, B 2 are formed.
According to the diffractive optical element of this example configured as described above, a diffractive element having wavelength selectivity and high diffraction efficiency could be produced.
[0038]
"Example 2"
This example is a specific example of the diffractive optical element of the second embodiment shown in FIG. A method for manufacturing the diffractive optical element of this example will be described. A polyimide film is applied to one surface of a glass transparent substrate 21 and subjected to a rubbing alignment treatment to form an alignment film (not shown), and then the liquid crystal monomer applied on the alignment film is photopolymerized and cured to form a polymer. A liquid crystal layer was formed. Refractive index of the polymer liquid crystal, an extraordinary refractive index after photopolymerization curing n e of about 1.7, the ordinary refractive index n o was about 1.5. Next, a polymer liquid crystal formed on the transparent substrate 12 was fabricated using a photolithography and etching technique to produce a diffraction grating 22 having a stepped cross section and a diffraction grating 23 having a rectangular cross section. The plane pattern of these diffraction grating distributions was as shown in FIG.
[0039]
Further, an isotropic medium 24 is filled in the gap between the two diffraction gratings. At this time, an adhesive having a refractive index ns of about 1.5 was used as the isotropic medium 24 to fill the gap of the diffraction grating, and at the same time, the wave plate 25 was bonded.
[0040]
Further, in the diffractive optical element of this example, the height of the stepped diffraction grating 22 and the rectangular diffraction grating 23 is set as follows so as to have wavelength selectivity for transmitting light of wavelength 780 nm and diffracting light of wavelength 660 nm. I decided so. The step-like diffraction grating 22 is obtained by dividing the value 3.9 μm obtained by dividing the wavelength 780 nm by the value 0.2 obtained by subtracting the refractive index of the adhesive 24 from the extraordinary refractive index 1.7 of the grating material. The height is a stepped diffraction grating having a total height of 11.7 μm consisting of three steps.
[0041]
On the other hand, the height of the rectangular diffraction grating 23 was set to 7.8 μm, which is twice the height of 3.9 μm. Further, depending on the grating pitch, incident polarization, and incident angle, the rectangular diffraction grating 23 is placed in a region where the diffraction efficiency of the stepped diffraction grating 22 is smaller than the diffraction efficiency of the rectangular diffraction grating 23, and other regions. A step-like diffraction grating 22 was formed.
[0042]
Here, as the wavelength plate 25, a polycarbonate uniaxially stretched to induce a retardation value corresponding to a quarter wavelength with respect to the center wavelength of light transmitted through the diffractive optical element of this example was used.
Next, an adhesive 26 was applied to the wavelength plate 25 and a transparent substrate 27 made of glass was laminated, and then the adhesive 26 was cured to produce the diffractive optical element of this example.
[0043]
According to the diffractive optical element of this example configured as described above, a diffractive optical element having both wavelength selectivity and polarization selectivity and high diffraction efficiency could be produced.
[0044]
Note that the planar pattern of the distribution of the stepped diffraction grating and the rectangular diffraction grating is not limited to the above, and may be variously changed according to the use situation.
[0045]
【The invention's effect】
As described above, when a CD / DVD compatible optical head device is reduced in size and weight, a step-like diffraction grating is used as a wavelength-selective diffractive optical element according to the conditions depending on the grating pitch, incident polarization, and incident angle. By using a diffractive optical element in which a rectangular diffraction grating is mixed, an optical head device with increased light utilization efficiency can be realized.
[Brief description of the drawings]
FIG. 1 is a sectional view of a diffractive optical element according to a first embodiment of the present invention.
FIG. 2 is a sectional view of a diffractive optical element according to a second embodiment of the present invention.
FIG. 3 is an optical layout diagram of an optical head device according to a third embodiment of the present invention.
FIG. 4 is a conceptual diagram showing an example of a plane pattern of a diffraction grating formed in the diffractive optical element of the present invention.
[Explanation of symbols]
1A, 1B: Semiconductor laser 2A, 2B: Photodetector 3: Hologram element 4: Beam splitter 5: Collimator lens 6: Diffractive optical element 7: Objective lens 8: Optical disks 11, 21, 27: Transparent substrates 12, 22: Stairs Shaped diffraction gratings 13 and 23: rectangular diffraction gratings 24 and 26: adhesive 25: wave plates A 1 , A 2 , B 1 , B 2 : divided areas of the planar pattern

Claims (4)

