JPH09297933A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPH09297933A
JPH09297933A JP8112688A JP11268896A JPH09297933A JP H09297933 A JPH09297933 A JP H09297933A JP 8112688 A JP8112688 A JP 8112688A JP 11268896 A JP11268896 A JP 11268896A JP H09297933 A JPH09297933 A JP H09297933A
Authority
JP
Japan
Prior art keywords
diffraction grating
optical
liquid crystal
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8112688A
Other languages
Japanese (ja)
Other versions
JP3550873B2 (en
Inventor
Takuji Nomura
琢治 野村
Tomoya Takigawa
具也 滝川
Koichi Murata
浩一 村田
Yuzuru Tanabe
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP11268896A priority Critical patent/JP3550873B2/en
Publication of JPH09297933A publication Critical patent/JPH09297933A/en
Application granted granted Critical
Publication of JP3550873B2 publication Critical patent/JP3550873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent decrease in the diffraction efficiency due to temp. change and to realize mass-productivity and a low cost by forming a projecting part on one of two substrates which are disposed at a specified distance and filled with a liquid crystal so that a transparent film of specified inorg. oxide is formed on the projecting part. SOLUTION: This optical anisotropic diffraction grating is composed of a transparent substrate 11 and a substrate 12 having projections 13, and the distance (d) between the two substrates is maintained by adhering the substrates on the sealing part 15 with a sealing material 14. The inside of the substrates is filled with a liquid crystal 16. The projecting part 13 is formed by etching, and a transparent film composed org. oxide of SiOx Ny (wherein (x) and (y) satisfy 1<=x<=2 and 0<=y<=1.33) having the same refractive index as that of the liquid crystal 16 is formed on the projecting part 13. By controlling the ratio of (x) and (y), the refractive index can be controlled and deterioration in optical characteristics such as absorption of light can be prevented. By maintaining the distance (d) between the substrates to <=5μm, changes in wave aberration due to temp. change can be decreased, and the reliability can be improved. Thereby, the obtd. device has high efficiency and excellent productivity and can be produced at a low cost, further, decrease in the diffraction efficiency can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、CD(コンパクト
・ディスク)、CD−ROM、ビデオディスク、DVD
(デジタル・ビデオ・ディスク)等の光ディスク及び光
磁気ディスク等に光学的情報を書き込んだり、光学的情
報を読み取るための光ヘッド装置に関する。
TECHNICAL FIELD The present invention relates to a CD (compact disc), a CD-ROM, a video disc, a DVD.
The present invention relates to an optical head device for writing and reading optical information on an optical disk such as (digital video disk) and a magneto-optical disk.

【0002】[0002]

【従来の技術】従来、光ディスク及び光磁気ディスク等
の光記録媒体に光学的情報を書き込んだり、光学的情報
を読み取る光ヘッド装置としては、光記録媒体の記録面
から反射された信号光を検出部へ導光(ビームスプリッ
ト)する光学部品としてプリズム式ビームスプリッタを
用いたものと、回折格子あるいはホログラム素子を用い
たものとが知られていた。
2. Description of the Related Art Conventionally, an optical head device for writing or reading optical information on an optical recording medium such as an optical disk or a magneto-optical disk detects signal light reflected from the recording surface of the optical recording medium. It is known that a prism type beam splitter is used as an optical component for guiding (beam splitting) light to a portion and a diffraction grating or a hologram element is used.

【0003】従来、光ヘッド装置用の回折格子あるいは
ホログラム素子は、ガラスやプラスチック基板上に、矩
形の断面を有する矩形格子(レリーフ型)をドライエッ
チイング法あるいは射出成形法よって形成し、これによ
って光を回折しビームスプリット機能を付与していた。
Conventionally, in a diffraction grating or hologram element for an optical head device, a rectangular grating (relief type) having a rectangular cross section is formed on a glass or plastic substrate by a dry etching method or an injection molding method. The light was diffracted and the beam splitting function was added.

【0004】また、光の利用効率が10%程度の等方性
回折格子よりも光の利用効率を上げようとした場合、偏
光を利用することが考えられる。偏光を利用しようとす
ると、プリズム式ビームスプリッタにλ/4板を組み合
わせて、往き(光源から光記録媒体かう方向)及び帰り
(光記録媒体から検出部へ向かう方向)の効率を上げて
往復効率を上げる方法があった。
In order to increase the light use efficiency over an isotropic diffraction grating having a light use efficiency of about 10%, it is conceivable to use polarized light. When using polarized light, a prism type beam splitter is combined with a λ / 4 plate to increase the efficiency of going (direction from the light source to the optical recording medium) and returning (direction from the optical recording medium to the detecting section) to improve the reciprocating efficiency. There was a way to raise.

【0005】しかし、プリズム式偏光ビームスプリッタ
は高価であり、他の方式が模索されていた。一つの方式
としてLiNbO3 等の複屈折結晶の平板を用い、表面
に異方性回折格子を形成し偏光選択性をもたす方法が知
られている。しかし、複屈折結晶自体が高価であり、民
生分野への適用は困難である。またプロトン交換法によ
って格子を形成する場合、プロトン交換液中のプロトン
のLiNbO3 への拡散が早いため、細かいピッチの格
子を形成するのが困難であるという問題もあった。
However, the prism type polarizing beam splitter is expensive, and other methods have been sought. As one method, a method of using a flat plate of birefringent crystal such as LiNbO 3 and forming an anisotropic diffraction grating on the surface to have polarization selectivity is known. However, the birefringent crystal itself is expensive, and application to the consumer field is difficult. Further, when the lattice is formed by the proton exchange method, there is a problem that it is difficult to form a lattice having a fine pitch because the protons in the proton exchange liquid diffuse quickly into LiNbO 3 .

