JP2002341125A - Diffraction element and optical head device - Google Patents

Diffraction element and optical head device

Info

Publication number
JP2002341125A
JP2002341125A JP2001151446A JP2001151446A JP2002341125A JP 2002341125 A JP2002341125 A JP 2002341125A JP 2001151446 A JP2001151446 A JP 2001151446A JP 2001151446 A JP2001151446 A JP 2001151446A JP 2002341125 A JP2002341125 A JP 2002341125A
Authority
JP
Japan
Prior art keywords
light
region
phase
diffraction
diffraction element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001151446A
Other languages
Japanese (ja)
Inventor
Yoshiharu Oi
好晴 大井
Hiromasa Sato
弘昌 佐藤
Shinko Murakawa
真弘 村川
Ryuichiro Goto
龍一郎 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001151446A priority Critical patent/JP2002341125A/en
Publication of JP2002341125A publication Critical patent/JP2002341125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an diffraction element for generating a plurality of beams which have approximately the same diffraction efficiency of ±1st and ±2nd diffracted light beams, and further to obtain an optical head device with which a high speed processing is available. SOLUTION: Such an optical diffraction element is manufactured that the element is provided with a diffraction grating 11 having a grating pitch P and formed on a light-transmissive substrate 12, P is divided into four regions, the ratio of the regions to P is W1 , W2 , W3 , and W4 , the phase between transmitting light at regions W1 and W2 is ϕ1 , the phase between transmitting light at regions W2 and W4 is ϕ2 (ϕ1 ≠ϕ2 ), and W1 , W2 , and W3 are so specified that a specifying relation A(m) including W1 , W2 , and W3 becomes 3.6<A(±2)/A(±1)<4.4 for m=±1 and ±2, and the element is mounted on the device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回折素子および光
ヘッド装置に関し、特に入射光を複数のビームに分割す
る回折素子、および光記録媒体の情報の記録と再生に用
いる光ヘッド装置に関する。
The present invention relates to a diffraction element and an optical head device, and more particularly to a diffraction element for dividing incident light into a plurality of beams, and an optical head device used for recording and reproducing information on an optical recording medium.

【0002】[0002]

【従来の技術】CD、DVDまたは光磁気ディスクなど
の光記録媒体(以下、これらをまとめて「光ディスク」
という)の情報記録面上に情報の記録および再生を行う
光ヘッド装置が用いられている。この光ヘッド装置にお
いて、光ディスクの回転に追随して情報記録面のトラッ
ク上に光を集光するために、種々のトラッキング法が用
いられる。
2. Description of the Related Art Optical recording media such as CDs, DVDs and magneto-optical disks (hereinafter collectively referred to as "optical disks").
An optical head device that records and reproduces information on an information recording surface is used. In this optical head device, various tracking methods are used to focus light on tracks on the information recording surface following the rotation of the optical disk.

【0003】そのトラッキング法の中で、再生専用光デ
ィスクの情報記録面の信号(情報)検出法として3ビー
ム法、記録用光ディスクの信号検出法として差動プッシ
ュプル法が一般的に用いられている。いずれの方法にお
いても、半導体レーザなどの光源からの出射光を回折格
子により回折し、0次回折光と±1次回折光の3ビーム
が用いられる。
In the tracking method, a three-beam method is generally used as a signal (information) detection method for an information recording surface of a read-only optical disk, and a differential push-pull method is generally used as a signal detection method for a recording optical disk. . In either method, light emitted from a light source such as a semiconductor laser is diffracted by a diffraction grating, and three beams of 0-order diffracted light and ± 1st-order diffracted light are used.

【0004】この3ビームのうち0次回折光をメインビ
ームとしてトラック上の信号の再生または記録に用い
る。また、±1次回折光を二つのサブビームとして、メ
インビームの前後に一直線状に配置し、この三つのビー
ムがトラック線に対して斜めに横切り、かつ二つのサブ
ビームの間隔をトラックピッチの大きさの1/4〜1/
2程度ずらせる。これら3ビームの情報記録面による各
反射光が受光素子に導かれ電気信号に変換される。
[0004] Of the three beams, the zero-order diffracted light is used as a main beam for reproducing or recording a signal on a track. Further, the ± 1st-order diffracted light is arranged as two sub-beams in a straight line before and after the main beam, and these three beams obliquely cross the track line, and the interval between the two sub-beams is set to the size of the track pitch. 1/4 to 1 /
Shift by about two. Each reflected light of these three beams by the information recording surface is guided to the light receiving element and converted into an electric signal.

【0005】このような3ビームの発生に用いられる従
来の回折格子の断面図を図8に示す。ガラス基板62の
表面に周期的な凹凸形状を有する回折格子61が形成さ
れる。この回折格子61は位相変調型の回折格子として
作用し回折光を発生させる。この回折光のうち、0次回
折光と±1次回折光との和を最大とするため、回折格子
の凹部と凸部の領域の幅の比率を1:1とした2分割構
造が一般的である。
FIG. 8 is a sectional view of a conventional diffraction grating used for generating such three beams. A diffraction grating 61 having a periodic uneven shape is formed on the surface of a glass substrate 62. This diffraction grating 61 acts as a phase modulation type diffraction grating to generate diffracted light. In order to maximize the sum of the 0th-order diffracted light and the ± 1st-order diffracted light among the diffracted lights, a two-divided structure in which the ratio of the width of the concave part to the convex part of the diffraction grating is 1: 1 is generally used. .

【0006】[0006]

【発明が解決しようとする課題】従来の3ビーム発生用
の回折格子を搭載した光ヘッド装置においては、高速で
情報の記録および再生を行う場合、トラッキング安定性
が低下し、記録および再生時にエラーが発生しやすい問
題があった。
In a conventional optical head device equipped with a diffraction grating for generating three beams, when recording and reproducing information at high speed, the tracking stability is deteriorated, and errors occur during recording and reproduction. There is a problem that is likely to occur.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の課題を
解決するためになされたものであり、格子ピッチPを有
する位相変調型の回折格子が備えられ、格子ピッチPに
は第1領域、第2領域、第3領域および第4領域がピッ
チ方向に連続して配置され、第1領域を透過する光の位
相と第3領域を透過する光の位相とが等しくφ1とさ
れ、第2領域を透過する光の位相と第4領域を透過する
光の位相とが等しくφ2(φ2≠φ1)とされ、各領域の
幅のPに対する比率を順にW1、W2、W3、W4、さらに
回折次数をm(mは正または負の整数)とすると、
(1)式および(2)式を満足する回折素子を提供す
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and comprises a phase modulation type diffraction grating having a grating pitch P, wherein the grating pitch P has a first region. , the second region, third region and fourth region are arranged in succession in the pitch direction, and the phase of the light transmitted through the phase and third regions of the light transmitted through the first region is equally phi 1, the The phase of the light transmitted through the two regions and the phase of the light transmitted through the fourth region are equal to φ 22 ≠ φ 1 ), and the ratio of the width of each region to P is W 1 , W 2 , W 3 , W 4 and the diffraction order is m (m is a positive or negative integer),
Provided is a diffraction element that satisfies the expressions (1) and (2).

【0008】[0008]

【数2】 (Equation 2)

【0009】また、格子ピッチPを有する位相変調型の
回折格子が備えられ、格子ピッチPには第1領域、第2
領域、第3領域および第4領域がピッチ方向に連続して
配置され、第1領域を透過する光の位相と第3領域を透
過する光の位相とが等しくφ 1とされ、第2領域を透過
する光の位相と第4領域を透過する光の位相とが等しく
φ2(φ2≠φ1)とされ、かつ各領域の幅のPに対する
比率をW1、W2、W3、W4とすると、W1、W2、W3
4のうちの最小値Wminが入射光の波長λとの間にλ/
P≦Wmin≦0.15の関係を満たす回折素子を提供す
る。
A phase modulation type having a grating pitch P
A diffraction grating is provided, and the grating pitch P has a first area, a second area,
Region, the third region and the fourth region are continuous in the pitch direction.
And the phase of light passing through the first region and the phase of light passing through the third region.
The phase of the light passing through is equal to φ 1Through the second area
Phase of light passing through the fourth region is equal to that of light passing through the fourth region.
φTwoTwo≠ φ1) And the width P of each region with respect to P
W ratio1, WTwo, WThree, WFourThen W1, WTwo, WThree,
WFourMinimum value W ofminIs between the incident light wavelength λ and λ /
P ≦ WminProvide a diffraction element satisfying a relationship of ≦ 0.15
You.