少なくとも1枚の透明基板と、透明基板の少なくとも1面に形成された回折格子からなる回折光学素子であって、回折格子は断面が階段状である格子と断面が矩形である格子を備え、回折光学素子に入射する2つの異なる波長の光のうち一方の波長の光を回折し、他方の波長の光を透過する波長選択性を有していることを特徴とする回折光学素子。A diffractive optical element comprising at least one transparent substrate and a diffraction grating formed on at least one surface of the transparent substrate, wherein the diffraction grating comprises a grating having a stepped section and a rectangular section. A diffractive optical element characterized by having a wavelength selectivity of diffracting light of one wavelength out of two light of different wavelengths incident on the optical element and transmitting light of the other wavelength. 前記回折光学素子は、異常光および常光のうちいずれか一方として入射する直線偏光を回折し、いずれか他方として入射する直線偏光を透過する偏光選択性を有している請求項1記載の回折光学素子。2. The diffractive optical element according to claim 1, wherein the diffractive optical element has polarization selectivity that diffracts linearly polarized light incident as one of abnormal light and ordinary light and transmits linearly polarized light incident as one of the other. element. 前記回折光学素子に波長板が一体化されている請求項1または2記載の回折光学素子。The diffractive optical element according to claim 1, wherein a wave plate is integrated with the diffractive optical element. それぞれ異なる波長の光を出射する2つの光源と、前記異なる波長の光を光記録媒体に集光する対物レンズと、対物レンズにより集光され光記録媒体によって反射された光を検出する2つの光検出器とを備える光ヘッド装置であって、前記光ヘッド装置は前記光源と前記対物レンズとの間の光路中に、請求項1または2記載の回折光学素子を備えていることを特徴とする光ヘッド装置。Two light sources for emitting light of different wavelengths, an objective lens for condensing the light of different wavelengths on an optical recording medium, and two lights for detecting light collected by the objective lens and reflected by the optical recording medium An optical head device comprising a detector, wherein the optical head device comprises the diffractive optical element according to claim 1 or 2 in an optical path between the light source and the objective lens. Optical head device.
JP2002228719A 2002-08-06 2002-08-06 Diffraction optical element and optical head unit Pending JP2004069977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228719A JP2004069977A (en) 2002-08-06 2002-08-06 Diffraction optical element and optical head unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228719A JP2004069977A (en) 2002-08-06 2002-08-06 Diffraction optical element and optical head unit

Publications (2)

Publication Number Publication Date
JP2004069977A true JP2004069977A (en) 2004-03-04
JP2004069977A5 JP2004069977A5 (en) 2005-10-27

Family

ID=32015333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228719A Pending JP2004069977A (en) 2002-08-06 2002-08-06 Diffraction optical element and optical head unit

Country Status (1)

Country Link
JP (1) JP2004069977A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003187A (en) * 2006-06-21 2008-01-10 Asahi Glass Co Ltd Working method of polymer liquid crystal film, optical element and optical head device
US7622696B2 (en) 2005-03-02 2009-11-24 Nec Corporation Optical head device, optical information recording/reproducing apparatus and operation method of optical information recording/reproducing apparatus
US7710849B2 (en) 2004-06-14 2010-05-04 Nec Corporation Optical head device and optical information recording or reproducing device
US7948854B2 (en) 2005-10-28 2011-05-24 Nec Corporation Optical head apparatus and optical information recording/reproducing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710849B2 (en) 2004-06-14 2010-05-04 Nec Corporation Optical head device and optical information recording or reproducing device
US7622696B2 (en) 2005-03-02 2009-11-24 Nec Corporation Optical head device, optical information recording/reproducing apparatus and operation method of optical information recording/reproducing apparatus
US7948854B2 (en) 2005-10-28 2011-05-24 Nec Corporation Optical head apparatus and optical information recording/reproducing apparatus
JP2008003187A (en) * 2006-06-21 2008-01-10 Asahi Glass Co Ltd Working method of polymer liquid crystal film, optical element and optical head device

Similar Documents

Publication Publication Date Title
JP4341332B2 (en) Optical head device
JP2010153027A (en) Diffraction element and optical head device
JP4560906B2 (en) Optical head device
JP5012171B2 (en) Reflective diffractive polarizer and optical device
JP4474706B2 (en) Optical head device
JP4378832B2 (en) Optical head device
JP4300784B2 (en) Optical head device
KR100779693B1 (en) Wave selection type diffractive optical elements and optical pickup device has them
JPH09304750A (en) Optical modulation element and optical head device
JP4296662B2 (en) Optical head device
JPH1164615A (en) Diffraction element
JP2004069977A (en) Diffraction optical element and optical head unit
JP2003288733A (en) Aperture-limiting element and optical head device
JP2002014228A (en) Phase shifter and optical head device
JP4218393B2 (en) Optical head device
KR100985422B1 (en) Double-wavelength light source unit and optical head device
JP2002196123A (en) Dual-wavelength diffraction optical element, dual wavelength light source device and optical head device
JP4427877B2 (en) Aperture limiting element and optical head device
JP2001344800A (en) Optical head device
JP2002341125A (en) Diffraction element and optical head device
JP2010165450A (en) Wide band phase plate, polarization diffraction element, and laminated optical element
JP2002365416A (en) Polarization diffraction element and optical head device
JP4432255B2 (en) Optical head device
JP4735749B2 (en) Optical head device
JP2002040253A (en) Optical rotation element and optical head device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106