【0006】等方性回折格子は前述のように、往きの利
用効率が50%程度で、帰りの利用効率が20%程度で
あるため、往復で10%程度が限界である。
As described above, the isotropic diffraction grating has a forward utilization efficiency of about 50% and a return utilization efficiency of about 20%.

【0007】[0007]

【発明が解決しようとする課題】そのため、透明基板の
表面に格子状の凹凸部が形成され、前記凹凸部に、光学
異方性を有する液晶が充填されている光学異方性回折格
子が提案されているが液体である液晶の熱膨張のため、
セルが膨らみ、光学波面収差が、高温側で大きく劣化す
るという問題点があった。
Therefore, an optically anisotropic diffraction grating in which a grid-shaped uneven portion is formed on the surface of a transparent substrate, and the uneven portion is filled with liquid crystal having optical anisotropy is proposed. However, due to the thermal expansion of the liquid crystal, which is a liquid,
There is a problem that the cell swells and the optical wavefront aberration largely deteriorates on the high temperature side.

【0008】波面収差が劣化すると、光デイスク面状
で、レーザビームを収束することが、できなくなり、情
報の読みとり等が困難になる。
When the wavefront aberration is deteriorated, it becomes impossible to converge the laser beam in the shape of the optical disc surface, which makes it difficult to read information.

【0009】本発明は、前述の問題点を解消し、光の利
用効率を高め安価に製造できる光ヘッド装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical head device which solves the above-mentioned problems and improves the light utilization efficiency and can be manufactured at low cost.

【0010】[0010]

【課題を解決するための手段】本発明は、光源からの光
を、透明基板の表面に格子状の凹凸部が形成されその凹
凸部に光学異方性を有する液晶が充填された光学異方性
回折格子を通して光記録媒体上に照射することにより情
報の書き込み及び/又は情報の読み取りを行う光ヘッド
装置において、光学異方性回折格子の凸部の頂点におけ
る基板間隙が5μm以下とされたことを特徴とする光ヘ
ッド装置を提供するものである。
DISCLOSURE OF THE INVENTION The present invention is an optical anisotropic method in which light from a light source is formed on a surface of a transparent substrate in a grid-like uneven portion, and the uneven portion is filled with a liquid crystal having optical anisotropy. In an optical head device for writing information and / or reading information by irradiating an optical recording medium through a characteristic diffraction grating, the substrate gap at the apex of the convex portion of the optically anisotropic diffraction grating is set to 5 μm or less. An optical head device is provided.

【0011】また、その光学異方性回折格子の凹凸部が
SiOxy (1≦x≦2、0<y≦1.33)で形成
されていることを特徴とする光ヘッド装置、及び、それ
らの光学異方性回折格子の凹凸部が液晶のいずれかの屈
折率とほぼ等しい屈折率の透明膜を透明基板表面に設け
ることにより形成され、そのシール部にはその透明膜が
形成されていないことを特徴とする光ヘッド装置を提供
するものである。
An optical head device characterized in that the uneven portion of the optically anisotropic diffraction grating is formed of SiO x N y (1 ≦ x ≦ 2, 0 <y ≦ 1.33), and , The concave and convex portions of the optically anisotropic diffraction grating are formed by providing a transparent film having a refractive index almost equal to that of any of the liquid crystals on the surface of the transparent substrate, and the transparent film is formed in the seal portion. The present invention provides an optical head device characterized in that

【0012】[0012]

【発明の実施の形態】本発明の光ヘッド装置に用いる光
学異方性回折格子は、透明基板の表面に格子状の凹凸部
が形成されその凹凸部に光学異方性を有する液晶が充填
された光学異方性回折格子であって、その光学異方性回
折格子の凸部の頂点における基板間隙が5μm以下とさ
れる。これにより温度変化があっても部分的な基板間隔
変化を生じにくく、光学波面収差が劣化しにくいので、
光の回折が安定して得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The optically anisotropic diffraction grating used in the optical head device of the present invention has a grid-like uneven portion formed on the surface of a transparent substrate, and the uneven portion is filled with liquid crystal having optical anisotropy. The optically anisotropic diffraction grating has a substrate gap at the apex of the protrusion of the optically anisotropic diffraction grating of 5 μm or less. As a result, even if there is a temperature change, it is unlikely that a partial substrate spacing change will occur, and optical wavefront aberration will not easily deteriorate,
Stable diffraction of light is obtained.

【0013】図1は、本発明の光ヘッド装置の代表的な
構成を示す模式図である。
FIG. 1 is a schematic view showing a typical constitution of the optical head device of the present invention.

【0014】図1において、1は半導体レーザー等の光
源、2は光学異方性回折格子、3は1/4波長板等の位
相差素子、4は集光レンズ、6は光検出器を示してい
る。
In FIG. 1, 1 is a light source such as a semiconductor laser, 2 is an optical anisotropic diffraction grating, 3 is a phase difference element such as a quarter wavelength plate, 4 is a condenser lens, and 6 is a photodetector. ing.

