JPH0830235B2 - Copper alloy for conductive spring - Google Patents

Copper alloy for conductive spring

Info

Publication number
JPH0830235B2
JPH0830235B2 JP3119014A JP11901491A JPH0830235B2 JP H0830235 B2 JPH0830235 B2 JP H0830235B2 JP 3119014 A JP3119014 A JP 3119014A JP 11901491 A JP11901491 A JP 11901491A JP H0830235 B2 JPH0830235 B2 JP H0830235B2
Authority
JP
Japan
Prior art keywords
property
plating
stress relaxation
content
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3119014A
Other languages
Japanese (ja)
Other versions
JPH0559468A (en
Inventor
秀彦 宗
正博 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP3119014A priority Critical patent/JPH0830235B2/en
Publication of JPH0559468A publication Critical patent/JPH0559468A/en
Publication of JPH0830235B2 publication Critical patent/JPH0830235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Contacts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は端子、コネクター、リレ
ー、スイッチ等に用いられる導電性ばね用銅合金に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for conductive springs used in terminals, connectors, relays, switches and the like.

【0002】[0002]

【従来の技術】従来、これらばね用銅合金としては、黄
銅、りん青銅が広く用いられており、一部高強度が要求
されるものにはチタン銅、ベリリウム銅が用いられてい
た。
2. Description of the Related Art Heretofore, brass and phosphor bronze have been widely used as these copper alloys for springs, and titanium copper and beryllium copper have been used for those partially required to have high strength.

【0003】[0003]

【発明が解決しようとする課題】近年、機器、部品の小
型化により、強度、ばね特性の高いものが求められてお
り、特にばね特性の長期信頼性という観点からは応力緩
和特性の良好な材料が求められている。又、応力緩和特
性を良好にするには使用時の部品の温度上昇を極力防ぐ
必要があるため、放熱性の良好な、即ち電気伝導度の高
い材料が求められている。
In recent years, due to the miniaturization of equipment and parts, materials having high strength and spring characteristics have been demanded, and particularly from the viewpoint of long-term reliability of spring characteristics, materials having good stress relaxation characteristics. Is required. Further, in order to improve the stress relaxation characteristic, it is necessary to prevent the temperature rise of the parts during use as much as possible, and therefore, a material having a good heat dissipation property, that is, a high electric conductivity is required.

【0004】さらにはSnめっき、はんだめっきの耐熱
剥離性が良好であり、又水分の存在下におけるマイグレ
ーション現象のない高信頼性材料が求められている。こ
れらの要求特性に対し、黄銅は低コストだが強度、ばね
性に劣っており、応力腐食割れ感受性も高い。又、りん
青銅、チタン銅は電気伝導度が低く、ベリリウム銅は高
価であり、それぞれ一長一短があった。
Further, there is a demand for a highly reliable material which has good heat-resistant peeling property of Sn plating and solder plating and which does not cause a migration phenomenon in the presence of water. In contrast to these required properties, brass is low in cost, but inferior in strength and spring property, and has high susceptibility to stress corrosion cracking. Further, phosphor bronze and titanium copper have low electric conductivity, and beryllium copper is expensive, and each has its advantages and disadvantages.

【0005】そこで、近年多くの合金が提示されている
が、その中でもCu−Ni−Si系合金が強度、導電性
とも優れているため注目されている。特にUSP459
4221(特開昭61−250134)に示されている
ように、Mgを添加すると応力緩和特性がさらに改善さ
れるため、ばね材として好適な材料である。しかし、本
合金はMgを添加することにより、めっきの耐熱剥離性
が著しく劣化することがわかっており、改善が求められ
ていた。
In view of this, many alloys have been proposed in recent years, and among them, Cu-Ni-Si type alloys are attracting attention because they are excellent in strength and conductivity. Especially USP459
As shown in 4221 (Japanese Patent Laid-Open No. 61-250134), the addition of Mg further improves the stress relaxation characteristics, and is therefore a suitable spring material. However, it has been known that the present alloy significantly deteriorates the heat-resistant peeling property of the plating by adding Mg, and an improvement has been demanded.