【0010】また、光源と、光源からの出射光を光記録
媒体上に集光するための対物レンズと、集光されて光記
録媒体により反射された出射光を検出するため光検出器
とを備える光ヘッド装置において、光源と光記録媒体の
間の光路中または光検出器と光記録媒体の間の光路中に
上記の回折素子が設置されていることを特徴とする光ヘ
ッド装置を提供する。
A light source, an objective lens for condensing light emitted from the light source on an optical recording medium, and a photodetector for detecting light condensed and reflected by the optical recording medium are provided. An optical head device provided with the diffraction element, wherein the diffraction element is provided in an optical path between a light source and an optical recording medium or in an optical path between a photodetector and the optical recording medium. .

【0011】[0011]

【発明の実施の形態】[第1の実施態様]図1に示す本
態様では、透光性基板12の表面を凹凸形状に加工して
回折格子11を形成し、複数ビーム発生用の回折素子1
0としている。図2には、回折格子11の部分拡大図で
あり、回折格子11は格子ピッチPの周期構造を有し、
入射光に対して少なくとも±1次および±2次回折光を
発生する直線状の格子を有する回折格子である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] In this embodiment shown in FIG. 1, a diffraction grating 11 is formed by processing the surface of a light-transmitting substrate 12 into an uneven shape, and a diffraction element for generating a plurality of beams. 1
It is set to 0. FIG. 2 is a partially enlarged view of the diffraction grating 11, which has a periodic structure with a grating pitch P.
The diffraction grating has a linear grating that generates at least ± first-order and ± second-order diffracted lights with respect to incident light.

【0012】回折素子の格子ピッチPは空間的に連続し
て位置し、ピッチ方向に連続した幅がそれぞれa1
2、a3、a4の第1領域、第2領域、第3領域、第4
領域に別れている。それらの断面構造は、屈折率n、高
さdで幅a2および幅a4の矩形凸部分と、幅a1および
幅a3の矩形凹部分とを有し、また紙面に垂直方向に矩
形凹凸部が伸びている。すなわち、a1+a2+a3+a4
=Pであり、幅a1、a2、a 3、a4のPに対する比率は
1、W2、W3、W4となっており、回折格子11は屈折
率naの媒体(図1では空気)と接している。
The grating pitch P of the diffraction element is spatially continuous.
And continuous widths in the pitch direction are a1,
aTwo, AThree, AFourFirst, second, third and fourth regions
Divided into areas. Their cross-sectional structure has a refractive index n, high
Width d with dTwoAnd width aFourRectangular convex part and width a1and
Width aThreeAnd a rectangular recess in the direction perpendicular to the paper surface.
The irregularities are elongated. That is, a1+ ATwo+ AThree+ AFour
= P and width a1, ATwo, A Three, AFourIs the ratio of P to
W1, WTwo, WThree, WFourAnd the diffraction grating 11 is refracted.
Rate na(In FIG. 1, air).

【0013】幅a1の領域の透過光の位相と幅a3の領域
の透過光の位相とが等しくφ1とされ、幅a2の領域の透
過光の位相と幅a4の領域の透過光の位相とが等しくφ2
(φ2≠φ1)とされる。位相差φ=φ2−φ1を有する位
相変調型の回折格子が構成されている。このとき、位相
差φは入射光の波長をλとすると、φ=2π(n−
a)d/λと記述される。回折素子により発生する0
次回折光とm次回折光(mは正または負の整数)の回折
効率はそれぞれ(3)式および(4)式で近似的に記述
できる。
The phase of the transmitted light in the area of width a 1 and the phase of the transmitted light in the area of width a 3 are equal to φ 1, and the phase of the transmitted light in the area of width a 2 and the transmission of the light in the area of width a 4. The phase of light is equal to φ 2
2 ≠ φ 1 ). A phase modulation type diffraction grating having a phase difference φ = φ 2 −φ 1 is configured. At this time, assuming that the wavelength of the incident light is λ, the phase difference φ is φ = 2π (n−
n a ) d / λ. 0 generated by the diffraction element
The diffraction efficiencies of the order diffracted light and the m-th order diffracted light (m is a positive or negative integer) can be approximately described by equations (3) and (4), respectively.

【0014】[0014]

【数3】 (Equation 3)

【0015】ここで、A(m)は前述の(1)式で記述
される。
Here, A (m) is described by the above equation (1).

【0016】したがって、図2の回折格子11の構成に
おいて、0次回折光以外の回折光の回折効率I(m)
は、位相差φに依存する部分{2sin(φ/2)/
π}2が共通であり、この部分は回折次数mに依存せ
ず、W1、W2、W3、W4に依存する部分A(m)/m2
のみが回折次数mに依存する。したがって、二つの回折
効率の比をとるとφに依存する部分が消去されて、mを
変化させるときI(m)の変化はA(m)/m2の部分
のみの寄与となる。すなわち、m次回折光の回折効率が
ほぼ等しくなる複数ビーム発生用回折素子を実現するた
めには、A(m)/m2がほほ等しい値となるように
1、W2、W3、W4の比率を特定すればよい。
Therefore, in the configuration of the diffraction grating 11 shown in FIG. 2, the diffraction efficiency I (m) of the diffracted light other than the zero-order diffracted light is obtained.
Is a part that depends on the phase difference φ {2 sin (φ / 2) /
π} 2 is common, and this part does not depend on the diffraction order m, but depends on W 1 , W 2 , W 3 , and W 4. A (m) / m 2
Only depends on the diffraction order m. Therefore, when the ratio of the two diffraction efficiencies is taken, the portion dependent on φ is eliminated, and when changing m, the change of I (m) contributes only to the portion of A (m) / m 2 . That is, in order to realize a diffraction element for generating multiple beams in which the diffraction efficiencies of the m-th order diffracted light are substantially equal, W 1 , W 2 , W 3 , W 3 are set so that A (m) / m 2 becomes almost equal. What is necessary is just to specify the ratio of 4 .

【0017】具体的には、±1次回折光と±2次回折光
の回折効率比がほぼ等しい回折素子は、3.6<A(±
2)/A(±1)<4.4を満たす、W1、W2、W3
4の比率を有するように構成すればよい。好ましく
は、3.9<A(±2)/A(±1)<4.1である。
最も好ましくは、A(±2)/A(±1)=4であり、
この場合±1次回折光と±2次回折光の回折効率比が等
しくなる。
Specifically, a diffraction element in which the diffraction efficiency ratios of the ± 1st-order diffracted light and the ± 2nd-order diffracted light are almost equal is 3.6 <A (±
2) W 1 , W 2 , W 3 , satisfying /A(±1)<4.4
It may be configured to have a ratio of W 4. Preferably, 3.9 <A (± 2) / A (± 1) <4.1.
Most preferably, A (± 2) / A (± 1) = 4,
In this case, the diffraction efficiency ratio between the ± 1st-order diffracted light and the ± 2nd-order diffracted light becomes equal.