【0015】光源1からでた光は、直線偏光、例えばP
偏光を有するが、光学異方性回折格子2は回折格子とし
て働かなくそのまま透過する。そして位相差素子3を通
過して、集光レンズ4で光を集束して光記録媒体5表面
で反射させ、再度集光レンズ4、位相差素子3を通過し
てS偏光になって光学異方性回折格子2に入射する。す
ると、往路とは偏光方向が90°ずれているので、光学
異方性回折格子2は回折格子として働き、光は回折され
光検出器6に到達する。
The light emitted from the light source 1 is linearly polarized light, for example, P
Although it has polarized light, the optically anisotropic diffraction grating 2 does not work as a diffraction grating and transmits as it is. Then, after passing through the phase difference element 3, the light is focused by the condenser lens 4 and reflected on the surface of the optical recording medium 5, and again passes through the condenser lens 4 and the phase difference element 3 to become S-polarized light, which causes an optical difference. It is incident on the isotropic diffraction grating 2. Then, since the polarization direction is deviated by 90 ° from the outward path, the optically anisotropic diffraction grating 2 functions as a diffraction grating, and the light is diffracted and reaches the photodetector 6.

【0016】図2は、この光ヘッド装置に用いる光学異
方性回折格子の断面図である。
FIG. 2 is a sectional view of an optically anisotropic diffraction grating used in this optical head device.

【0017】図2において、11、12はの基板、13
はその基板の一部に設けられた凸部、14は2枚の基板
を接着するシール材、15はシール部、16は液晶を示
している。なお、dは基板11と、基板12の凸部との
間隙を示している。
In FIG. 2, reference numerals 11 and 12 denote substrates and 13
Is a convex portion provided on a part of the substrate, 14 is a sealing material for adhering two substrates, 15 is a sealing portion, and 16 is a liquid crystal. In addition, d represents a gap between the substrate 11 and the convex portion of the substrate 12.

【0018】本発明では、この間隙dを5μm以下とす
る。これにより、温度が変化しても波面収差の変化が少
なく、信頼性の高い回折格子が得られる。より好ましく
は3μm以下、特には2μm以下とすることが好まし
い。ただし、液晶の注入を行うので、0.5μm以上と
することが好ましい。
In the present invention, the gap d is set to 5 μm or less. This makes it possible to obtain a highly reliable diffraction grating with little change in the wavefront aberration even if the temperature changes. It is more preferably 3 μm or less, and particularly preferably 2 μm or less. However, since the liquid crystal is injected, the thickness is preferably 0.5 μm or more.

【0019】本発明では、光学異方性回折格子は、基板
の凸部と液晶との屈折率の差によって回折格子を構成し
ている。液晶は屈折率異方性を有するので、基板表面を
配向処理することにより、特定方向に液晶を配列させる
ことができる。これを利用して、光学異方性回折格子へ
の入射する偏光によって、回折をさせたり、させなかっ
たりすることができる。
In the present invention, the optically anisotropic diffraction grating constitutes the diffraction grating by the difference in refractive index between the convex portion of the substrate and the liquid crystal. Since the liquid crystal has a refractive index anisotropy, the liquid crystal can be aligned in a specific direction by subjecting the surface of the substrate to an alignment treatment. By utilizing this, it is possible to diffract or not diffract the polarized light incident on the optically anisotropic diffraction grating.

【0020】本発明の基板としては、ガラス、プラスチ
ック等の透明基板が使用できるが、ガラス、ポリオレフ
ィン、ポリカーボネート等の屈折率が1.4以上1.6
以下程度の透明基板を用いることが、液晶の常光屈折率
の約1.5に整合しやすいため好ましい。
As the substrate of the present invention, a transparent substrate such as glass or plastic can be used, but the refractive index of glass, polyolefin, polycarbonate or the like is 1.4 to 1.6.
It is preferable to use a transparent substrate of the following degree because it is easy to match the ordinary refractive index of the liquid crystal of about 1.5.

【0021】この基板に凹凸部を形成するには、基板自
体をそのような形状に、エッチングや機械的切削によっ
て加工することもできるが、液晶のいずれかの屈折率と
ほぼ等しい屈折率の透明膜を透明基板表面に積層形成す
ることが好ましい。これには、プラズマCVD法、スパ
ッタリング法等公知の透明膜の形成方法が利用できる。
In order to form the uneven portion on this substrate, the substrate itself can be processed into such a shape by etching or mechanical cutting, but a transparent material having a refractive index almost equal to that of any of the liquid crystals. It is preferable to laminate the film on the surface of the transparent substrate. For this, a known transparent film forming method such as a plasma CVD method or a sputtering method can be used.

【0022】この透明膜形成時に、マスクを設けてお
き、透明膜形成と同時に凹凸を形成してもよいし、透明
膜を全面に形成しておき、フォトリソ工程で凹凸を形成
してもよい。この凹凸部は、図2のように凸部のみが透
明膜とされ、凹部は基板表面が露出するようにされてい
てもよいし、凹部にも透明膜が薄く残っていてもよい。
また、シール部は凹部とした方が狭い基板間隙を容易に
作成でき好ましい。
A mask may be provided at the time of forming the transparent film to form concavities and convexities simultaneously with the formation of the transparent film, or a transparent film may be formed on the entire surface and the concavities and convexities may be formed by a photolithography process. As for the concave and convex portion, only the convex portion may be a transparent film as shown in FIG. 2 and the concave portion may expose the surface of the substrate, or the transparent film may remain thin in the concave portion.
Further, it is preferable that the seal portion is a concave portion because a narrow substrate gap can be easily formed.