【0006】[0006]

【課題を解決するための手段】かかる状況に鑑み、Cu
−Ni−Si−Mg系合金について研究を行った結果、
ばね材として全ての諸特性を満足する合金を得るに至っ
た。
In view of such a situation, Cu
As a result of conducting a study on a -Ni-Si-Mg alloy,
As a spring material, an alloy satisfying all properties has been obtained.

【0007】すなわち、本発明は、Ni:0.5〜4.
0%、Si:0.1〜1.0%、Mg:0.01〜0.
1%、Zn:0.01〜15%、S:0.0015%以
下、O:0.0015%以下、残部Cuからなる銅合金
あるいは上記にさらにP、B、As、Fe、Co、C
r、Al、Sn、Ti、Zr、In、Mnのうち1種又
は2種以上を0.005〜1.0%含有する銅合金より
なる導電性ばね用合金である。
That is, according to the present invention, Ni: 0.5-4.
0%, Si: 0.1 to 1.0%, Mg: 0.01 to 0.
1%, Zn: 0.01 to 15%, S: 0.0015% or less, O: 0.0015% or less, the balance is a copper alloy consisting of Cu, or P, B, As, Fe, Co, C in addition to the above.
r, Al, Sn, Ti, Zr, In, copper alloy containing 0.005 to 1.0% one or more of Mn
It is a conductive spring alloy.

【0008】本発明合金の各成分限定理由を以下に示
す。Ni含有量を0.5〜4.0%とする理由は、Ni
は時効処理によりSiと金属間化合物を生成し、強度、
導電性をともに向上させる主成分であるが、0.5%未
満では強度が低く、4.0%を超えると加工性が低下す
るためである。
The reasons for limiting the components of the alloy of the present invention are shown below. The reason for setting the Ni content to 0.5 to 4.0% is that Ni is
Produces an intermetallic compound with Si by aging treatment,
This is because it is a main component that improves both conductivity, but if it is less than 0.5%, the strength is low, and if it exceeds 4.0%, the workability is deteriorated.

【0009】SiはNiとともにあまり導電性を下げず
に強度を向上させる効果の他に、耐マイグレーション性
を向上させる効果があるが、その含有量を0.1〜1.
0%とする理由は、0.1%未満ではそれらの効果がな
く、1.0%を越えると導電性が著しく低下するためで
ある。
Si has the effect of improving the migration resistance as well as the effect of improving the strength together with Ni without significantly lowering the conductivity, but its content is 0.1 to 1.
The reason for setting it to 0% is that those effects are not exhibited if it is less than 0.1%, and the conductivity is remarkably lowered if it exceeds 1.0%.

【0010】Mg含有量を0.01〜0.1%とする理
由は、Mgは応力緩和特性を向上させるが、めっきの耐
熱剥離性を劣化させる成分であり、0.01%未満では
S、Oを規定しても応力緩和特性を改善する事ができ
ず、0.1%を超えるとめっきの耐熱剥離性が低下する
ためである。
The reason for setting the Mg content to 0.01 to 0.1% is that Mg improves the stress relaxation characteristics but deteriorates the heat-resistant peelability of the plating. This is because even if O is specified, the stress relaxation property cannot be improved, and if it exceeds 0.1%, the heat-resistant peeling property of the plating decreases.

【0011】S含有量を0.0015%以下とする理由
は、Mg含有量を低くし、めっきの耐熱剥離性を改善し
ながら、さらに応力緩和特性も良好にするには、S含有
量が非常に重要な影響を及ぼすことがわかったためであ
り、Sが0.0015%を超えて存在すると、Mgが多
量に硫化物となって材料中に分散され、応力緩和特性が
改善されないばかりでなく、Mg含有量が低くてもめっ
きの耐熱剥離性が劣化するとともに、めっき品を加熱す
るとしみ、ふくれといった不良が発生するようになるた
めである。O含有量を0.0015%以下とする理由
も、Sとまったく同様であり、Mgが酸化物となり、応
力緩和特性が改善されないばかりでなく、めっきの耐熱
剥離性が劣化するとともに、めっき品を加熱するとし
み、ふくれといった不良が発生するためである。
The reason for setting the S content to 0.0015% or less is that the Mg content should be low and the S content should be extremely high in order to improve the heat-resistant peeling property of the plating and to improve the stress relaxation characteristics. This is because it was found that when S exceeds 0.0015%, a large amount of Mg becomes a sulfide and is dispersed in the material, and not only the stress relaxation characteristics are not improved, This is because, even if the Mg content is low, the heat-resistant peeling property of the plating deteriorates, and when the plated product is heated, defects such as swelling and blistering will occur. The reason for setting the O content to 0.0015% or less is exactly the same as that for S. Not only the Mg becomes an oxide, the stress relaxation property is not improved, but also the heat-resistant peeling property of the plating is deteriorated and the plated product is This is because when heated, defects such as stains and swelling occur.