【0018】このように構成することにより、±1次回
折光と±2次回折光の回折効率比がほぼ等しい回折素子
が得られる。位相差φすなわち矩形凸部分の高さdに関
係なく、±1次および±2次回折光の回折効率はほぼ等
しくなり、高さdを調整することで0次回折光と±1次
および±2次回折光との効率比を任意に調整できる。
With this configuration, a diffraction element having diffraction efficiency ratios of ± 1st-order diffracted light and ± 2nd-order diffracted light that are substantially equal is obtained. Irrespective of the phase difference φ, that is, the height d of the rectangular convex portion, the diffraction efficiencies of the ± 1st-order and ± 2nd-order diffracted lights become almost equal, and by adjusting the height d, the 0th-order diffracted light is ± 1st-order and ± 2nd-order The efficiency ratio with folding light can be adjusted arbitrarily.

【0019】また、±1次回折光、±2次回折光および
±3次回折光の3種類の回折効率比が全てほぼ等しい回
折素子は、さらにA(±3)/A(±1)がほぼ9を満
たすW1、W2、W3、W4の比率とすればよい。3種類の
回折効率比が全てほぼ等しい例として、W1:W2
3:W4=0.23:0.13:0.21:0.43と
すればよい。
Further, a diffraction element in which all three types of diffraction efficiency ratios of ± 1st-order diffracted light, ± 2nd-order diffracted light, and ± 3rd-order diffracted light are almost equal, furthermore has A (± 3) / A (± 1) of approximately 9. W 1, W 2, W 3 , it may be the ratio of W 4 meet. As an example in which all three diffraction efficiency ratios are almost equal, W 1 : W 2 :
W 3 : W 4 may be set to 0.23: 0.13: 0.21: 0.43.

【0020】0次回折光、±1次回折光および±2次回
折光の全てを信号光として用い、±1次回折光と±2次
回折光の回折効率比が必ずしも等しくない場合、信号光
量(0次回折光、±1次回折光および±2次回折光の
和)を低下させないために±3次以上の高次回折光の回
折効率を低くする構成が好ましい。
When all of the 0th-order diffracted light, ± 1st-order diffracted light and ± 2nd-order diffracted light are used as signal light, and the diffraction efficiency ratios of the ± 1st-order diffracted light and ± 2nd-order diffracted light are not always equal, the signal light amount (0th-order diffracted light, In order not to lower (the sum of ± 1st-order diffracted light and ± 2nd-order diffracted light), it is preferable to reduce the diffraction efficiency of ± 3rd or higher order diffracted light.

【0021】上記においては、幅a2および幅a4の矩形
凸部分のみを高さdとしたが、幅a 1および幅a3の矩形
凹部分に光学的等方媒質を充填して、凸部分と同じ高さ
dとしてもよい。この場合も、幅a1および幅a3の領域
の透過光の位相は等しくφ2(φ2≠φ1)とする。
In the above, the width aTwoAnd width aFourRectangle
Although only the convex portion has the height d, the width a 1And width aThreeRectangle
Fill the concave part with an optically isotropic medium and set it at the same height as the convex part
d may be used. Also in this case, the width a1And width aThreeArea of
Phase of the transmitted light is equal to φTwoTwo≠ φ1).

【0022】[第2の実施態様]本態様の回折素子は、
格子ピッチPがそれぞれ幅a1、a2、a3、a4の第1領
域、第2領域、第3領域、第4領域に別れており、幅a
1、a2、a3、a4のPに対する比率がW1、W2、W3
4である直線状の格子を有し、位相変調型の回折格子
を備える。そして、回折素子は、幅a1の領域の透過光
の位相と幅a3の領域の透過光の位相とが等しくφ1とさ
れ、幅a2の領域の透過光の位相と幅a4の領域の透過光
の位相とが等しくφ2(φ2≠φ1)とされ、W1、W2
3、W4の最小値をWminとすると、回折素子への入射
光の波長λとの間にλ/P≦Wmin≦0.15の条件を
満たす。
[Second Embodiment] The diffraction element of this embodiment is
The lattice pitch P is divided into a first region, a second region, a third region, and a fourth region having widths a 1 , a 2 , a 3 , and a 4 , respectively.
1, a 2, a 3, a ratio W 1 for P of 4, W 2, W 3,
It has a linear grating of W 4 and has a phase modulation type diffraction grating. The phase of the transmitted light in the area of the width a 1 and the phase of the transmitted light in the area of the width a 3 are equal to φ 1, and the phase of the transmitted light in the area of the width a 2 and the phase of the width a 4 are equal. The phase of the transmitted light in the region is equal to φ 22 ≠ φ 1 ), and W 1 , W 2 ,
Assuming that the minimum value of W 3 and W 4 is W min , the condition of λ / P ≦ W min ≦ 0.15 is satisfied with the wavelength λ of the light incident on the diffraction element.

【0023】このように構成することにより、所望の次
数以外の回折光の発生を抑制し、安定して高効率の複数
ビームを発生できる。屈折率n、高さdで幅a2および
幅a4の矩形凸部分と、幅a1および幅a3の矩形凹部分
とを有する回折素子の場合、矩形凸部の壁面の影響で±
3次以上の回折光が増加して信号光量が低下するため、
λ/P≦Wの限定の効果がさらに高まって好ましい。
With this configuration, it is possible to suppress the generation of diffracted light beams of orders other than the desired order and to stably generate a plurality of highly efficient beams. Refractive index n, a rectangular convex portion having a width at the height d a 2 and a width a 4, when the diffractive element having a rectangular concave portion having a width a 1 and a width a 3, ± the influence of the wall surface of the rectangular protrusion
Since the third-order or higher order diffracted light increases and the signal light quantity decreases,
The effect of the limitation of λ / P ≦ W is further enhanced, which is preferable.

【0024】上記の二つの実施態様で述べた回折素子に
おいて、波長λ1または波長λ2(λ 1≠λ2)の二つの波
長の直線偏光が入射するとき、前記位相差φが例えば波
長λ 1に対して2πのほぼ整数倍となるよう、例えば矩
形凸部の高さをdに加工することにより、波長λ1の入
射光に対して回折光を発生しない透光性基板として機能
する。一方、波長λ2の入射光に対しては位相差φが2
πの非整数倍となるため前記二つの実施態様の回折素子
と同様に回折格子として機能する。
In the diffraction element described in the above two embodiments,
Where the wavelength λ1Or wavelength λTwo 1≠ λTwoTwo waves
When long linearly polarized light is incident, the phase difference φ
Long λ 1Is approximately an integral multiple of 2π
By processing the height of the convex portion to d, the wavelength λ1Entering
Functions as a light-transmitting substrate that does not generate diffracted light for incident light
I do. On the other hand, the wavelength λTwoHas a phase difference φ of 2
Diffraction element of the above two embodiments because it is a non-integer multiple of π
Functions as a diffraction grating.

【0025】例えば、矩形凸部の高さdをλ1/(n−
a)に加工すれば波長λ1の入射光に対して位相差φは
2πとなり、回折光は発生しない。一方、波長λ2の入
射光に対して位相差φは2π(λ1/λ2)となり、2π
の非整数倍となるから、回折光が発生する。
For example, the height d of the rectangular projection is λ 1 / (n−
If processed into n a ), the phase difference φ becomes 2π with respect to the incident light of wavelength λ 1 , and no diffracted light is generated. On the other hand, the phase difference φ becomes 2π (λ 1 / λ 2 ) with respect to the incident light having the wavelength λ 2 and becomes 2π.
Therefore, diffracted light is generated.

【0026】これらの回折素子は、例えば公知のガラス
基板表面の微細加工、ガラス基板上に形成された樹脂層
の微細加工、透明樹脂材料の金型成形加工などにより作
製できる。また、図1では透光性基板12と空気との界
面に凹凸形状の位相変調型の回折格子11を形成する場
合について説明したが、図3に示すように回折格子21
の凸部と屈折率の異なる屈折率naの光学的等方媒質で
ある透光性充填材23を用いて回折格子21の凹部を埋
め、透光性基板22と透光性基板24とで狭持した構成
の回折素子20としてもよい。
These diffractive elements can be manufactured by, for example, known fine processing of the surface of a glass substrate, fine processing of a resin layer formed on the glass substrate, and molding of a transparent resin material. Further, FIG. 1 illustrates the case where the uneven phase modulation type diffraction grating 11 is formed at the interface between the translucent substrate 12 and the air, but as shown in FIG.
The concave portions of the diffraction grating 21 are filled with a translucent filler 23 which is an optically isotropic medium having a refractive index n a having a different refractive index from that of the convex portions, and the translucent substrate 22 and the translucent substrate 24 are used. The diffraction element 20 may be configured to have a sandwiched configuration.