【0023】本発明の透明膜としては、液晶のいずれか
の屈折率とほぼ等しい屈折率の透明膜で、使用する液晶
による劣化を生じたり膨潤等により屈折率の変化を生じ
にくいものであれば使用できる。具体的には、SiO
x 、SiOxy 等の無機酸化物の透明膜が好ましく用
いられる。
The transparent film of the present invention is a transparent film having a refractive index almost equal to that of any one of the liquid crystals, as long as it is less likely to be deteriorated by the liquid crystal to be used or change in the refractive index due to swelling or the like. Can be used. Specifically, SiO
A transparent film of an inorganic oxide such as x or SiO x N y is preferably used.

【0024】特に、透明膜として、SiOxy 膜(1
≦x≦2、0<y≦1.33)を用いることが好まし
い。この材料を用いる場合、プラズマCVD法あるいは
反応性直流スパッタリング法によって、液晶の常光屈折
率あるいは異常光屈折率とほぼ等しく、光学的に良好で
安定であり信頼性の高い膜が、再現性良く基板上に容易
に形成することができるという点で好ましい。
Particularly, as the transparent film, the SiO x N y film (1
It is preferable to use ≦ x ≦ 2, 0 <y ≦ 1.33). When this material is used, a plasma CVD method or a reactive direct current sputtering method is used to obtain a film that is almost equal to the ordinary or extraordinary refractive index of the liquid crystal, is optically good, stable, and highly reliable, and has good reproducibility. It is preferable in that it can be easily formed on the upper surface.

【0025】SiOxy 膜は、xとyの比率によって
屈折率を制御できるだけでなく、どんな比率においても
光の吸収等の光学特性の劣化をもたらすことが少ないと
いう利点もある。
The SiO x N y film has an advantage that not only the refractive index can be controlled by the ratio of x and y, but also the deterioration of optical characteristics such as absorption of light is less likely to occur at any ratio.

【0026】SiOxy の形成法としては、プラズマ
CVD法が好ましく用いられるが、導電性をもつSi基
板をターゲットにしO2 ガス、N2 ガス、N2 Oガスを
所定の比率で混合した雰囲気中でスパッタリングする反
応性直流スパッタリング法が、プラズマCVD法に比べ
て膜形成レートが高いという点でより好ましい。
As a method for forming SiO x N y , a plasma CVD method is preferably used, and an O 2 gas, N 2 gas and N 2 O gas are mixed at a predetermined ratio by using a conductive Si substrate as a target. The reactive DC sputtering method in which sputtering is performed in the atmosphere is more preferable in that the film formation rate is higher than that in the plasma CVD method.

【0027】具体的には以下のようにして凹凸部を形成
することが好ましい。研磨したガラス基板等の基板の表
面に、プラズマCVD法あるいは反応性直流スパッタリ
ング法により、液晶の常光屈折率と透明基板の屈折率
(ともに屈折率は1.5程度)のいずれにも近くなるよ
うに、酸素と窒素の比率を調整してSiOxy 膜を形
成する。
Specifically, it is preferable to form the uneven portion as follows. On the surface of a polished substrate such as a glass substrate, plasma CVD method or reactive DC sputtering method should be used to make it close to both the ordinary refractive index of liquid crystal and the refractive index of transparent substrate (both have a refractive index of about 1.5). Then, the ratio of oxygen and nitrogen is adjusted to form a SiO x N y film.

【0028】その後、SiOxy 膜の上にフォトレジ
ストをスピンコート法等によりコーティングし、所定の
パターンを有するフォトマスクをフォトレジスト膜に密
着させて紫外線で露光し、フォトレジスト現像処理する
ことによってフォトレジストの格子状パターンを透明基
板の表面に形成する。そのフォトレジストの格子状パタ
ーンをさらにマスクとして、CF4 、C26 、C3
8 、CHF3 等のガスを用いドライエッチングすること
により、深さ1〜2μm、ピッチ2〜20μmの光学異
方性回折格子用の格子状の凹凸部を形成する。
After that, a photoresist is coated on the SiO x N y film by a spin coating method or the like, a photomask having a predetermined pattern is brought into close contact with the photoresist film, exposed to ultraviolet rays, and a photoresist development process is performed. To form a grid pattern of photoresist on the surface of the transparent substrate. Using the lattice pattern of the photoresist as a mask, CF 4 , C 2 F 6 , C 3 F
8 , dry etching is performed using a gas such as CHF 3 to form a grid-shaped uneven portion for an optically anisotropic diffraction grating having a depth of 1 to 2 μm and a pitch of 2 to 20 μm.

【0029】なお透明基板の屈折率とSiOxy 膜の
屈折率との差は、界面による好ましくない反射等を防ぐ
ために0.1以内とするのが好ましい。
The difference between the refractive index of the transparent substrate and the refractive index of the SiO x N y film is preferably within 0.1 in order to prevent undesired reflection and the like at the interface.

【0030】本発明の光学異方性回折格子に用いる液晶
としては、ネマチック液晶、スメクチック液晶等の液晶
表示装置に使用される公知の液晶、液晶組成物、又は高
分子液晶等が好ましく使用できる。
As the liquid crystal used in the optically anisotropic diffraction grating of the present invention, known liquid crystals such as nematic liquid crystals and smectic liquid crystals used in liquid crystal display devices, liquid crystal compositions, polymer liquid crystals and the like can be preferably used.