【0012】すなわち、S、Oの含有量をともに0.0
015%以下とする事により始めてMg含有量を低くし
ても応力緩和特性を改善でき、かつ低くする事によりめ
っきの耐熱剥離性を改善できることとなった。
That is, the contents of S and O are both 0.0
By setting the content to 015% or less, the stress relaxation property can be improved even if the Mg content is lowered, and the heat peeling resistance of the plating can be improved by lowering the Mg content.

【0013】さらには少量のMgでもめっきの耐熱剥離
性並びにめっきのしみ、ふくれを防止するにはS、Oの
含有量の規定がキーポイントである事が判明した。
Further, it has been found that the regulation of the contents of S and O is a key point in order to prevent the heat-resistant peeling property of the plating and the stain and swelling of the plating even with a small amount of Mg.

【0014】P、Bその他の副成分の含有量を0.00
5〜1.0%とする理由は、副成分の添加は強度を改善
するが、0.005%未満ではその効果がなく、1.0
%を超えると加工性が低下するとともに導電性が著しく
低下するためである。
The content of P, B and other subcomponents is 0.00
The reason for setting it to 5 to 1.0% is that the addition of a subcomponent improves the strength, but if it is less than 0.005%, it has no effect and
This is because if it exceeds%, the workability is lowered and the conductivity is remarkably lowered.

【0015】Zn含有量を0.01〜15%とする理由
は、Znを添加することにより、めっきの耐熱剥離性が
向上するとともに耐マイグレーション性が向上し、コス
トも低減していくが、0.01%未満ではその効果がな
く、15%を超えると応力腐食割れ感受性が急激に高く
なるためである。
The reason for setting the Zn content to 0.01 to 15% is that the addition of Zn improves the heat-resistant peeling property of the plating, improves the migration resistance, and reduces the cost. This is because if it is less than 0.01%, the effect is not obtained, and if it exceeds 15%, the sensitivity to stress corrosion cracking is rapidly increased.

【0016】[0016]

【実施例】次に実施例並びに比較例について説明する。
表1は試験をした銅合金の成分組成である。これらの組
成の銅合金を大気中で溶解鋳造し、30mmt×60m
mw×120mmlの大きさのインゴットを得た。これ
らのインゴットを片面3mm面削し表面欠陥を機械的に
除去した後、800〜950℃の温度で2時間加熱後熱
間圧延により6mmtの厚さに仕上げた。酸洗し表面の
スケールを除去した後0.5mmtの厚さまで冷間圧延
した。その後800〜900℃の温度で5〜10分間溶
体化処理後水焼入れを行った。なお、この溶体化処理後
の結晶粒度は10μmに調整した。そして0.3mmt
までの仕上げ冷間圧延後、400〜500℃の温度で1
〜7時間の時効処理を最大強度が得られる条件で行い、
最後は#1200エメリー紙により表面研磨し、スケー
ル等の表面欠陥を除去し供試材とした。
EXAMPLES Next, examples and comparative examples will be described.
Table 1 shows the composition of the tested copper alloys. Copper alloys with these compositions are melt-cast in the atmosphere, and 30 mmt x 60 m
An ingot having a size of mw × 120 ml was obtained. These ingots were chamfered on one side by 3 mm to mechanically remove surface defects, then heated at a temperature of 800 to 950 ° C. for 2 hours and then hot-rolled to a thickness of 6 mmt. After pickling to remove surface scale, cold rolling was performed to a thickness of 0.5 mmt. After that, water quenching was performed after solution treatment for 5 to 10 minutes at a temperature of 800 to 900 ° C. The grain size after the solution treatment was adjusted to 10 μm. And 0.3 mmt
After finishing cold rolling up to 1 ~ at a temperature of 400-500 ° C
Aging treatment for ~ 7 hours under the condition that maximum strength is obtained,
Finally, the surface was polished with # 1200 emery paper to remove surface defects such as scales, and used as a test material.