【0027】[第3の実施態様]図4は本発明の第3の
実施態様における偏光性の回折素子30の例の動作原理
を説明する、模式的断面図である。回折素子30は、常
光屈折率no、異常光屈折率ne(ne≠no)で光学軸が
透光性基板32の面に平行で一定方向に揃った複屈折性
材料層を凹凸形状の回折格子31に加工し、等方的な屈
折率nsの透光性充填材33を用いて複屈折性材料の凹
部分を埋め、透光性基板34を重ね、透光性基板32と
透光性基板34で狭持した構成としている。
[Third Embodiment] FIG. 4 is a schematic cross-sectional view for explaining the operation principle of an example of a polarizing diffractive element 30 according to a third embodiment of the present invention. Diffractive element 30, the ordinary refractive index n o, uneven birefringent material layer optical axes are aligned in a predetermined direction parallel to the surface of the transparent substrate 32 with extraordinary refractive index n e (n e ≠ n o ) The diffraction grating 31 is processed into a shape, and the concave portion of the birefringent material is filled with a light-transmitting filler 33 having an isotropic refractive index n s , a light-transmitting substrate 34 is overlapped, and a light-transmitting substrate 32 is formed. And a light-transmitting substrate 34.

【0028】屈折率nsが複屈折性材料層の常光屈折率
oとほぼ等しい場合、第1の直線偏光の入射光を複屈
折性材料に対する常光屈折率の偏光とすれば、凹凸形状
の回折格子と透光性充填材は同じ屈折率層に相当するた
め回折光は生じない(図4(a))。一方、第1の直線
偏光と直交する偏光方向を有する第2の直線偏光は、複
屈折性材料の異常光屈折率の偏光に対応するため、凸部
分の透過光と凹部分の透過光との位相差φは入射光の波
長をλとすると、φ=2π(ne−ns)d/λとなり回
折光が発生する(図4(b))。
[0028] When the refractive index n s is substantially equal to the ordinary refractive index n o of the birefringent material layer, if the incident light of the first linear polarized light and the polarization of the ordinary refractive index with respect to the birefringent material, the irregularities Since the diffraction grating and the translucent filler correspond to the same refractive index layer, no diffracted light is generated (FIG. 4A). On the other hand, the second linearly polarized light having a polarization direction orthogonal to the first linearly polarized light corresponds to the polarized light having the extraordinary refractive index of the birefringent material. When the phase difference phi and the wavelength of the incident light λ, φ = 2π (n e -n s) d / λ becomes diffracted light is generated (Figure 4 (b)).

【0029】ここで、凹凸形状の回折格子31の格子ピ
ッチPはその幅がPに対してW1、W2、W3、W4の比率
で順次に区分けされ、第1の実施態様または第2の実施
態様で述べた回折素子と同様の比率とすることにより、
異常光屈折率の入射偏光に対してのみ所望の回折光を発
生し、常光屈折率の偏光の入射光に対しては回折光を発
生しない、偏光性の複数ビーム発生用回折素子30が得
られる。
Here, the grating pitch P of the concave-convex shaped diffraction grating 31 is sequentially divided at a ratio of W 1 , W 2 , W 3 , and W 4 with respect to P. By setting the same ratio as the diffraction element described in the second embodiment,
A diffractive element 30 for generating a plurality of polarized light beams is obtained, which generates a desired diffracted light only for incident polarized light having an extraordinary refractive index and does not generate diffracted light for incident light having an ordinary refractive index. .

【0030】また、回折素子30の光入射側に入射光の
偏光方向を90゜回転するスイッチング手段を導入する
ことにより、回折素子30の出射光を単ビームと複数ビ
ームとにスイッチングできる。スイッチング手段として
は、1/2波長板の出入・切替方式や、液晶や電気光学
結晶などの複屈折材料を用いて、電気的に1/2波長板
の機能のオン・オフ制御をする方式などが挙げられる。
Further, by introducing a switching means for rotating the polarization direction of the incident light by 90 ° on the light incident side of the diffraction element 30, the output light of the diffraction element 30 can be switched between a single beam and a plurality of beams. As the switching means, a method of switching in and out of a half-wave plate, a method of electrically turning on and off a function of a half-wave plate by using a birefringent material such as a liquid crystal or an electro-optic crystal, and the like. Is mentioned.

【0031】回折素子の透光性基板には例えば、ガラ
ス、プラスティック、光学結晶などの基板を用いること
ができ、透光性基板上に形成して凸部とする材料には例
えば高分子液晶、延伸したポリカ−ボネ−トフィルム、
複屈折性光学結晶などを用いることができ、さらに凹部
の透光性充填材には、例えばアクリル系、エポキシ系、
ウレタン系の接着材などを用いることができる。
As the light-transmitting substrate of the diffraction element, for example, a substrate such as glass, plastic, or optical crystal can be used. Stretched polycarbonate film,
Birefringent optical crystals and the like can be used, and further, as the translucent filler for the concave portion, for example, acrylic, epoxy,
A urethane-based adhesive or the like can be used.

【0032】[第4の実施態様]上記の三つの実施態様
で述べた本発明の回折素子を光ヘッド装置に搭載した一
例の側面図を図5に示す。レーザ光源2から出射した光
は、回折素子1を透過し、ビームスプリッタ3により反
射され、コリメートレンズ4により平行光化されて、対
物レンズ5により光ディスク6の情報記録面に集光され
る。情報記録面で反射された光は再び対物レンズ5およ
びコリメートレンズ6を透過し、ビームスプリッタ3を
透過して光検出器7の受光面に集光される。
Fourth Embodiment FIG. 5 shows a side view of an example in which the diffraction element of the present invention described in the above three embodiments is mounted on an optical head device. Light emitted from the laser light source 2 passes through the diffraction element 1, is reflected by the beam splitter 3, is collimated by the collimator lens 4, and is condensed on the information recording surface of the optical disc 6 by the objective lens 5. The light reflected on the information recording surface again passes through the objective lens 5 and the collimating lens 6, passes through the beam splitter 3, and is condensed on the light receiving surface of the photodetector 7.

【0033】回折素子1により回折されずに透過した0
次回折光は情報記録面のトラック上に集光され、また回
折された±1次回折光と±2次回折光は情報記録面の0
次回折光の集光点があるトラックを挟んで各々隣り合う
トラック近傍に集光され、情報記録面で反射された後、
光検出器7の受光面上に集光される。
The 0 transmitted through the diffraction element 1 without being diffracted
The second order diffracted light is focused on the track on the information recording surface, and the diffracted ± 1st order diffracted light and ± 2nd order diffracted light are
After being condensed in the vicinity of tracks adjacent to each other across the track where the focal point of the next diffracted light is located and reflected by the information recording surface,
The light is focused on the light receiving surface of the photodetector 7.

【0034】ここで、本発明の回折素子により発生した
0次回折光をメインビームとして例えばトラック上の信
号の再生または信号の記録に用い、±1次回折光と±2
次回折光をサブビームとして例えば差動プッシュプル法
によるトラッキング信号検出に用いる。このことにより
トラッキング精度が向上し、CD−R、CD−RWなど
の記録用光ディスクにおいて、光ディスクを高速回転し
て記録速度を高速化できる。
Here, the 0th-order diffracted light generated by the diffractive element of the present invention is used as a main beam, for example, for reproducing a signal on a track or recording a signal.
The next-order diffracted light is used as a sub-beam for tracking signal detection by, for example, a differential push-pull method. As a result, the tracking accuracy is improved, and in a recording optical disk such as a CD-R or a CD-RW, the optical disk can be rotated at a high speed to increase the recording speed.

【0035】他の用途として、本発明の回折素子により
生成された0次回折光、±1次回折光および±2次回折
光、さらに使用状況に応じ±3次回折光の合計7本の回
折光を、情報記録面の各々隣り合う複数のトラック上に
集光し、情報記録面で反射された光を光検出器7の受光
面上に集光することにより、複数トラックの情報を並列
に読み出すことができる。その結果、高速再生が実現す
る。
As another application, a total of seven diffracted lights, ie, the 0th-order diffracted light, ± 1st-order diffracted light and ± 2nd-order diffracted light generated by the diffractive element of the present invention, and ± 3rd-order diffracted light depending on the use situation, By condensing light on a plurality of tracks adjacent to each other on the recording surface and condensing the light reflected on the information recording surface on the light receiving surface of the photodetector 7, information on the plurality of tracks can be read in parallel. . As a result, high-speed reproduction is realized.

【0036】レーザ光源として2波長レーザを用いる場
合、本発明の回折素子を用いることにより、一方の波長
光に対してのみ複数ビームを発生する波長選択性の回折
素子となるため、他方の波長光に対しては回折効率の低
下を招かず、また迷光も発生しない。したがって、使用
波長の異なるDVDとCDの光ディスクに対しても安定
した信号検出が行える。
When a two-wavelength laser is used as a laser light source, the use of the diffractive element of the present invention results in a wavelength-selective diffractive element that generates a plurality of beams for only one wavelength light. Does not cause a reduction in diffraction efficiency and does not generate stray light. Therefore, stable signal detection can be performed for DVD and CD optical disks having different wavelengths.

【0037】本発明の回折素子において透過光の偏光状
態を変化させる位相板を一体化してもよい。位相板とし
て例えば入射直線偏光を円偏光に変換する1/4波長板
を用いることにより、光ヘッド装置において安定した光
ディスクの記録および再生ができる。これは、レーザ光
の出射直線偏光が1/4波長板を透過して円偏光となっ
て情報記録面上に集光され、情報記録面で反射された戻
り光は再び1/4波長板を透過することでレーザ発振光
の直線偏光と直交する偏光面を有する直線偏光となって
レーザ発光点への戻り光となるため、レーザ発振光と戻
り光との干渉が抑えられて発振出力変動が低減できるた
めである。
In the diffraction element of the present invention, a phase plate for changing the polarization state of transmitted light may be integrated. By using, for example, a quarter-wave plate for converting incident linearly polarized light into circularly polarized light as the phase plate, stable recording and reproduction of the optical disk can be performed in the optical head device. This is because the linearly-polarized light emitted from the laser beam passes through the quarter-wave plate, becomes circularly polarized light, and is condensed on the information recording surface, and the return light reflected by the information recording surface again passes through the quarter-wave plate. The transmitted light becomes linearly polarized light having a polarization plane orthogonal to the linearly polarized light of the laser oscillation light, and becomes return light to the laser emission point. Therefore, interference between the laser oscillation light and the return light is suppressed, and oscillation output fluctuation is reduced. This is because it can be reduced.

【0038】位相板として、例えば水晶などの複屈折光
学結晶を用いる場合は、回折素子を構成する透光性基板
として複屈折光学結晶を用いることができる。また、位
相板としてポリカーボネートを延伸した複屈折フィルム
や配向の揃った高分子液晶層などの位相差発生機能を有
する有機物薄膜を用いてもよい。
When a birefringent optical crystal such as quartz is used as the phase plate, a birefringent optical crystal can be used as the light-transmitting substrate constituting the diffraction element. Further, as the phase plate, an organic thin film having a phase difference generating function such as a birefringent film obtained by stretching polycarbonate or a polymer liquid crystal layer having a uniform orientation may be used.

【0039】ポリカーボネートの位相板の場合、図6に
示すように位相板45を接着剤46用いて透光性基板4
2と44で狭持する構成とすると透過光の波面収差を劣
化させないため好ましい。また、高分子液晶を位相板と
して用いる場合は、接着剤46を用いないで高分子化す
る前の液晶モノマーを、内面に配向処理が施され、周辺
部がシールされた透光性基板42と44の間に注入した
後、重合硬化して高分子液晶層とする。41は透光性基
板42上に形成された回折格子である。
In the case of a phase plate made of polycarbonate, as shown in FIG.
A configuration in which the wavefront aberration is held between 2 and 44 is preferable because the wavefront aberration of the transmitted light is not deteriorated. When a polymer liquid crystal is used as the phase plate, the liquid crystal monomer before being polymerized without using the adhesive 46 is subjected to an alignment treatment on the inner surface, and the light transmitting substrate 42 having a peripheral portion sealed. After injecting the mixture between the layers 44, the mixture is polymerized and cured to form a polymer liquid crystal layer. Reference numeral 41 denotes a diffraction grating formed on a light-transmitting substrate 42.

【0040】有機物薄膜の複屈折材料を用いると、水晶
位相板に比べて入射光の入射角度の相違による位相差変
動が少なく、一定で均一な位相差を生成できるため好ま
しい。
The use of a birefringent material of an organic thin film is preferable because a phase difference variation due to a difference in the incident angle of incident light is small and a uniform and uniform phase difference can be generated as compared with a quartz phase plate.

【0041】[0041]

【実施例】「例1」まず図6を用いて、本例の回折素子
を説明する。透光性基板42であるガラス基板上に屈折
率n=1.45のSiO2膜を膜厚330nmとなるよ
う成膜した後、フォトリソグラフィーとエッチングの技
術により周期的にSiO2膜を除去するよう凹凸形状に
加工し、空気と界面をなす回折格子41を作製した。
Example 1 First, a diffraction element of this example will be described with reference to FIG. After the SiO 2 film having a refractive index n = 1.45 on a glass substrate was formed so that a thickness 330nm is light-transmissive substrate 42, periodically removing the SiO 2 film by photolithography and etching techniques The diffraction grating 41 was formed into an uneven shape so as to form an interface with air.

【0042】回折格子41の格子ピッチPを30μmと
し、格子ピッチPを幅a1、a2、a 3、a4の順に4分割
し、高さd=297nmの矩形凸部を幅a2=9.6μ
mおよび幅a4=10.2μmで、矩形凹部分を幅a1
1.5μmおよび幅a3=8.7μmとした。すなわ
ち、各幅の格子ピッチPに対する比率W1:W2:W3
4=0.05:0.32:0.29:0.34となっ
ており、このとき、(1)式よりA(2)/A(1)は
4である。また、比率W1と比率W3の領域を透過する光
の位相はそれぞれ等しく、比率W2と比率W4の領域を透
過する光の位相はそれぞれ等しい。
The grating pitch P of the diffraction grating 41 is set to 30 μm.
And the grid pitch P is set to the width a1, ATwo, A Three, AFourDivided in the order of
And a rectangular protrusion having a height d = 297 nm is converted to a width a.Two= 9.6μ
m and width aFour= 10.2 μm and the width of the rectangular recess1=
1.5 μm and width aThree= 8.7 μm. Sand
That is, the ratio W of each width to the lattice pitch P1: WTwo: WThree:
WFour= 0.05: 0.32: 0.29: 0.34
At this time, from equation (1), A (2) / A (1) is
4. Also, the ratio W1And the ratio WThreeLight passing through the area
Have the same phase and the ratio WTwoAnd the ratio WFourThrough the area
The phases of the passing light are the same.

【0043】この回折格子41に波長λが785nmの
レーザ光が入射すると、約72%が0次回折光として透
過し、約5.2%の±1次および±2次回折光が発生す
る5ビーム回折素子が得られた。さらに、入射直線偏光
を円偏光に変換する位相板45としてポリカーボネート
製の1/4波長板を用い、1/4波長板を接着剤46に
より上下2枚のガラス基板で狭持して固定した。また、
比率W1、W2、W3、W4の最小値Wmin=W1は0.05
であって0.15以下となっており、λ/P=0.02
6であるから、λ/P<W1<0.15の関係式が成立
している。
When a laser beam having a wavelength λ of 785 nm is incident on the diffraction grating 41, about 72% is transmitted as the 0th-order diffracted light and about 5.2% of ± 1st and ± 2nd-order diffracted lights are generated. An element was obtained. Further, a quarter-wave plate made of polycarbonate was used as a phase plate 45 for converting incident linearly polarized light into circularly polarized light, and the quarter-wave plate was held between two upper and lower glass substrates with an adhesive 46 and fixed. Also,
The minimum value W min = W 1 of the ratios W 1 , W 2 , W 3 , W 4 is 0.05
Λ / P = 0.02
6, the relational expression of λ / P <W 1 <0.15 holds.

【0044】このようにして得られた回折素子40を、
レーザ光源2である波長785nmの高出力半導体レー
ザが搭載された、図5に示す光ヘッド装置の半導体レー
ザの光出射側に配置し、トラッキング誤差信号検出用の
複数ビーム発生用回折素子として用いた。その結果、C
D−R、CD−RWなどの記録用光ディスクにおいて、
5ビームを用いた差動プッシュプル法によりトラッキン
グ精度が向上し、高速の記録および再生ができた。ま
た、図6に示すように1/4波長板を一体化したためレ
ーザ発振出力に変動がなく、安定した光ディスクの記録
および再生が実現した。
The diffraction element 40 thus obtained is
The optical head device shown in FIG. 5 on which a high-output semiconductor laser having a wavelength of 785 nm as the laser light source 2 was mounted was disposed on the light emission side of the semiconductor laser and used as a diffraction element for generating a plurality of beams for detecting a tracking error signal. . As a result, C
In recording optical discs such as DR and CD-RW,
Tracking accuracy was improved by the differential push-pull method using five beams, and high-speed recording and reproduction could be performed. Further, as shown in FIG. 6, since the 1/4 wavelength plate was integrated, there was no change in the laser oscillation output, and stable recording and reproduction of the optical disk were realized.

【0045】図5の光ヘッド装置において、CD用の波
長790nmのレーザ光源とDVD用の波長650nm
のレーザ光源とを用い、ダイクロイックミラーにより二
つの波長を合波することにより、DVD用の光ディスク
に対しても記録および再生ができる光ヘッド装置を構成
できる。この場合、DVD用のレーザ光源とダイクロイ
ックミラーとの間に本発明の回折素子を別途配置するこ
とにより、DVD用の光ディスクに対しても高速の記録
および再生ができる光ヘッド装置となる。
In the optical head device shown in FIG. 5, a laser light source having a wavelength of 790 nm for CD and a wavelength of 650 nm for DVD are used.
By combining the two wavelengths with a dichroic mirror using the above laser light source, an optical head device capable of recording and reproducing data even on a DVD optical disk can be configured. In this case, by separately arranging the diffraction element of the present invention between the laser light source for DVD and the dichroic mirror, an optical head device capable of performing high-speed recording and reproduction on an optical disk for DVD is obtained.

【0046】本発明の回折素子では、A(m)/m
2(ただし、m≠0)ほぼ等しい値となるよう格子ピッ
チを幅の比率W1:W2:W3:W4が保たれていれば、位
相差φすなわち凹凸形状に加工されたSiO2膜の膜厚
に関係なく、m次回折光の回折効率はほぼ等しくなる。
SiO2膜の膜厚を調整することで0次回折光とm次回
折光(m≠0)との効率比を任意に調整することができ
る。
In the diffraction element of the present invention, A (m) / m
2 (where m ≠ 0), if the ratio of the widths of the lattice pitches W 1 : W 2 : W 3 : W 4 is maintained so as to be substantially equal, the phase difference φ, that is, SiO 2 processed into an uneven shape. Irrespective of the thickness of the film, the diffraction efficiency of the m-th order diffracted light is almost equal.
By adjusting the thickness of the SiO 2 film, the efficiency ratio between the 0th-order diffracted light and the mth-order diffracted light (m ≠ 0) can be arbitrarily adjusted.

【0047】0次回折光、±1次回折光および±2次回
折光を信号光として用いる5ビーム発生用回折素子にお
いて、SiO2膜の膜厚を変えて0次回折光とm次回折
光の効率比(m=±1、±2)を1、2、3、4とした
場合の設計例を表1にまとめた。合計の効率は0次回折
光、±1次回折光および±2次回折光の総和を示す。
The zero-order diffracted light, ± 1 in 5 beam generating diffraction element using diffracted light and ± 2-order diffracted light as the signal light, by changing the thickness of the SiO 2 film 0 efficiency ratio of the diffracted light and the m-order diffracted light (m = ± 1, ± 2) are 1, 2, 3, and 4 in Table 1. The total efficiency indicates the sum of the 0th order diffracted light, ± 1st order diffracted light and ± 2nd order diffracted light.

【0048】[0048]

【表1】 [Table 1]

【0049】「例2」まず図7を用いて本例の回折素子
を説明する。配向処理された配向膜が形成された透光性
基板52であるガラス基板上に液晶モノマー液を厚さが
一定となるよう塗布した後、紫外線を照射して重合固化
することにより、常光屈折率no=1.55、異常光屈
折率ne=1.60で層厚が2.97μmの複屈折性を
有する高分子液晶層を形成した。
Example 2 First, the diffraction element of this example will be described with reference to FIG. A liquid crystal monomer solution is applied to a glass substrate, which is a translucent substrate 52 on which an alignment film subjected to an alignment treatment is formed, so that the liquid crystal monomer liquid has a constant thickness, and is irradiated with ultraviolet rays to be polymerized and solidified, thereby obtaining an ordinary light refractive index. n o = 1.55, layer thickness in the extraordinary refractive index n e = 1.60 was formed a polymer liquid crystal layer having a birefringence of 2.97Myuemu.

【0050】次に、フォトリソグラフィーとエッチング
の技術により高分子液晶層を凹凸形状の回折格子51に
加工し、等方的な屈折率ns=1.55の透光性充填材
53を用いて高分子液晶層の凹部を埋め、接着剤56を
用いてポリカーボネートの位相板55である1/4波長
板と透光性基板54であるガラス基板とを接着して回折
素子50とした。格子ピッチPおよび格子ピッチPの分
割構造など他の構成は例1と同じとした。
Next, the polymer liquid crystal layer is processed into a concave / convex diffraction grating 51 by photolithography and etching techniques, and a translucent filler 53 having an isotropic refractive index n s = 1.55 is used. The concave portion of the polymer liquid crystal layer was filled, and a quarter-wave plate as a polycarbonate phase plate 55 and a glass substrate as a translucent substrate 54 were bonded using an adhesive 56 to form a diffraction element 50. Other configurations such as the lattice pitch P and the division structure of the lattice pitch P were the same as those in Example 1.

【0051】この回折素子50に波長λ1が655nm
のDVD用レーザ光が常光屈折率の偏光として入射する
と、高分子液晶層の常光屈折率noと透光性充填材の屈
折率nsが等しいため、回折素子50は位相変調型の回
折格子として機能せず回折光は発生しない。一方、波長
λ2が785nmのCD用レーザ光が異常光屈折率の偏
光として入射すると、高分子液晶層の異常光屈折率ne
と光性充填材との屈折率nsが等しくないため、回折素
子50は位相差φ=2π(ne−ns)d/λ2の回折格
子として機能し、回折光が発生する。
This diffraction element 50 has a wavelength λ 1 of 655 nm.
When the DVD laser beam is incident as a polarization of the ordinary refractive index, the refractive index n s of the ordinary refractive index n o and the transparent filler of the polymer liquid crystal layer are equal, the diffraction element 50 is a diffraction grating of a phase modulation type And does not generate diffracted light. On the other hand, the wavelength λ when the 2 CD laser beam 785nm is incident as a polarization of the extraordinary refractive index of the polymer liquid crystal layer extraordinary refractive index n e
And the refractive index n s of the optical filler are not equal, the diffraction element 50 functions as a diffraction grating of the phase difference φ = 2π (n e -n s ) d / λ 2, diffracted light is generated.

【0052】このとき、CD用レーザ光に対してのみ、
約72%が0次回折光として透過し、約5.2%の±1
次および±2次回折光が発生する波長選択性の複数ビー
ム発生用の回折素子が得られた。
At this time, only for the laser light for CD,
About 72% is transmitted as the 0th-order diffracted light, and about 5.2% ± 1.
A wavelength-selective diffraction element for generating a plurality of beams, in which second- and second-order diffracted lights are generated, was obtained.

【0053】図5に示す光ヘッド装置において、レーザ
光源2として波長655nmと波長785nmの光を出
射する2波長レーザを用いたので、波長785nmの波
長光に対してのみ複数ビームを生成する波長選択性の回
折素子として作用した。したがって、CDの記録用光デ
ィスクに対しては複数ビームを用いることにより高速記
録が実現し、DVDの再生用光ディスクに対しては従来
の単一ビームを用いた再生信号検出方式が適用できた。
In the optical head device shown in FIG. 5, a two-wavelength laser that emits light having a wavelength of 655 nm and a wavelength of 785 nm is used as the laser light source 2, so that a wavelength selection for generating a plurality of beams only for the light having a wavelength of 785 nm. Acted as a diffractive element. Therefore, high-speed recording was realized by using a plurality of beams for a CD recording optical disk, and a conventional reproduction signal detection method using a single beam was applicable to a DVD reproduction optical disk.

【0054】[0054]

【発明の効果】以上説明したように、本発明の回折素子
を用いれば0次回折光以外の±1次回折光と±2次回折
光の回折効率比を調整した複数ビーム発生用の回折素子
が実現できる。このような回折素子をCD−R、CD−
RWなどの記録用の光ヘッド装置において、差動プッシ
ュプル法を用いたトラッキング制御用の複数ビーム発生
用の回折素子として用いることにより、光ディスク回転
の高速化により記録速度を高速化した場合でも、正確な
トラッキング制御ができ、高速記録が実現できる。
As described above, by using the diffraction element of the present invention, it is possible to realize a diffraction element for generating a plurality of beams in which the diffraction efficiency ratio of ± 1st-order diffraction light and ± 2nd-order diffraction light other than the 0th-order diffraction light is adjusted. . Such a diffraction element is referred to as CD-R, CD-
In an optical head device for recording such as RW, by using as a diffraction element for generating a plurality of beams for tracking control using a differential push-pull method, even when the recording speed is increased by increasing the rotation speed of the optical disk, Accurate tracking control can be performed, and high-speed recording can be realized.

【0055】また、このような回折素子を再生用の光ヘ
ッド装置において、並列トラックの信号読み出し用の複
数ビーム発生用の回折素子として用いることにより、複
数のトラック記録信号を同時に高精度で読み出すことが
できるため、高速再生が実現できる。
Further, by using such a diffractive element as a diffractive element for generating a plurality of beams for reading signals of parallel tracks in a reproducing optical head device, it is possible to simultaneously read a plurality of track recording signals with high precision. Therefore, high-speed reproduction can be realized.

【0056】CD用の波長790nmの半導体レーザと
DVD用の波長650nmの半導体レーザからなる2波
長レーザ光源を搭載した光ヘッド装置において、2波長
レーザからの波長の異なる光が回折素子に入射する場
合、一方の波長の入射光を回折せずに透過し、他方の波
長の入射光には複数ビーム発生用の回折格子として作用
するため、光利用効率の優れた波長選択性の回折素子と
なる。したがって、DVDおよびCDの信号検出が高速
かつ安定して行える。さらに、1/4波長板を一体化し
た素子構成とすることにより、光ヘッド装置においてレ
ーザ発振出力変動が低減し、安定した光ディスクの記録
および再生が実現する。
In an optical head device equipped with a two-wavelength laser light source including a semiconductor laser having a wavelength of 790 nm for a CD and a semiconductor laser having a wavelength of 650 nm for a DVD, light beams having different wavelengths from the two-wavelength laser are incident on a diffraction element. Since the incident light of one wavelength is transmitted without being diffracted, and the incident light of the other wavelength acts as a diffraction grating for generating a plurality of beams, it becomes a wavelength-selective diffraction element having excellent light use efficiency. Therefore, DVD and CD signal detection can be performed quickly and stably. Further, by adopting an element configuration in which the quarter-wave plate is integrated, fluctuations in laser oscillation output in the optical head device are reduced, and stable recording and reproduction of the optical disk are realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の回折素子の一例を示す概念的側面図。FIG. 1 is a conceptual side view showing an example of a diffraction element of the present invention.

【図2】図1の回折格子の部分拡大図。FIG. 2 is a partially enlarged view of the diffraction grating of FIG.

【図3】本発明の回折素子の他の例を示す概念的側面
図。
FIG. 3 is a conceptual side view showing another example of the diffraction element of the present invention.

【図4】本発明の回折素子の動作原理を説明する側面図
で、(a)常光屈折率の偏光が入射する場合、(b)異
常光屈折率の偏光が入射する場合。
FIGS. 4A and 4B are side views for explaining the operation principle of the diffraction element of the present invention, in which (a) polarized light having an ordinary refractive index is incident, and (b) polarized light having an extraordinary refractive index is incident.

【図5】本発明の光ヘッド装置の側面図。FIG. 5 is a side view of the optical head device of the present invention.

【図6】本発明の回折素子で位相板が一体化された一例
を示す側面図。
FIG. 6 is a side view showing an example in which a phase plate is integrated with the diffraction element of the present invention.

【図7】本発明の回折素子で位相板が一体化された他の
例を示す側面図。
FIG. 7 is a side view showing another example in which a phase plate is integrated with the diffraction element of the present invention.

【図8】従来の3ビーム発生用の回折格子の側面図。FIG. 8 is a side view of a conventional diffraction grating for generating three beams.

【符号の説明】[Explanation of symbols]

1、10、20、30、40、50:回折素子 11、21、31、41、51、61:回折格子 12、22、24、32、34、42、44、52、5
4、62:透光性基板 23、33、53:透光性充填剤 46、56:接着剤 45、55:位相板 2:レーザ光源 3:ビームスプリッタ 4:コリメートレンズ 5:対物レンズ 6:光ディスク 7:光検出器
1, 10, 20, 30, 40, 50: Diffraction element 11, 21, 31, 41, 51, 61: Diffraction grating 12, 22, 24, 32, 34, 42, 44, 52, 5
4, 62: translucent substrate 23, 33, 53: translucent filler 46, 56: adhesive 45, 55: phase plate 2: laser light source 3: beam splitter 4: collimating lens 5: objective lens 6: optical disk 7: Photodetector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 龍一郎 福島県郡山市待池台1−8 郡山西部第二 工業団地 旭硝子郡山電材株式会社内 Fターム(参考) 2H049 AA03 AA13 AA57 AA65 5D118 AA13 BA01 CD03 DA16 DA33 5D119 AA28 BA01 EC41 JA22 JA24 LB05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ryuichiro Goto 1-8 Machiikedai, Koriyama-shi, Fukushima Pref. DA16 DA33 5D119 AA28 BA01 EC41 JA22 JA24 LB05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】格子ピッチPを有する位相変調型の回折格
子が備えられ、格子ピッチPには第1領域、第2領域、
第3領域および第4領域がピッチ方向に連続して配置さ
れ、第1領域を透過する光の位相と第3領域を透過する
光の位相とが等しくφ1とされ、第2領域を透過する光
の位相と第4領域を透過する光の位相とが等しくφ
2(φ2≠φ1)とされ、各領域の幅のPに対する比率を
順にW1、W2、W3、W4、さらに回折次数をm(mは正
または負の整数)とすると、(1)式および(2)式を
満足する回折素子。 【数1】
1. A phase modulation type diffraction grating having a grating pitch P, wherein a first area, a second area,
The third region and fourth region are arranged in succession in the pitch direction, and the phase of the light transmitted through the phase and third regions of the light transmitted through the first region is equally phi 1, passes through the second region The phase of the light is equal to the phase of the light transmitted through the fourth region, φ
22 ≠ φ 1 ), and the ratio of the width of each region to P is W 1 , W 2 , W 3 , W 4 , and the diffraction order is m (m is a positive or negative integer). A diffraction element satisfying the expressions (1) and (2). (Equation 1)
【請求項2】格子ピッチPを有する位相変調型の回折格
子が備えられ、格子ピッチPには第1領域、第2領域、
第3領域および第4領域がピッチ方向に連続して配置さ
れ、第1領域を透過する光の位相と第3領域を透過する
光の位相とが等しくφ1とされ、第2領域を透過する光
の位相と第4領域を透過する光の位相とが等しくφ
2(φ2≠φ1)とされ、かつ各領域の幅のPに対する比
率をW1、W2、W3、W4とすると、W1、W2、W3、W4
のうちの最小値Wminが入射光の波長λとの間にλ/P
≦Wmin≦0.15の関係を満たす回折素子。
2. A phase modulation type diffraction grating having a grating pitch P, wherein the grating pitch P includes a first region, a second region,
The third region and fourth region are arranged in succession in the pitch direction, and the phase of the light transmitted through the phase and third regions of the light transmitted through the first region is equally phi 1, passes through the second region The phase of the light is equal to the phase of the light transmitted through the fourth region, φ
22 ≠ φ 1 ) and the ratio of the width of each region to P is W 1 , W 2 , W 3 , W 4 , W 1 , W 2 , W 3 , W 4
Lambda / P between the wavelength lambda minimum value W min of the incident light of the
A diffraction element that satisfies the relationship ≦ W min ≦ 0.15.
【請求項3】第1の直線偏光方向を有する入射光に対し
ては回折機能を示さず透過し、第1の直線偏光方向と直
交する偏光方向の第2の直線偏光方向の入射光に対して
は回折機能を示す請求項1または2記載の回折素子。
3. An incident light having a first linear polarization direction is transmitted without exhibiting a diffractive function, and an incident light having a second linear polarization direction perpendicular to the first linear polarization direction is transmitted. 3. A diffraction element according to claim 1, wherein the diffraction element has a diffraction function.
【請求項4】光源と、光源からの出射光を光記録媒体上
に集光するための対物レンズと、集光されて光記録媒体
により反射された出射光を検出するため光検出器とを備
える光ヘッド装置において、光源と光記録媒体の間の光
路中または光検出器と光記録媒体の間の光路中に請求項
1、2または3記載の回折素子が設置されていることを
特徴とする光ヘッド装置。
4. A light source, an objective lens for condensing light emitted from the light source on an optical recording medium, and a photodetector for detecting light condensed and reflected by the optical recording medium. An optical head device provided with the diffraction element according to claim 1, 2, or 3 in an optical path between a light source and an optical recording medium or in an optical path between a photodetector and an optical recording medium. Optical head device.
JP2001151446A 2001-05-21 2001-05-21 Diffraction element and optical head device Pending JP2002341125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151446A JP2002341125A (en) 2001-05-21 2001-05-21 Diffraction element and optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151446A JP2002341125A (en) 2001-05-21 2001-05-21 Diffraction element and optical head device

Publications (1)

Publication Number Publication Date
JP2002341125A true JP2002341125A (en) 2002-11-27

Family

ID=18996289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151446A Pending JP2002341125A (en) 2001-05-21 2001-05-21 Diffraction element and optical head device

Country Status (1)

Country Link
JP (1) JP2002341125A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316517A (en) * 2006-05-29 2007-12-06 Toppan Printing Co Ltd Diffraction grating
JP2009276749A (en) * 2008-05-15 2009-11-26 Northrop Grumman Space & Mission Systems Corp Diffractive optical member and method of manufacturing the same
JP2010519588A (en) * 2007-02-23 2010-06-03 ナノコンプ リミテッド Diffraction grating structure and design method of the diffraction grating structure
US11747528B2 (en) 2018-08-31 2023-09-05 Samsung Electronics Co., Ltd. Diffraction grating device, method of manufacturing the same, and optical apparatus including the diffraction grating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323110A (en) * 1992-05-22 1993-12-07 Hitachi Koki Co Ltd Multibeam generating element
JP2001014714A (en) * 1999-06-28 2001-01-19 Matsushita Electric Ind Co Ltd Optical element and optical disk device
JP2001034985A (en) * 1999-07-21 2001-02-09 Kenwood Corp Optical pickup device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323110A (en) * 1992-05-22 1993-12-07 Hitachi Koki Co Ltd Multibeam generating element
JP2001014714A (en) * 1999-06-28 2001-01-19 Matsushita Electric Ind Co Ltd Optical element and optical disk device
JP2001034985A (en) * 1999-07-21 2001-02-09 Kenwood Corp Optical pickup device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316517A (en) * 2006-05-29 2007-12-06 Toppan Printing Co Ltd Diffraction grating
JP2010519588A (en) * 2007-02-23 2010-06-03 ナノコンプ リミテッド Diffraction grating structure and design method of the diffraction grating structure
JP2009276749A (en) * 2008-05-15 2009-11-26 Northrop Grumman Space & Mission Systems Corp Diffractive optical member and method of manufacturing the same
JP2012215904A (en) * 2008-05-15 2012-11-08 Northrop Grumman Systems Corp Method of manufacturing diffractive optical member
JP2016118805A (en) * 2008-05-15 2016-06-30 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Diffractive optical element
US11747528B2 (en) 2018-08-31 2023-09-05 Samsung Electronics Co., Ltd. Diffraction grating device, method of manufacturing the same, and optical apparatus including the diffraction grating device

Similar Documents

Publication Publication Date Title
US20090034401A1 (en) Optical disk apparatus
WO2007105767A1 (en) Optical head device
JP2006351086A (en) Optical path compensation apparatus and optical pickup using the same
JP2004355790A (en) Hologram coupled member and its manufacturing method, hologram laser unit, and optical pickup apparatus
JP4560906B2 (en) Optical head device
JP4378832B2 (en) Optical head device
KR100656000B1 (en) Optical diffraction device and optical information processing device
JP4474706B2 (en) Optical head device
JPH10134404A (en) Optical pickup and optical element used for the same
JP4478398B2 (en) Polarizing optical element, optical element unit, optical head device, and optical disk drive device
JP2002341125A (en) Diffraction element and optical head device
WO2005045484A1 (en) Diffraction element and optical head device
WO2004044905A1 (en) Double-wavelength light source unit and optical head device
JP4337510B2 (en) Diffraction element and optical head device
JP2006066011A (en) Hologram laser unit and optical pickup device
JP3851253B2 (en) Diffraction grating and optical pickup
JP2001014714A (en) Optical element and optical disk device
JPH1068820A (en) Polarization diffraction element and optical head device formed by using the same
JP4432255B2 (en) Optical head device
JPH0792319A (en) Optical element and optical device using the same
JP2002365416A (en) Polarization diffraction element and optical head device
JP2004212552A (en) Polarizing optical element, diffractive optical element, optical element unit, optical pickup device, and optical disk drive system
JP4735749B2 (en) Optical head device
JP4586309B2 (en) Diffraction element and optical head device
JP2006099946A (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125