【0031】この基板の内、平坦な側の基板の内面には
配向処理を施す。特に、ポリイミド膜等からなる配向膜
を設け、その上をラビングして配向膜を形成することが
好ましい。凹凸部を設けた基板側には、配向処理を行う
ことが難しいので、配向処理を省略してもよい。
Of this substrate, the inner surface of the substrate on the flat side is subjected to orientation treatment. In particular, it is preferable to provide an alignment film made of a polyimide film or the like and rub the top of the alignment film to form the alignment film. Since it is difficult to perform the alignment treatment on the substrate side provided with the uneven portion, the alignment treatment may be omitted.

【0032】この光学異方性回折格子に対して、光記録
媒体側にλ/2板、λ/4板等として機能する位相差
板、位相差フィルム等の位相差素子を積層配置させるこ
とにより、光の往き方向と光の帰り方向とで偏光方向を
直交させ、光学異方性回折格子として機能させることが
できる。前記位相差素子は、数10〜数100μm程度
の厚みを有するポリカーボネート、ポリビニルアルコー
ルあるいはポリアリレート等の材料が好ましく使用でき
る。
By laminating a phase difference element such as a phase difference plate or a phase difference film functioning as a λ / 2 plate or a λ / 4 plate on the optical recording medium side with respect to this optical anisotropic diffraction grating. It is possible to make the polarization directions of the light going direction and the light returning direction orthogonal to each other and to function as an optically anisotropic diffraction grating. A material such as polycarbonate, polyvinyl alcohol, or polyarylate having a thickness of about several tens to several hundreds of μm can be preferably used for the retardation element.

【0033】この位相差素子の少なくとも片面をフォト
ポリマー、熱硬化型エポキシ樹脂等の光学的に透明な有
機樹脂で覆うか、さらに前記有機樹脂を介して平坦性の
よいガラス基板、プラスチック基板等の基板を積層接着
すれば、波面収差の低減、信頼性の向上という利点があ
り好ましい。
At least one surface of this retardation element is covered with an optically transparent organic resin such as a photopolymer or a thermosetting epoxy resin, or a glass substrate, a plastic substrate or the like having a good flatness through the organic resin. Laminating and adhering the substrates is preferable because it has the advantages of reducing wavefront aberration and improving reliability.

【0034】この回折素子は、基板の光源側の面に第2
の回折格子を形成してもよく、その場合3ビーム法によ
るトラッキングエラー検出ができ好ましい。この第2の
回折格子は、フォトポリマー、フォトレジスト等を塗布
し所定のパターンに露光することにより形成するか、又
はドライエッチング法により直接透明基板を加工するこ
とにより形成することが好ましい。
This diffractive element has a second surface on the light source side of the substrate.
The diffraction grating may be formed, and in that case, tracking error detection by the three-beam method is preferable. The second diffraction grating is preferably formed by applying a photopolymer, a photoresist or the like and exposing it to a predetermined pattern, or by directly processing a transparent substrate by a dry etching method.

【0035】本発明の光ヘッド装置を読み取り用として
使用する場合は、通常は光源側に光記録媒体からの反射
光を検出する光検出器を設けるが、その検出器の受光面
上に前記反射光が所望のビーム(スポット)形状で集光
するように、光学異方性回折格子のパターンに面内曲率
を付与したり、格子間隔に分布を付与してもよい。光学
異方性回折格子のパターンは、コンピュータ装置によっ
て設計した曲率分布、格子間隔分布とし、SSD(スポ
ット・サイズ・ディテクション)法等のフォーカスエラ
ー検出法に最適なパターンとすることができる。前記光
検出器としては、フォトダイオード、CCD素子等の半
導体素子を利用したものが小型軽量で、低消費電力であ
るため好ましい。
When the optical head device of the present invention is used for reading, a photodetector for detecting the reflected light from the optical recording medium is usually provided on the light source side, and the reflection on the light receiving surface of the detector. An in-plane curvature may be imparted to the pattern of the optically anisotropic diffraction grating or a distribution may be imparted to the lattice spacing so that the light is condensed in a desired beam (spot) shape. The pattern of the optical anisotropic diffraction grating can be a curvature distribution and a grating interval distribution designed by a computer device, and can be an optimum pattern for a focus error detection method such as SSD (spot size detection) method. As the photodetector, one using a semiconductor element such as a photodiode or a CCD element is preferable because it is small and lightweight and consumes less power.

【0036】本発明の光源としては半導体レーザ、YA
Gレーザ等の固体レーザ、He−Ne等の気体レーザ等
の各種の固体、気体レーザが使用でき、半導体レーザが
小型軽量化、連続発振、保守点検等の点で好ましい。ま
た、光源部に半導体レーザ等と非線形光学素子を組み込
んだ高調波発生装置(SHG)を使用し、青色レーザ等
の短波長レーザを用いると、高密度の光記録及び読み取
りが可能になる。
As the light source of the present invention, a semiconductor laser, YA
Various solid and gas lasers such as solid-state lasers such as G lasers and gas lasers such as He-Ne can be used, and semiconductor lasers are preferable in terms of downsizing and weight reduction, continuous oscillation, maintenance and inspection. Further, by using a harmonic generator (SHG) in which a semiconductor laser or the like and a non-linear optical element are incorporated in the light source unit and a short wavelength laser such as a blue laser is used, high density optical recording and reading can be performed.

【0037】本発明の光記録媒体は、光により情報を記
録及び/又は読み取ることができる媒体である。その例
としてはCD(コンパクト ディスク)、CD−RO
M、ビデオディスク、DVD(デジタル ビデオ ディ
スク)等の光ディスク、及び光磁気ディスク、相変化型
光ディスク等のが使用できる。
The optical recording medium of the present invention is a medium capable of recording and / or reading information by light. Examples are CDs (compact discs) and CD-ROs.
Optical discs such as M, video discs, DVDs (digital video discs), magneto-optical discs, and phase change optical discs can be used.