【0017】[0017]

【表1】 [Table 1]

【0018】供試材について引張強さ、伸び、導電率、
応力緩和特性、錫めっき耐熱剥離性、銀めっき性、耐応
力腐食割れ性を試験した。引張強さ、伸びはJIS13
B引張試験片を用い引張試験を行い測定した。導電率は
10mmw×100mlの試験片に加工後四端子法によ
り20℃にて電気抵抗を測定し、導電率に換算した。応
力緩和特性は図1の様に10mmw×100mmlに加
工した板厚0.3mmの試験片に標点距離l=50mm
で高さy0=20mmの曲げ応力を負荷し、150℃に
て1000時間加熱後の図2に示す永久変形量(高さ)
yを測定し応力緩和率{[y(mm)/y0(mm)]
×100(%)}を算出した。錫めっき耐熱剥離性は供
試材に0.5〜0.8μmの銅下地めっきを施した後、
1〜1.5μmの錫を電気めっきした後加熱リフロー処
理したものについて10mmw×100mmlに切断後
150℃にて所定時間(100時間毎)加熱し、曲げ半
径0.3mm(=板厚)で片側の90°曲げを往復1回
行い、20倍の視野で表裏面の曲げ部近傍を観察しめっ
き剥離の有無を確認した。銀めっき性は供試材に銅フラ
ッシュめっきを下地として銀めっきを1μm施したもの
について450℃で2分間加熱後1470mm2(7m
m□×30個)の領域についてふくれの数を計測した。
耐応力腐食割れ性は12.5mmw×150mmlに加
工した供試材をループ状に固定したまま室内で12時間
放置後、14%アンモニア水を2リットル含有する容積
10リットルのデシケータ中に放置し、目視にて割れ発
生の有無を調べ割れ発生までの時間にて評価した。耐マ
イグレーション性は供試材を10mmw×100mml
に加工し、図3のように2枚1組でセットし、図4の様
に水道水(300ml)中に浸漬した。次にこれら2枚
の供試材間に14Vの直流電圧を印加し、経過時間に対
する電流値の変化を測定した。この結果の代表例を図5
に示す。そして耐マイグレーション性の評価は電流値が
1.0Aになるまでの時間(図5中矢印)で行った。こ
れらの評価結果を表2に示す。
About the test materials, tensile strength, elongation, conductivity,
Stress relaxation characteristics, heat resistance peeling property of tin plating, silver plating property and stress corrosion cracking resistance were tested. JIS13 for tensile strength and elongation
A B tensile test piece was used to perform a tensile test for measurement. The electrical conductivity was converted into electrical conductivity by processing the test piece of 10 mmw × 100 ml and measuring the electrical resistance at 20 ° C. by the four-terminal method. The stress relaxation characteristics are as shown in Fig. 1 for a test piece with a plate thickness of 0.3 mm processed into 10 mmw x 100 mml, and a gauge length l = 50 mm.
Bending stress of height y 0 = 20 mm at 80 ° C. and permanent deformation amount (height) shown in FIG. 2 after heating at 150 ° C. for 1000 hours
Stress relaxation rate {[y (mm) / y 0 (mm)]
× 100 (%)} was calculated. The tin-plating heat-resistant peeling property is obtained by applying a copper undercoat of 0.5 to 0.8 μm to the test material,
About 1-1.5 μm tin electroplated and then heated and reflow treated, cut into 10 mmw × 100 mml and then heated at 150 ° C. for a predetermined time (every 100 hours), with a bending radius of 0.3 mm (= plate thickness) on one side 90 ° bending was performed once reciprocatingly, and the vicinity of the bent portions on the front and back surfaces was observed in a field of view of 20 times to confirm the presence or absence of peeling of the plating. The silver plating property is 1470 mm 2 (7 m after heating at 450 ° C. for 2 minutes for the test material on which copper flash plating is applied as a base and silver plating is applied to 1 μm.
The number of blisters was measured for the area of m □ × 30).
The stress corrosion cracking resistance is 12.5 mmw × 150 mml, and the test material is left indoors for 12 hours while being fixed in a loop, and then left in a desiccator with a volume of 10 liters containing 2 liters of 14% ammonia water, The presence or absence of cracks was visually inspected and evaluated by the time until cracks occurred. As for migration resistance, the test material is 10 mmw x 100 mml.
Then, as shown in FIG. 3, two sheets were set as a set and immersed in tap water (300 ml) as shown in FIG. Next, a DC voltage of 14 V was applied between these two test materials, and the change in current value with respect to the elapsed time was measured. A representative example of this result is shown in FIG.
Shown in The migration resistance was evaluated by the time until the current value reached 1.0 A (arrow in FIG. 5). The results of these evaluations are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】この表から本発明合金は良好な強度、導電
性を有し、応力緩和特性も良好であり、錫めっき耐熱剥
離性、銀めっき性といった表面品質も非常に良好であ
り、また耐応力腐食割れ性も良好であることがわかる。
From this table, the alloy of the present invention has good strength and conductivity, good stress relaxation property, very good surface quality such as heat resistance peeling property of tin plating and silver plating property, and stress resistance. It can be seen that the corrosion cracking property is also good.

【0021】これらに反し比較合金については、No.
はNi量が高いため、強度は高いものの伸びが低く、
加工性があまり良好ではない。No.はSi量、S量
が高いため、導電性が低く、応力緩和特性も悪く、錫め
っき耐熱剥離性、銀めっき性といった表面品質も悪い。
No.はMg量が低く、Zn量が多い例であるが、M
g量が低いため応力緩和特性があまり良好ではなく、Z
n量が多いため導電性が低く、耐応力腐食割れ性も悪
い。No.10、12はMg量が多い例だが、応力緩和
特性は良好であるが、錫めっき耐熱剥離性が悪い。N
o.11はNi量が低くO(酸素)量が高いため、十分
な強度は得られず、応力緩和特性、錫めっき耐熱剥離
性、銀めっき性が悪い。
Contrary to these, No.
7 has a high Ni content, so the strength is high but the elongation is low,
Workability is not very good. No. Since No. 8 has a high Si content and S content, it has low conductivity, poor stress relaxation characteristics, and poor surface quality such as heat resistance peeling property of tin plating and silver plating property.
No. No. 9 is an example in which the amount of Mg is low and the amount of Zn is high.
Since the g content is low, the stress relaxation characteristics are not very good, and Z
Since the amount of n is large, the conductivity is low and the stress corrosion cracking resistance is poor. No. Although 10 and 12 are examples in which the amount of Mg is large, the stress relaxation characteristics are good, but the heat resistance peeling resistance of tin plating is poor. N
o. Since No. 11 has a low Ni content and a high O (oxygen) content, sufficient strength cannot be obtained, and stress relaxation characteristics, heat resistance peeling property of tin plating, and silver plating property are poor.

【0022】No.13はS量、Zn量が多いため、応
力緩和特性、銀めっき性、耐応力腐食割れ性が悪い。N
o.14はMgを添加しない例だが応力緩和特性があま
り良好ではない。
No. Since No. 13 has a large amount of S and Zn, the stress relaxation property, silver plating property, and stress corrosion cracking resistance are poor. N
o. No. 14 is an example in which Mg is not added, but the stress relaxation characteristic is not so good.

【0023】No.15はO、S量が高いため、応力緩
和特性、錫めっき耐熱剥離性、銀めっき性が悪い。N
o.16はSi量が少ないため、十分な強度が得られ
ず、耐マイグレーション性も悪い。
No. Since No. 15 has a large amount of O and S, the stress relaxation property, the heat resistance peeling property of tin plating, and the silver plating property are poor. N
o. Since No. 16 has a small amount of Si, sufficient strength cannot be obtained and migration resistance is also poor.