【0038】前記回折素子の光入出射面に反射防止膜を
設けることにより、光の損失を防ぐことができる。その
場合、反射防止膜としてアモルファスフッ素樹脂を使用
すれば、蒸着装置等の高価で大型の成膜装置を使用しな
いで低コストで成膜できるため好ましい。
By providing an antireflection film on the light entrance / exit surface of the diffractive element, light loss can be prevented. In that case, it is preferable to use an amorphous fluororesin as the antireflection film because the film can be formed at low cost without using an expensive and large-sized film forming device such as a vapor deposition device.

【0039】たとえば、液晶を格子状の凹凸部の長手方
向にほぼ平行な方向に(図1では紙面に垂直な方向)配
向するように配向処理を行う。この場合、光源1の半導
体レーザから入射したP波(図1では偏光方向が紙面に
平行な偏光成分)に対しては、液晶と凸部は屈折率が等
しく、すなわち光学異方性回折格子はP波に対しては透
明となる。そのため、P波は何の変化も受けずそのまま
位相差素子3である1/4波長板に入射し、円偏光に変
化し、集光レンズとしての非球面レンズを透過し、ほぼ
100%の光が光記録媒体の記録面に到達する。
For example, the alignment treatment is performed so that the liquid crystal is aligned in a direction substantially parallel to the longitudinal direction of the grid-like concavo-convex portion (direction perpendicular to the paper surface in FIG. 1). In this case, for the P wave (polarization component whose polarization direction is parallel to the paper surface in FIG. 1) incident from the semiconductor laser of the light source 1, the liquid crystal and the convex portion have the same refractive index, that is, the optical anisotropic diffraction grating It is transparent to P waves. Therefore, the P wave does not undergo any change and directly enters the quarter-wave plate which is the phase difference element 3, changes into circularly polarized light, passes through the aspherical lens as the condenser lens, and emits almost 100% of the light. Reaches the recording surface of the optical recording medium.

【0040】即ち、半導体レーザへの戻り光が非常に小
さく、戻り光ノイズの点で有利である。さらに往路の透
過率が高いということは、書き込みタイプの光ディスク
装置においては、書き込み時に相対的に低い出力の半導
体レーザで書き込みが可能であるという点でコスト面で
優れている。
That is, the return light to the semiconductor laser is very small, which is advantageous in terms of return light noise. Furthermore, the high transmittance in the forward path is advantageous in terms of cost in that the writing type optical disk device can perform writing with a semiconductor laser having a relatively low output during writing.

【0041】前記記録面で反射し再び非球面レンズを通
り戻ってきた反射光は、再び1/4波長板を通過し、偏
光方向が90°異なったS波に変化する。S波が光学異
方性回折格子に入射すると、今度は液晶と凸部の屈折率
が異なっているため回折格子として機能し、+1次回折
光として最大40%程度、−1次回折光として最大40
%程度の回折効率が得られる。+1次回折光、−1次回
折光を検出する検出器をどちらか一方にのみ配置した場
合で40%、両方に配置した場合は計80%の往復効率
が得られる。
The reflected light reflected by the recording surface and returning through the aspherical lens again passes through the quarter-wave plate and is changed into an S wave having a polarization direction different by 90 °. When the S wave enters the optically anisotropic diffraction grating, it functions as a diffraction grating because the refractive index of the liquid crystal is different from that of the convex portion, and the + 1st order diffracted light has a maximum of about 40% and the −1st order diffracted light has a maximum of 40%.
A diffraction efficiency of about% can be obtained. When the detectors for detecting the + 1st-order diffracted light and the -1st-order diffracted light are arranged in only one of them, a reciprocating efficiency of 40% is obtained, and in the case where they are arranged in both, a total round-trip efficiency of 80% is obtained.

【0042】さらに前記凹凸部を、斜面状(のこぎり
状)にしたときはほぼ70〜90%、3段の階段状にし
たときはほぼ81%の往復効率が得られる。
Further, when the uneven portion is formed in a slope (sawtooth shape), a reciprocating efficiency of approximately 70 to 90% and when it is formed in three steps is obtained, a reciprocating efficiency of approximately 81% is obtained.

【0043】[0043]

【実施例】本発明の実施例及び比較例を以下の例1〜6
に示す。
EXAMPLES Examples 1 to 6 of the present invention and comparative examples will be described below.
Shown in

【0044】厚さ1mm、10mm×10mm角で、屈
折率1.52のガラス基板の1表面に、プラズマCVD
法によって厚み1.3μmのSiOxy 膜を形成し
た。このとき、x、yはおのおの1.8、0.17程度
であった。次いで、フォトリソグラフィ法とドライエッ
チング法によって、深さ1.3μm、ピッチ6μmの断
面が矩形状の回折格子用の凹凸部を形成し、その上にポ
リイミド配向膜を形成した。
Plasma CVD is performed on one surface of a glass substrate having a thickness of 1 mm, a size of 10 mm × 10 mm and a refractive index of 1.52.
A SiO x N y film having a thickness of 1.3 μm was formed by the method. At this time, x and y were about 1.8 and 0.17, respectively. Next, by a photolithography method and a dry etching method, an uneven portion for a diffraction grating having a rectangular cross section with a depth of 1.3 μm and a pitch of 6 μm was formed, and a polyimide alignment film was formed thereon.