【0024】以上説明したように本発明合金はCu−N
i−Si−Mg−Zn系合金のO、S量を規定し、さら
にP、B、As、Fe、Co、Cr、Al、Sn、T
i、Zr、In、Mnのうち1種又は2種以上を添加す
ることにより、高強度、高導電でしかも応力緩和特性も
良好で、めっき耐熱剥離性、銀めっき性も良好で耐応力
腐食割れ性も良好なものである、
As explained above, the alloy of the present invention is Cu-N.
It defines the O and S contents of the i-Si-Mg- Zn alloy, and further defines P, B, As, Fe, Co, Cr, Al, Sn and T.
By adding one or more of i, Zr, In, and Mn, high strength, high conductivity, good stress relaxation characteristics, good heat resistance peeling property and good silver plating property, and stress corrosion cracking resistance. Is also good,

【0025】[0025]

【発明の効果】本発明合金は高強度、高導電で応力緩和
特性、めっき耐熱剥離性、銀めっき性、耐応力腐食割れ
性が良好な銅合金であって、コネクター、リレー、スイ
ッチ等広く電子部品分野で使用されるべき銅合金であ
る。
INDUSTRIAL APPLICABILITY The alloy of the present invention is a copper alloy having high strength, high electrical conductivity, stress relaxation property, plating heat-resistant peeling property, silver plating property, and stress corrosion cracking resistance, and is widely used in connectors, relays, switches, etc. It is a copper alloy that should be used in the field of parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】応力緩和特性試験法の説明図である。FIG. 1 is an explanatory diagram of a stress relaxation characteristic test method.

【図2】応力緩和特性試験の永久変形量についての説明
図である。
FIG. 2 is an explanatory diagram of a permanent deformation amount in a stress relaxation characteristic test.

【図3】耐マイグレーション性試験供試材の説明図であ
る。
FIG. 3 is an explanatory diagram of a test material for a migration resistance test.

【図4】耐マイグレーション性試験の説明図である。FIG. 4 is an explanatory diagram of a migration resistance test.

【図5】耐マイグレーション性試験における経過時間に
対する電流値野変化を示すグラフである。
FIG. 5 is a graph showing changes in current value field with respect to elapsed time in a migration resistance test.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ni:0.5〜4.0%(重量%、以下
同じ)、Si:0.1〜1.0%、Mg:0.01〜
0.1%、Zn:0.01〜15%、S:0.0015
%以下、O:0.0015%以下、残部Cuからなるこ
とを特徴とする導電性ばね用銅合金。
1. Ni: 0.5-4.0% (wt%, below
The same) , Si: 0.1 to 1.0%, Mg: 0.01 to
0.1%, Zn: 0.01 to 15%, S: 0.0015
% Or less, O: 0.0015% or less, and the balance Cu, a copper alloy for conductive springs.
【請求項2】 Ni:0.5〜4.0%、Si:0.1
〜1.0%、Mg:0.01〜0.1%、Zn:0.0
1〜15%、S:0.0015%以下、O:0.001
5%以下、さらに副成分としてP、B、As、Fe、C
o、Cr、Al、Sn、Ti、Zr、In、Mnのうち
1種又は2種以上を0.005〜1.0%含有し、残部
Cuからなることを特徴とする導電性ばね用銅合金。
2. Ni: 0.5 to 4.0%, Si: 0.1
~ 1.0%, Mg: 0.01-0.1%, Zn: 0.0
1 to 15%, S: 0.0015% or less, O: 0.001
5% or less, and P, B, As, Fe, C as auxiliary components
Of o, Cr, Al, Sn, Ti, Zr, In and Mn
A conductive copper alloy for springs , which contains 0.005 to 1.0% of one kind or two or more kinds and the balance is Cu.
JP3119014A 1991-04-24 1991-04-24 Copper alloy for conductive spring Expired - Lifetime JPH0830235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3119014A JPH0830235B2 (en) 1991-04-24 1991-04-24 Copper alloy for conductive spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3119014A JPH0830235B2 (en) 1991-04-24 1991-04-24 Copper alloy for conductive spring

Publications (2)

Publication Number Publication Date
JPH0559468A JPH0559468A (en) 1993-03-09
JPH0830235B2 true JPH0830235B2 (en) 1996-03-27

Family

ID=14750855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3119014A Expired - Lifetime JPH0830235B2 (en) 1991-04-24 1991-04-24 Copper alloy for conductive spring

Country Status (1)

Country Link
JP (1) JPH0830235B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329967B2 (en) 2000-04-28 2009-09-09 古河電気工業株式会社 Copper alloy wire suitable for IC lead pins for pin grid array provided on plastic substrate
JP3520034B2 (en) 2000-07-25 2004-04-19 古河電気工業株式会社 Copper alloy materials for electronic and electrical equipment parts
US7090732B2 (en) 2000-12-15 2006-08-15 The Furukawa Electric, Co., Ltd. High-mechanical strength copper alloy
JP3520046B2 (en) 2000-12-15 2004-04-19 古河電気工業株式会社 High strength copper alloy
JP3946709B2 (en) * 2004-05-13 2007-07-18 日鉱金属株式会社 Cu-Ni-Si-Mg copper alloy strip
TW200704790A (en) * 2005-03-29 2007-02-01 Nippon Mining Co Sn-plated strip of cu-ni-si-zn-based alloy
TW200706662A (en) * 2005-03-29 2007-02-16 Nippon Mining Co Cu-Ni-Si-Zn-Sn based alloy strip excellent in thermal peeling resistance of Tin plating, and Tin plated strip thereof
JP2007169764A (en) * 2005-12-26 2007-07-05 Furukawa Electric Co Ltd:The Copper alloy
JP4986499B2 (en) * 2006-04-26 2012-07-25 Jx日鉱日石金属株式会社 Method for producing Cu-Ni-Si alloy tin plating strip
JP4642701B2 (en) * 2006-05-26 2011-03-02 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy strips with excellent plating adhesion
JP5070772B2 (en) * 2006-09-01 2012-11-14 三菱マテリアル株式会社 Cu-Ni-Si based copper alloy with excellent hot workability
KR101472348B1 (en) 2012-11-09 2014-12-15 주식회사 풍산 Copper alloy material for electrical and electronic components and process for producing same
CN106191519B (en) * 2016-08-15 2018-06-01 北京金鹏振兴铜业有限公司 Hexa-atomic complex brass alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058783B2 (en) * 1982-01-20 1985-12-21 日本鉱業株式会社 Method for manufacturing copper alloy for lead material of semiconductor equipment
US4594221A (en) * 1985-04-26 1986-06-10 Olin Corporation Multipurpose copper alloys with moderate conductivity and high strength
JPS63130739A (en) * 1986-11-20 1988-06-02 Nippon Mining Co Ltd High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPH02190431A (en) * 1989-01-19 1990-07-26 Furukawa Electric Co Ltd:The Copper alloy for connecting apparatus

Also Published As

Publication number Publication date
JPH0559468A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
JPH0830235B2 (en) Copper alloy for conductive spring
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JPH0551671A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JP2000080428A (en) Copper alloy sheet excellent in bendability
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JP2521880B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPH05311278A (en) Copper alloy improved in stress relaxing property
JPH06179932A (en) Copper alloy for conductive spring
JPH05311288A (en) Copper alloy improved in stress relaxation property
JPS62182240A (en) Conductive high-tensile copper alloy
US4990309A (en) High strength copper-nickel-tin-zinc-aluminum alloy of excellent bending processability
JPH1081926A (en) Copper alloy for electronic device
JPH0559467A (en) Copper alloy improved in stress relaxation property
JPH04358033A (en) Copper alloy for conductive spring
JPH0551673A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JPH05311289A (en) Copper alloy for conductive spring
JPH0551674A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JPH04231433A (en) Electrifying material
JPH04231432A (en) Electrifying material
JP2682577B2 (en) Manufacturing method of copper alloy for terminals and connectors
KR101208578B1 (en) copper alloy with high strength and moderate conductivity, and method of manufacturing thereof
EP0314523A1 (en) Electrically conductive spring materials
JP6619389B2 (en) Cu-Ni-Si copper alloy
JPH0551670A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JP3800268B2 (en) High strength copper alloy with excellent stamping workability and silver plating