【0045】もう1枚のガラス基板の表面に液晶配向用
の配向膜としてポリイミド膜を形成し、配向のためのラ
ビング処理を行った。凹凸部を形成したガラス基板の凹
凸部を形成した面と、平坦なガラス基板の配向膜を形成
した面とを対向させ、さらに配向膜のラビング方向と凹
凸部のストライプ方向が同じになるようにして、2つの
ガラス基板を積層した。
A polyimide film was formed on the surface of another glass substrate as an alignment film for liquid crystal alignment, and a rubbing treatment for alignment was performed. The surface of the glass substrate on which the uneven portion is formed is opposed to the surface of the flat glass substrate on which the alignment film is formed, and the rubbing direction of the alignment film and the stripe direction of the uneven portion are the same. Then, two glass substrates were laminated.

【0046】その際、液晶注入口を除き、2つのガラス
基板の周囲を球状スペーサを含むエポキシ樹脂シール材
でシールした。この球状スペーサの直径は例1:4μ
m、例2:6μm、例3:8μm、例4:10μmとし
たものを作成した。その後、液晶注入口から液晶(メル
ク社製商品名BL009、ネマチック液晶、常光屈折率
1.5266、異常光屈折率1.8181)を真空注入
した。
At this time, the liquid crystal injection port was removed and the two glass substrates were sealed with an epoxy resin sealing material containing a spherical spacer. The diameter of this spherical spacer is Example 1: 4μ
m, Example 2: 6 μm, Example 3: 8 μm, Example 4:10 μm. After that, liquid crystal (product name BL009 manufactured by Merck & Co., nematic liquid crystal, ordinary light refractive index 1.5266, extraordinary light refractive index 1.8181) was vacuum-injected from the liquid crystal injection port.

【0047】平坦なガラス基板の配向膜と反対側の面に
1/4波長板を透明接着剤により積層接着し、さらにそ
の上に波面収差を改善するためのフォトポリマー、第3
のガラス基板を積層接着して回折素子を作製した。回折
素子の光源からの光の入射部、出射部には、誘電体多層
膜による反射防止膜を施した。
A quarter-wave plate is laminated and adhered to the surface of the flat glass substrate opposite to the alignment film by a transparent adhesive, and a photopolymer for improving wavefront aberration is further formed thereon.
The glass substrate of 1 was laminated and adhered to produce a diffraction element. An antireflection film made of a dielectric multilayer film was applied to the entrance and exit of the light from the light source of the diffraction element.

【0048】凹凸部を設けたガラス基板の凹部は、おお
むねエッチングによりぼぼガラス基板表面が露出する程
度にされていたが、シール部に相当する部分もドライエ
ッチングにより透明膜をおおむね除去したものを作成し
た。
Although the concave portion of the glass substrate provided with the uneven portion was roughly made to the extent that the surface of the glass substrate was exposed by the etching, the portion corresponding to the seal portion was prepared by removing the transparent film by dry etching. did.

【0049】これらの回折素子のシール部のスペーサ直
径(μm)、凸部での基板間隙(μm)、25℃と60
℃の波面収差(mλrms)を表1に示す。
The spacer diameter (μm) of the seal portion of these diffractive elements, the substrate gap (μm) at the convex portion, 25 ° C. and 60
Table 1 shows the wavefront aberration (mλrms) at ° C.

【0050】例1の回折素子を用い、光源として半導体
レーザを用い、波長678nmのP波(図1の紙面に平
行な偏光成分)を入射させたとき、P波の透過率は約9
7%であった。また、光ディスクからの反射光(円偏
光)が1/4波長フィルムによりS波(紙面に垂直な偏
光成分)に変化し、このS波が光学異方性回折格子によ
り回折され、+1次回折光の回折効率は34%で、−1
次回折光の回折効率は34%であった。
When the diffraction element of Example 1 is used, a semiconductor laser is used as a light source, and a P wave having a wavelength of 678 nm (polarized component parallel to the paper surface of FIG. 1) is incident, the transmittance of the P wave is about 9
7%. Further, the reflected light (circularly polarized light) from the optical disk is changed into an S wave (a polarized component perpendicular to the paper surface) by the 1/4 wavelength film, and this S wave is diffracted by the optical anisotropic diffraction grating, and the + 1st order diffracted light The diffraction efficiency is 34%, -1
The diffraction efficiency of the next-order diffracted light was 34%.

【0051】この結果、往路効率約97%、往復効率約
66%(±1次回折光検出)となった。
As a result, the forward efficiency was about 97% and the round trip efficiency was about 66% (± first-order diffracted light detection).

【0052】例1、例2の回折素子は60℃での波面収
差がいずれも30mλrms以下で温度変化に対して光
検出器の出力が安定しており、信頼性の高いものであ
り、特に例1は60℃での波面収差がいずれも30mλ
rms以下で優れていた。
The diffractive elements of Examples 1 and 2 are highly reliable because the wavefront aberration at 60 ° C. is 30 mλrms or less and the output of the photodetector is stable against temperature changes. 1 has a wavefront aberration of 30 mλ at 60 ° C.
It was excellent at rms or less.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【発明の効果】本発明は、液晶を用いた光学異方性回折
格子の有する効率が良く、量産性に優れ、安価であると
いう特長を生かしつつ、その欠点であった温度変化によ
る波面収差の変化による回折効率の低下を抑制でき、広
い温度範囲での安定した光ヘッド装置を容易に得ること
ができる。
INDUSTRIAL APPLICABILITY The present invention makes use of the features of an optical anisotropic diffraction grating using a liquid crystal, which are high in efficiency, excellent in mass productivity, and low in cost. A decrease in diffraction efficiency due to a change can be suppressed, and a stable optical head device in a wide temperature range can be easily obtained.

【0055】本発明は、本発明の効果を損しない範囲内
で種々の応用が可能である。
The present invention can be applied in various ways within a range that does not impair the effects of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光ヘッド装置の代表的な構成を示す模
式図。
FIG. 1 is a schematic diagram showing a typical configuration of an optical head device according to the present invention.

【図2】本発明の光ヘッド装置に用いる光学異方性回折
格子の断面図。
FIG. 2 is a sectional view of an optically anisotropic diffraction grating used in the optical head device of the present invention.

【符号の説明】[Explanation of symbols]

1:光源 2:光学異方性回折格子 3:位相差素子 4:集光レンズ 5:光記録媒体 6:光検出器 1: Light source 2: Optical anisotropic diffraction grating 3: Phase difference element 4: Condensing lens 5: Optical recording medium 6: Photodetector

フロントページの続き (72)発明者 田辺 譲 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内Continued Front Page (72) Inventor, Yuzuru Tanabe 1150, Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Prefecture Asahi Glass Co., Ltd. Central Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光源からの光を、透明基板の表面に格子状
の凹凸部が形成されその凹凸部に光学異方性を有する液
晶が充填された光学異方性回折格子を通して光記録媒体
上に照射することにより情報の書き込み及び/又は情報
の読み取りを行う光ヘッド装置において、光学異方性回
折格子の凸部の頂点における基板間隙が5μm以下とさ
れたことを特徴とする光ヘッド装置。
1. On an optical recording medium, light from a light source is passed through an optical anisotropic diffraction grating in which a grid-shaped uneven portion is formed on the surface of a transparent substrate, and the uneven portion is filled with liquid crystal having optical anisotropy. An optical head device for writing information and / or reading information by irradiating the optical head, wherein the substrate gap at the apex of the convex portion of the optically anisotropic diffraction grating is 5 μm or less.
【請求項2】光学異方性回折格子の凹凸部がSiOx
y (1≦x≦2、0<y≦1.33)で形成されている
ことを特徴とする請求項1記載の光ヘッド装置。
2. The uneven portion of the optically anisotropic diffraction grating has SiO x N.
The optical head device according to claim 1, wherein the optical head device is formed by y (1 ≦ x ≦ 2, 0 <y ≦ 1.33).
【請求項3】光学異方性回折格子の凹凸部が液晶のいず
れかの屈折率とほぼ等しい屈折率の透明膜を透明基板表
面に設けることにより形成され、そのシール部にはその
透明膜が形成されていないことを特徴とする請求項1又
は2記載の光ヘッド装置。
3. The uneven portion of the optically anisotropic diffraction grating is formed by providing a transparent film having a refractive index almost equal to that of any of liquid crystals on the surface of the transparent substrate, and the transparent film is provided in the seal portion. The optical head device according to claim 1, wherein the optical head device is not formed.
JP11268896A 1996-05-07 1996-05-07 Optical head device Expired - Fee Related JP3550873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11268896A JP3550873B2 (en) 1996-05-07 1996-05-07 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11268896A JP3550873B2 (en) 1996-05-07 1996-05-07 Optical head device

Publications (2)

Publication Number Publication Date
JPH09297933A true JPH09297933A (en) 1997-11-18
JP3550873B2 JP3550873B2 (en) 2004-08-04

Family

ID=14593001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11268896A Expired - Fee Related JP3550873B2 (en) 1996-05-07 1996-05-07 Optical head device

Country Status (1)

Country Link
JP (1) JP3550873B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113800A (en) * 2010-01-18 2010-05-20 Asahi Glass Co Ltd Polarization diffraction element
JP2011054273A (en) * 2010-10-28 2011-03-17 Asahi Glass Co Ltd Polarization diffraction element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113800A (en) * 2010-01-18 2010-05-20 Asahi Glass Co Ltd Polarization diffraction element
JP2011054273A (en) * 2010-10-28 2011-03-17 Asahi Glass Co Ltd Polarization diffraction element

Also Published As

Publication number Publication date
JP3550873B2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
US6118586A (en) Optical head device including an optically anisotropic diffraction grating and production method thereof
JP4300784B2 (en) Optical head device
JP3624561B2 (en) Optical modulation element and optical head device
JP2001101700A (en) Optical head device
JPH1164615A (en) Diffraction element
JP3550873B2 (en) Optical head device
JP3713778B2 (en) Optical head device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP2000249831A (en) Optical device and optical head device
JP2004145255A (en) Polarizing optical element, optical element unit, optical head, and optical disk drive
JP3509399B2 (en) Optical head device
JP4626026B2 (en) Optical head device
JP3528381B2 (en) Optical head device
JP3829356B2 (en) Optical head device
JP2687606B2 (en) Optical pickup
JPH09185837A (en) Optical head device
JPH09127335A (en) Manufacture of optical head device and optical head device
JP2001311821A (en) Phase shifter and optical head device
JP3968593B2 (en) Optical head device
JPH10199004A (en) Liquid crystal phase control element, optical head device and optical disk device
JPH1048588A (en) Optical head device
JP3596152B2 (en) Method of manufacturing optical modulation element and method of manufacturing optical head device
JPH09180234A (en) Optical head device
JP2002040257A (en) Opening limiting element and optical head device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees