JP3946709B2 - Cu-Ni-Si-Mg copper alloy strip - Google Patents

Cu-Ni-Si-Mg copper alloy strip Download PDF

Info

Publication number
JP3946709B2
JP3946709B2 JP2004143258A JP2004143258A JP3946709B2 JP 3946709 B2 JP3946709 B2 JP 3946709B2 JP 2004143258 A JP2004143258 A JP 2004143258A JP 2004143258 A JP2004143258 A JP 2004143258A JP 3946709 B2 JP3946709 B2 JP 3946709B2
Authority
JP
Japan
Prior art keywords
concentration
mass
copper alloy
stress relaxation
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004143258A
Other languages
Japanese (ja)
Other versions
JP2005325390A (en
Inventor
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2004143258A priority Critical patent/JP3946709B2/en
Priority to TW094112845A priority patent/TW200600594A/en
Priority to CNB2005100712219A priority patent/CN100410403C/en
Priority to KR1020050040233A priority patent/KR100684095B1/en
Publication of JP2005325390A publication Critical patent/JP2005325390A/en
Application granted granted Critical
Publication of JP3946709B2 publication Critical patent/JP3946709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Description

本発明は、半導体機器のリ−ドフレ−ム材やコネクタ、端子、リレ−、スイッチ等の導電性ばね材として好適な、高い強度,耐応力緩和特性,導電性等を備えた銅合金に関するものである。   The present invention relates to a copper alloy having high strength, stress relaxation resistance, electrical conductivity, etc., suitable as a conductive spring material for a semiconductor device, such as a lead frame material, a connector, a terminal, a relay, and a switch. It is.

リ−ドフレ−ム、端子、コネクタ等に使用される電子材料用銅合金には、合金の基本特性として高い強度、高い電気伝導性又は熱伝導性を両立させることが要求される。また,これら特性以外にも,曲げ加工性,耐応力緩和特性,耐熱性,めっきとの密着性,半田濡れ性,エッチング加工性,プレス打ち抜き性,耐食性等が求められる。   Copper alloys for electronic materials used for lead frames, terminals, connectors, and the like are required to have both high strength, high electrical conductivity, and thermal conductivity as basic characteristics of the alloy. In addition to these characteristics, bending workability, stress relaxation resistance, heat resistance, adhesion to plating, solder wettability, etching workability, press punching, corrosion resistance, etc. are required.

特開昭61−250134JP-A-61-250134 特開平05−345941JP 05-345941 A 特開平09−209062JP 09-209062 特開昭63−297531JP-A 63-297531 特開平05−059468JP 05-059468 A

一方,近年の電子部品の小型化、高集積化に対応して、リ−ドフレ−ム、端子、コネクタにおいては、リ−ド数の増加および狭ピッチ化が進み,部品形状も複雑化している。同時に、組立て時および実装後における信頼性向上の要求が高まっている。このような背景から,上述した銅合金素材の特性に対する要求レベルは,ますます高度化している。   On the other hand, in response to the recent downsizing and higher integration of electronic components, lead frames, terminals, and connectors have increased in the number of leads and narrow pitch, and the shape of the components has become complicated. . At the same time, there is a growing demand for improved reliability during assembly and after mounting. Against this background, the required level for the characteristics of the copper alloy material described above is becoming increasingly sophisticated.

高強度及び高導電性の観点から、近年,電子材料用銅合金としては従来のりん青銅、黄銅等に代表される固溶強化型銅合金に替わり、時効硬化型の銅合金の使用量が増加している。時効硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、強度、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。   From the viewpoint of high strength and high conductivity, in recent years, the amount of age-hardening type copper alloys has increased as a copper alloy for electronic materials, replacing the conventional solid solution strengthened copper alloys such as phosphor bronze and brass. is doing. In an age-hardening type copper alloy, by aging the solution-treated supersaturated solid solution, fine precipitates are uniformly dispersed, the strength of the alloy is increased, and at the same time, the amount of solid solution elements in copper is reduced. Electrical conductivity is improved. For this reason, a material excellent in mechanical properties such as strength and spring property and having good electrical conductivity and thermal conductivity can be obtained.

時効硬化型銅合金のうち、Cu−Ni−Si系銅合金は高強度と高導電性とを併せ持つ代表的な銅合金であり、電子機器用材料として実用化されている。この銅合金では、銅マトリックス中に微細なNi−Si系金属間化合物粒子が析出することにより強度と導電率が上昇する。   Of the age-hardening type copper alloys, Cu—Ni—Si based copper alloys are representative copper alloys having both high strength and high conductivity, and have been put into practical use as materials for electronic devices. In this copper alloy, strength and electrical conductivity are increased by precipitation of fine Ni—Si intermetallic particles in the copper matrix.

Cu−Ni−Si系銅合金には,機械的特性等を改善するために,NiとSi以外の元素が追加で添加される場合が多い。特にMgは,Cu−Ni−Si系銅合金に添加される代表的な元素である。Mg添加の効果として,
a)強度および耐応力緩和特性が向上する(特開昭61−250134),
b)熱間加工性が向上する(特開平05−345941),
c)Mgが酸化物となって酸素をトラップすることにより、熱処理の際のSi酸化物の生成又は粗大化を阻止できる(特開平09−209062),
等が報告されている。工業的に生産されている代表的なCu−Ni−Si−Mg系銅合金条はC70250(CDA合金番号)であり,この合金はNiを2.2〜4.2質量%,Siを0.25〜1.2質量%,Mgを0.05〜0.3質量%の範囲で含有する。
In order to improve mechanical characteristics and the like, elements other than Ni and Si are often added to the Cu—Ni—Si based copper alloy in many cases. In particular, Mg is a typical element added to a Cu—Ni—Si based copper alloy. As an effect of Mg addition,
a) Strength and stress relaxation resistance are improved (Japanese Patent Laid-Open No. 61-250134).
b) Hot workability is improved (Japanese Patent Laid-Open No. 05-345941),
c) By forming Mg as an oxide and trapping oxygen, generation or coarsening of Si oxide during heat treatment can be prevented (Japanese Patent Laid-Open No. 09-209062),
Etc. have been reported. A typical Cu—Ni—Si—Mg based copper alloy strip produced industrially is C70250 (CDA alloy number), and this alloy is 2.2 to 4.2 mass% of Ni, and Si is 0.00. It contains 25 to 1.2% by mass and Mg in the range of 0.05 to 0.3% by mass.

Cu−Ni−Si−Mg系銅合金条の一般的な製造プロセスでは,まず大気溶解炉を用い,木炭被覆下で,電気銅,Ni,Si,Mg等の原料を溶解し,所望の組成の溶湯を得る。そして,この溶湯をインゴットに鋳造する。その後,熱間圧延,冷間圧延および熱処理を行い,所望の厚みおよび特性を有する条や箔に仕上げる。   In the general manufacturing process of Cu-Ni-Si-Mg-based copper alloy strips, first, an atmospheric melting furnace is used to melt raw materials such as electrolytic copper, Ni, Si, and Mg under a charcoal coating to obtain a desired composition. Get molten metal. Then, this molten metal is cast into an ingot. Then, hot rolling, cold rolling and heat treatment are performed to finish the strip or foil having the desired thickness and characteristics.

上述したようにCu−Ni−Si系銅合金にMgを添加すると合金特性が格段に向上するが,特開昭63−297531でも報告されているように,Mgを添加すると鋳造の際の湯流れが低下し,インゴットの鋳肌に凹凸が生じやすくなる。鋳肌の劣化はMg添加量が増加するほど顕著になる。鋳肌に凹凸が発生すると,熱間圧延において,凹凸を起点とする表面割れが発生したり,凹凸がかさぶた状の表面欠陥に変化したりする。このような表面欠陥は次工程で切削し除去する必要があり,このためCu−Ni−Si系銅合金にMgを添加すると製造歩留まりが低下していた。   As described above, when Mg is added to a Cu—Ni—Si based copper alloy, the alloy characteristics are remarkably improved. However, as reported in Japanese Patent Laid-Open No. 63-297531, when Mg is added, hot water flow during casting is improved. Decreases and irregularities are likely to occur on the casting surface of the ingot. The deterioration of the casting surface becomes more prominent as the amount of added Mg increases. When irregularities occur in the casting surface, surface cracks starting from irregularities may occur in hot rolling, or irregularities may be changed into scab surface defects. Such surface defects need to be removed by cutting in the next step. For this reason, when Mg is added to a Cu—Ni—Si based copper alloy, the manufacturing yield is lowered.

以上のような技術的背景により,Mg添加による特性改善効果を,より少ないMg添加量で得ることが,Cu−Ni−Si−Mg系銅合金条を工業的に製造する場合の課題となっていた。   Due to the technical background as described above, obtaining the effect of improving the characteristics by adding Mg with a smaller amount of added Mg has been a problem in industrial production of Cu—Ni—Si—Mg based copper alloy strips. It was.

特開平05−59468によれば,Cu−Ni−Si系銅合金にMgを添加する場合には,OおよびS濃度を0.0015質量%以下に低減しなければならない。OまたはSが0.0015%を超えると、Mgが多量の酸化物または硫化物となり、応力緩和特性に対するMg添加の効果が失われるためである。この発明は,Mg添加の特性改善効果を高めるためには,OおよびS濃度の管理が重要であることを示している。   According to Japanese Patent Laid-Open No. 05-59468, when adding Mg to a Cu—Ni—Si based copper alloy, the O and S concentrations must be reduced to 0.0015 mass% or less. This is because when O or S exceeds 0.0015%, Mg becomes a large amount of oxide or sulfide, and the effect of Mg addition on the stress relaxation characteristics is lost. This invention shows that management of O and S concentrations is important to enhance the effect of improving the characteristics of Mg addition.

本発明の課題は,高い強度および良好な応力緩和特性を安定して有し,さらに製造性にも優れるCu−Ni−Si−Mg系銅合金条を提供することである。   An object of the present invention is to provide a Cu—Ni—Si—Mg based copper alloy strip that has a high strength and good stress relaxation characteristics and is excellent in manufacturability.

本発明者は,工業的に生産されているCu−Ni−Si−Mg系銅合金条について,成分組成と特性のデ−タを蓄積し解析した。その結果,OおよびS濃度が0.0015%以下であっても,Ni,SiおよびMg濃度が同等の材料間で,強度および応力緩和特性の無視できないばらつきが存在することが明らかになった。このことより,Cu−Ni−Si系銅合金に対するMg添加の効果を有効に発現させるためには,OおよびS濃度の管理だけでは不十分なことがわかった。   The inventor has accumulated and analyzed data on the composition and characteristics of Cu-Ni-Si-Mg-based copper alloy strips produced industrially. As a result, it became clear that even when the O and S concentrations are 0.0015% or less, there are non-negligible variations in strength and stress relaxation characteristics between materials having the same Ni, Si and Mg concentrations. From this, it was found that the O and S concentration alone is not sufficient to effectively develop the effect of adding Mg to the Cu—Ni—Si based copper alloy.

その後,少ないMg添加量で充分な特性改善効果を安定して得るための方法を研究し,O,Sだけではなく,Se,Te,P,As,SbおよびBiについても,濃度を管理する必要があることを見出した。   After that, a method for stably obtaining a sufficient characteristic improvement effect with a small amount of added Mg is studied, and it is necessary to control the concentration not only for O and S but also for Se, Te, P, As, Sb and Bi. Found that there is.

O,S,Se,Te,P,As,SbおよびBiは,5B族または6B族に属する非金属元素であり,それぞれMgとの間でMgO,MgS,MgSe,MgTe,Mg32,Mg3As2,Mg3Sb2およびMg3Bi2といった非金属介在物を形成する。非金属介在物を形成したMgは,Cu−Ni−Si系銅合金の特性向上には寄与せず,むしろ曲げ加工性や伸びを低下させ,合金の製造性も低下させる。 O, S, Se, Te, P, As, Sb, and Bi are non-metallic elements belonging to 5B group or 6B group, and MgO, MgS, MgSe, MgTe, Mg 3 P 2 , Mg with Mg, respectively. Nonmetallic inclusions such as 3 As 2 , Mg 3 Sb 2 and Mg 3 Bi 2 are formed. Mg in which non-metallic inclusions are formed does not contribute to improving the characteristics of the Cu—Ni—Si based copper alloy, but rather reduces the bending workability and elongation, and also reduces the manufacturability of the alloy.

S,Se,Te,As,SbおよびBiは,Cu−Ni−Si−Mg系銅合金条の主要原料である電気銅が含有する代表的不純物である。電解前の粗銅中にかなりの濃度で含有され,そのなかの一部が電気銅中に残留する。S,Se,Te,As,SbおよびBiの濃度を低く抑えるためには,原料として用いる電気銅中の不純物量を管理することが肝要である。   S, Se, Te, As, Sb, and Bi are typical impurities contained in electrolytic copper, which is a main raw material of a Cu—Ni—Si—Mg based copper alloy strip. It is contained in a considerable concentration in crude copper before electrolysis, and a part of it remains in electrolytic copper. In order to keep the concentrations of S, Se, Te, As, Sb, and Bi low, it is important to manage the amount of impurities in electrolytic copper used as a raw material.

Pは溶銅の脱酸によく用いられる元素であり,P脱酸が適用される銅合金として,りん脱酸銅やりん青銅がある。工業的に製造されるCu−Ni−Si−Mg系銅合金条の原料には,Cu−Ni−Si−Mgの純原料だけではなく,銅合金スクラップも用いられる。P濃度を低く抑えるためには,Cu−Ni−Si−Mg系銅合金条に対してP脱酸を行わないことはもちろんのこと,Pを含有するスクラップを用いないことが重要である。   P is an element often used for deoxidation of molten copper, and examples of copper alloys to which P deoxidation is applied include phosphorous deoxidized copper and phosphor bronze. As raw materials for industrially produced Cu—Ni—Si—Mg copper alloy strips, not only pure Cu—Ni—Si—Mg raw materials but also copper alloy scraps are used. In order to keep the P concentration low, it is important not to use P deoxidation on the Cu—Ni—Si—Mg-based copper alloy strips and not to use scrap containing P.

OはCu−Ni−Si−Mg系銅合金条を溶製する際に,大気から混入するほか,耐火物,溶湯被覆剤等の含有水分が還元されることによっても混入する。O濃度を低く抑えるためには,木炭被覆や溶解フラックス等により溶湯と大気との接触を避けること,溶湯と接触する部材を乾燥しその水分を充分に低減すること,原料の酸素量を管理すること,等が重要である。   O is not only mixed from the atmosphere when melting the Cu—Ni—Si—Mg based copper alloy strip, but is also mixed by reducing the moisture contained in the refractory, the molten metal coating, and the like. In order to keep the O concentration low, avoid contact between the molten metal and the atmosphere with charcoal coating or melting flux, etc., dry the member in contact with the molten metal and reduce its moisture sufficiently, and control the oxygen content of the raw material That is important.

さらに,本発明者は,C濃度とCu−Ni−Si−Mg系銅合金条の特性との間に相関があることも発見した。すなわち,O,S,Se,Te,P,As,SbおよびBi濃度が同等であっても,C濃度が高いほど優れた強度および応力緩和特性が得られることを見出したのである。この理由については,溶湯中にCが存在すると,金属Mgとして溶湯中に存在するMgの割合が増加するためと推定された。   Furthermore, the present inventor has also found that there is a correlation between the C concentration and the characteristics of the Cu—Ni—Si—Mg based copper alloy strip. That is, it has been found that even when the O, S, Se, Te, P, As, Sb, and Bi concentrations are equal, the higher the C concentration, the better the strength and stress relaxation characteristics. About this reason, when C exists in a molten metal, it was estimated that the ratio of Mg which exists in a molten metal as metal Mg increases.

本発明は上記発見に基づき成されたものであり,請求項1に記載のように、
1.0〜4.5質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度のSiを含有し、さらにMgを含有し、残部がCuおよび不可避的不純物より構成されるCu合金であって,0.00054〜0.0015質量%のCを含有し、Mg濃度ならびに該不可避的不純物中のO,S,Se,Te,P,As,SbおよびBiの等価濃度(T)を次式の範囲に調整したことを特徴とする応力緩和特性に優れたCu−Ni−Si−Mg系銅合金条である。

Figure 0003946709
The present invention has been made based on the above discovery, and as described in claim 1,
Containing 1.0 to 4.5% by mass of Ni, containing Si at a concentration of 1/6 to 1/4 with respect to the mass% concentration of Ni, further containing Mg , the balance being Cu and inevitable impurities Cu alloy composed of 0.00054 to 0.0015 mass% of C, Mg concentration and O, S, Se, Te, P, As, Sb and Bi in the inevitable impurities It is a Cu-Ni-Si-Mg-based copper alloy strip excellent in stress relaxation characteristics characterized by adjusting the equivalent concentration (T) to the range of the following formula.
Figure 0003946709

(1)Ni及びSi
Ni及びSiは、時効処理を行うことにより、Ni2Siを主とする金属間化合物の微細な粒子を形成する。その結果、合金の強度が著しく増加し,同時に電気伝導度も上昇する。Siの添加濃度(質量%)は、Niの添加濃度(質量%)の1/6〜1/4の範囲とする。Si添加量がこの範囲から外れると、導電率が低下する。Niは1.0〜4.5質量%の範囲で添加する。Niが1.0を下回ると充分な強度が得られない。Niが4.5質量%を超えると,熱間圧延で割れが発生する。
(1) Ni and Si
Ni and Si form fine particles of an intermetallic compound mainly composed of Ni 2 Si by performing an aging treatment. As a result, the strength of the alloy is significantly increased and at the same time the electrical conductivity is increased. The addition concentration (mass%) of Si is in the range of 1/6 to 1/4 of the addition concentration (mass%) of Ni. If the Si addition amount is out of this range, the electrical conductivity is lowered. Ni is added in the range of 1.0 to 4.5 mass%. If Ni is less than 1.0, sufficient strength cannot be obtained. If Ni exceeds 4.5% by mass, cracking occurs during hot rolling.

(2)Mg,O,S,Se,Te,P,As,SbおよびBi濃度
O,S,Se,Te,P,As,SbおよびBiは,それぞれMgO,MgS,MgSe,MgTe,Mg32,Mg3As2,Mg3Sb2およびMg3Bi2を形成することにより,Cu−Ni−Si系銅合金に対するMg添加の効果を減ずる。全てのO,S,Se,Te,P,As,SbおよびBiが,Mgとの間で上記化合物を形成するとき,化合物形成に消費されるMgの濃度は24Tと推算される。Tは不純物の等価濃度を示すパラメ−タであり,次式で与えられる。

Figure 0003946709
ここで,[%i]は元素iの含有濃度(質量%)である。また,24,16,32,79,128,31,75,122および209は,それぞれMg,O,S,Se,Te,P,As,SbおよびBiの原子量である。不純物と化合物を形成していないフリ−のMg,すなわち特性改善に寄与するMgの濃度を[%Mg]0とすると,
Figure 0003946709
となる。[%Mg]0が強度および応力緩和特性と相関をもつことは,本発明者の実験によって確かめられた。この場合,[%Mg]0=0〜0.01の範囲では[%Mg]0が増加するとともに特性が急激に向上し,[%Mg]0が0.01を超えると,[%Mg]0増加による特性の向上は緩やかになった。そこで,十分なMg添加効果を得るための条件を,
Figure 0003946709
と規定する。この関係式により,不純物等価濃度(T)が決まっている場合はMgの最少添加濃度が規定され,Mg濃度が決まっている場合は不純物等価濃度(T)の最大許容値が規定される。 (2) Mg, O, S, Se, Te, P, As, Sb and Bi concentrations O, S, Se, Te, P, As, Sb and Bi are MgO, MgS, MgSe, MgTe, Mg 3 P, respectively. By forming 2 , Mg 3 As 2 , Mg 3 Sb 2 and Mg 3 Bi 2 , the effect of adding Mg to the Cu—Ni—Si based copper alloy is reduced. When all of O, S, Se, Te, P, As, Sb, and Bi form the above compound with Mg, the concentration of Mg consumed for compound formation is estimated to be 24T. T is a parameter indicating the equivalent concentration of impurities, and is given by the following equation.
Figure 0003946709
Here, [% i] is the content concentration (mass%) of the element i. Further, 24, 16, 32, 79, 128, 31, 75, 122 and 209 are the atomic weights of Mg, O, S, Se, Te, P, As, Sb and Bi, respectively. Assuming that the concentration of free Mg that does not form a compound with impurities, that is, Mg that contributes to property improvement, is [% Mg] 0 ,
Figure 0003946709
It becomes. It has been confirmed by experiments of the present inventors that [% Mg] 0 has a correlation with strength and stress relaxation characteristics. In this case, [% Mg] 0 = in the range of 0 to 0.01 is [% Mg] 0 is characteristic with increases rapidly increase, exceeds [% Mg] 0 is 0.01, [% Mg] The improvement in characteristics due to an increase of 0 has become gradual. Therefore, the conditions for obtaining a sufficient Mg addition effect are as follows:
Figure 0003946709
It prescribes. According to this relational expression, when the impurity equivalent concentration (T) is determined, the minimum addition concentration of Mg is defined, and when the Mg concentration is determined, the maximum allowable value of the impurity equivalent concentration (T) is defined.

一方,Mg添加濃度[%Mg]は0.20%以下にする必要がある。Mgの添加量が0.20%を超えると,インゴットの鋳肌が劣化し,熱間圧延で表面欠陥が発生するためである。特に良好な鋳肌を求める場合には,[%Mg]を0.15%以下にすることが好ましい。   On the other hand, the Mg addition concentration [% Mg] needs to be 0.20% or less. This is because if the amount of Mg exceeds 0.20%, the casting surface of the ingot deteriorates and surface defects are generated by hot rolling. When obtaining a particularly good casting surface, it is preferable to set [% Mg] to 0.15% or less.

また,不純物等価濃度Tは,0.005以下にする必要がある。Tが0.005を超えると,Mg添加量を調整して式(3)の関係を満たしたとしても,MgO,MgS,MgSe,MgTe,Mg32,Mg3As2,Mg3Sb2およびMg3Bi2といった非金属介在物が増加し,冷間圧延の際に介在物が表面に現出し表面傷が発生する,伸びや曲げ等の特性が劣化する等の不具合が生じるためである。以上,良好な特性および製造性が得られる条件をまとめると,

Figure 0003946709
となる。 The impurity equivalent concentration T needs to be 0.005 or less. When T exceeds 0.005, MgO, MgS, MgSe, MgTe, Mg 3 P 2 , Mg 3 As 2 , Mg 3 Sb 2 are satisfied even if the amount of Mg added is adjusted and the relationship of formula (3) is satisfied. This is because non-metallic inclusions such as Mg 3 Bi 2 increase, the inclusions appear on the surface during cold rolling, surface defects occur, and the properties such as elongation and bending deteriorate. . The conditions for obtaining good characteristics and manufacturability are summarized as follows.
Figure 0003946709
It becomes.

なお,Cu−Ni−Si−Mg系合金において,S,Se,Te,As,SbおよびBiの濃度を規制することは,特開昭63−297531でも提唱されているが,その目的は0.001〜0.01%のMgを含有するCu−Ni−Si−Mg系合金の熱間加工性を改善することである。一方,本発明のCu−Ni−Si−Mg系合金は,式(3)から明らかなように24T(不純物と化合物を形成するMgの推算値)に加え0.01%のMgを含有するため,上記不純物のうち固溶状態のものはほとんど存在しない。したがって,Mgに起因してインゴット鋳肌が若干劣ることはあっても,上記不純物の存在による熱間加工性の劣化はほとんど見られない。   In Cu-Ni-Si-Mg-based alloys, the regulation of the concentrations of S, Se, Te, As, Sb, and Bi has been proposed in Japanese Patent Laid-Open No. 63-297531. It is to improve the hot workability of a Cu—Ni—Si—Mg based alloy containing 001 to 0.01% Mg. On the other hand, the Cu—Ni—Si—Mg alloy of the present invention contains 0.01% Mg in addition to 24T (estimated value of Mg that forms a compound with impurities) as is clear from the formula (3). Of the above impurities, there is almost no solid solution. Therefore, even though the ingot casting surface is slightly inferior due to Mg, there is almost no deterioration in hot workability due to the presence of the impurities.

また,特開昭63−297531でのMg添加量では最大でも0.01質量%と微量であるため,Cu−Ni−Si系銅合金の強度や応力緩和特性を充分に改善することはできない。
Cu−Ni−Si−Mg系銅合金において,Mg濃度と不純物濃度との関係に着目し,特性を改善する技術は過去に報告されてない。
Further, since the amount of Mg added in JP-A-63-297531 is as small as 0.01% by mass at the maximum, the strength and stress relaxation characteristics of the Cu—Ni—Si based copper alloy cannot be sufficiently improved.
In the Cu—Ni—Si—Mg based copper alloy, attention has been paid to the relationship between the Mg concentration and the impurity concentration, and no technology for improving the characteristics has been reported in the past.

(3)C濃度
Tおよび[%Mg]が同等であっても,0.0005質量%以上のCを含有すると,強度および応力緩和特性が向上する。しかし,C濃度が0.0015質量%を超えると,インゴットの粒界にCが偏析し,インゴットに粒界割れが発生する。特性改善効果と製造性を両立させるためのC濃度範囲は,0.0005〜0.0015質量%である。
(3) C concentration Even when T and [% Mg] are equal, if containing 0.0005 mass% or more of C, strength and stress relaxation characteristics are improved. However, if the C concentration exceeds 0.0015% by mass, C segregates at the grain boundaries of the ingot, and intergranular cracking occurs in the ingot. The C concentration range for achieving both the characteristic improvement effect and manufacturability is 0.0005 to 0.0015 mass%.

なお,特開平11−43731では,Cを0.0003〜0.01質量%含有するCu−Ni−Si−Mg系銅合金が提唱されている。この発明でのC添加の目的は,スタンピング(プレス)の際のばり,だれ等を少なくすることであり,CがCu−Ni−Si−Mg系銅合金の強度および応力緩和特性を向上させることは述べられていない。このように発明の目的が異なるため,特開平11−43731の実施例における発明合金は,0.0015〜0.080質量%と高濃度のCを含有している。0.0015質量%以上のCを添加しても,強度および応力緩和特性はほとんど向上せず,合金の製造性が低下するのみである。   In JP-A-11-43731, a Cu—Ni—Si—Mg based copper alloy containing 0.0003 to 0.01 mass% of C is proposed. The purpose of C addition in this invention is to reduce flash, dripping, etc. during stamping (pressing), and C improves the strength and stress relaxation characteristics of Cu—Ni—Si—Mg based copper alloys. Is not mentioned. Thus, since the object of the invention is different, the alloy according to the embodiment of JP-A-11-43731 contains a high concentration of 0.0015 to 0.080 mass%. Even if 0.0015 mass% or more of C is added, the strength and stress relaxation characteristics are hardly improved, and the manufacturability of the alloy is only lowered.

(4)Sn,Fe,Co,Mo,Mn,Zn,Ag
Cu−Ni−Si−Mgの強度を改善するために,Sn,Fe,Co,Mo,Mn,ZnおよびAgのうち一種以上を,添加することができる。
(4) Sn, Fe, Co, Mo, Mn, Zn, Ag
In order to improve the strength of Cu—Ni—Si—Mg, one or more of Sn, Fe, Co, Mo, Mn, Zn, and Ag can be added.

一種類以上の総量が0.01質量%以下では強度改善効果が小さく,一種類以上の総量が2.0質量%を超えると導電率が低下する。そこで,一種類以上を総量を0.01〜2.0質量%とする。   When the total amount of one or more types is 0.01% by mass or less, the effect of improving the strength is small, and when the total amount of one or more types exceeds 2.0% by mass, the conductivity is lowered. Therefore, the total amount of one or more types is set to 0.01 to 2.0 mass%.

市販の電気銅をアノ−ドとして,硝酸銅浴中で電解を行い,カソ−ドに高純度銅を析出させた。この高純度銅中のS,Se,Te,P,As,SbおよびBi濃度は,いずれも0.0001質量%未満であった。以下,この高純度銅を原料として用いた。   Electrolysis was performed in a copper nitrate bath using commercially available electrolytic copper as an anode, and high-purity copper was deposited on the cathode. The concentrations of S, Se, Te, P, As, Sb, and Bi in this high purity copper were all less than 0.0001% by mass. Hereinafter, this high purity copper was used as a raw material.

高周波誘導炉を用い,内径60mm,深さ200 mmの黒鉛るつぼ中で2 kgの高純度銅を溶解した。溶銅表面を木炭片で覆った後,所定量のNi,SiおよびMgを添加し,溶銅温度を1200℃に調整した。次に,O,S,Se,Te,P,As,Sb,Biを添加して不純物濃度を調整した。なおOの添加にはCu2Oを用い,O以外の不純物の添加には各元素の母合金等を用いた。その後,溶湯を金型に鋳込み,幅60mm,厚み30mmのインゴットを製造した。 Using a high frequency induction furnace, 2 kg of high-purity copper was melted in a graphite crucible having an inner diameter of 60 mm and a depth of 200 mm. After covering the surface of the molten copper with charcoal pieces, predetermined amounts of Ni, Si and Mg were added to adjust the molten copper temperature to 1200 ° C. Next, O, S, Se, Te, P, As, Sb, and Bi were added to adjust the impurity concentration. Cu 2 O was used for addition of O, and a mother alloy of each element was used for addition of impurities other than O. Thereafter, the molten metal was cast into a mold to produce an ingot having a width of 60 mm and a thickness of 30 mm.

次に,このインゴットを950℃で3時間加熱した後,厚さ8mmまで熱間圧延した。この熱間圧延板表面の酸化スケ−ルをグラインダ−で研削,除去した後,板厚0.2 mmまで冷間圧延した。溶体化処理として800℃で20秒間加熱し水中で急冷した後,化学研磨により表面酸化膜を除去した。その後,加工度25%の冷間圧延を行い,板厚を0.15mmとした。最後に,時効処理として水素中で460℃で6時間加熱した。
このように作製した試料について,次の試験を行った。
Next, this ingot was heated at 950 ° C. for 3 hours and then hot-rolled to a thickness of 8 mm. The oxide scale on the surface of the hot rolled sheet was ground and removed by a grinder, and then cold rolled to a sheet thickness of 0.2 mm. As a solution treatment, after heating at 800 ° C. for 20 seconds and quenching in water, the surface oxide film was removed by chemical polishing. Thereafter, cold rolling was performed at a workability of 25%, and the plate thickness was 0.15 mm. Finally, it was heated at 460 ° C. for 6 hours in hydrogen as an aging treatment.
The following test was performed on the sample thus prepared.

(1)成分分析
Ni,SiおよびMg濃度をICP−発光分光法で,O濃度を不活性ガス溶融−赤外線吸収法で,S,Se,Te,P,As,SbおよびBi濃度をICP−質量分析法で,C濃度を燃焼−赤外線吸収法でそれぞれ測定した。
(1) Component analysis Ni, Si and Mg concentrations are determined by ICP-emission spectroscopy, O concentrations are determined by inert gas melting-infrared absorption method, and S, Se, Te, P, As, Sb and Bi concentrations are determined by ICP-mass. In the analytical method, the C concentration was measured by the combustion-infrared absorption method.

(2)0.2%耐力
引張り方向が圧延方向と平行になる方向に,JIS−Z2201(2003年)に規定された13B号試験片を採取した。この試験片を用いてJIS−Z2241(2003年)に従って引張試験を行い0.2%耐力を求めた。
(2) 0.2% proof stress No. 13B test piece defined in JIS-Z2201 (2003) was collected in a direction in which the tensile direction was parallel to the rolling direction. Using this test piece, a tensile test was conducted according to JIS-Z2241 (2003) to obtain 0.2% yield strength.

(3)応力緩和率
幅10mm,長さ100mmの短冊形状の試験片を,試験片の長手方向が圧延方向と平行になるように採取した。図1のように,l=50mmの位置を作用点として,試験片にy0のたわみを与え,0.2%耐力の80%に相当する応力(σ0)を負荷した。y0は次式により求めた。
0=(2/3)・l2・σ0 / (E・T)
ここで,Eはヤング率(131 GPa)であり,Tは試料の厚みである。150℃にて1000時間加熱後に除荷し,図2のように永久変形量(高さ)yを測定し,応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。
(3) Stress relaxation rate A strip-shaped test piece having a width of 10 mm and a length of 100 mm was collected so that the longitudinal direction of the test piece was parallel to the rolling direction. As shown in FIG. 1, with the position of l = 50 mm as the working point, a deflection of y 0 was given to the test piece, and a stress (σ 0 ) corresponding to 80% of the 0.2% proof stress was applied. y 0 was determined by the following equation.
y 0 = (2/3) · l 2 · σ 0 / (E · T)
Here, E is Young's modulus (131 GPa), and T is the thickness of the sample. Unloading after heating at 150 ° C. for 1000 hours, measuring the amount of permanent deformation (height) y as shown in FIG. 2, and the stress relaxation rate {[y (mm) / y0 (mm)] × 100 (%)} Was calculated.

表1に,成分組成,0.2%耐力および応力緩和率を示す。全ての試料の
C濃度は,0.0008〜0.0010質量%の範囲に収まっていた。

Figure 0003946709
Table 1 shows the component composition, 0.2% proof stress and stress relaxation rate. The C concentration of all the samples was within the range of 0.0008 to 0.0010% by mass.
Figure 0003946709

本発明例No.1〜14では,

Figure 0003946709
が満たされおり,600MPaを超える高い耐力,および15%を下回る低い応力緩和率が得られている。また,[%Mg]が0.15%以下であるNo.1〜13のインゴット鋳肌は良好であり,熱間圧延後のグラインダ−研削において,表面を0.5mm除去することにより,良好な表面品質が得られた。[%Mg]が0.15〜0.20のNo.14については,良好な表面品質を得るために必要な熱間圧延板表面のグラインダ−研削量は1 mmであった。 In Invention Examples No. 1 to 14,
Figure 0003946709
Is satisfied, and a high yield strength exceeding 600 MPa and a low stress relaxation rate of less than 15% are obtained. Moreover, the ingot casting surface of No. 1-13 whose [% Mg] is 0.15% or less is good, and it is good by removing the surface by 0.5 mm in the grinder grinding after hot rolling. The surface quality was obtained. No. [% Mg] is 0.15 to 0.20. For No. 14, the amount of grinder grinding on the surface of the hot-rolled sheet necessary for obtaining good surface quality was 1 mm.

一方,比較例であるNo.15〜18は,

Figure 0003946709
であり,0.2%耐力が600MPaを下回り,応力緩和率が20%を超えた。 On the other hand, No. as a comparative example. 15-18 are
Figure 0003946709
The 0.2% proof stress was less than 600 MPa, and the stress relaxation rate exceeded 20%.

また,比較例のNo.19は[%Mg]が0.2を超えているため,熱間圧延板の表面を1 mm研削しても,割れ状の部位が表面に残留した。引張試験および応力緩和特性用の試験片は,この表面欠陥部を外して採取した。   The comparative example No. In No. 19, [% Mg] exceeded 0.2, so even if the surface of the hot-rolled sheet was ground by 1 mm, a cracked portion remained on the surface. The specimens for tensile tests and stress relaxation properties were collected with the surface defects removed.

さらに,Tが0.005を超えているNo.20については,表面に存在する非金属介在物に起因して,冷間圧延の際に,表面傷が発生した。   Furthermore, No. with T exceeding 0.005. For No. 20, surface flaws occurred during cold rolling due to non-metallic inclusions present on the surface.

図3,4にそれぞれ,[%Mg]−24Tと0.2%耐力および応力緩和率との関係を示す。[%Mg]−24Tは,不純物と化合物を形成していないフリ−なMgの濃度を表すパラメ−タである。
(1)

Figure 0003946709
の範囲において,[%Mg]−24Tが増加すると特性が急激に向上すること,
(2)
Figure 0003946709
の範囲では, [%Mg]−24Tが増加すると,特性が緩やかに向上すること,
(3)
Figure 0003946709
の範囲では, [%Mg]−24Tが増加しても特性がほとんど変化しないこと,
がわかる。 3 and 4 show the relationship between [% Mg] -24T and 0.2% proof stress and stress relaxation rate, respectively. [% Mg] -24T is a parameter indicating the concentration of free Mg that does not form a compound with impurities.
(1)
Figure 0003946709
When [% Mg] -24T is increased in the range of
(2)
Figure 0003946709
When [% Mg] -24T is increased, the characteristics improve gradually.
(3)
Figure 0003946709
In the range of, the characteristics hardly change even when [% Mg] -24T increases,
I understand.

高周波誘導炉を用い,内径60mm,深さ200 mmの黒鉛るつぼまたはアルミナるつぼ中で,2 kgの高純度銅を溶解した。溶銅表面を木炭片で覆った後,所定量のNi,Si,Mgを添加し,溶湯温度を1150〜1450℃の温度で10分間保持した。黒鉛るつぼを用いる替わりにアルミナるつぼを用いることにより,Cu−Ni−Si−Mg中のC濃度が低くなる。また,Cu−Ni−Si−Mg中のCの溶解度は,高温ほど大きくなるので,溶湯の保持温度が高いほどC濃度が高くなる。   Using a high frequency induction furnace, 2 kg of high purity copper was melted in a graphite crucible or alumina crucible having an inner diameter of 60 mm and a depth of 200 mm. After covering the surface of the molten copper with charcoal pieces, predetermined amounts of Ni, Si, and Mg were added, and the molten metal temperature was maintained at a temperature of 1150 to 1450 ° C. for 10 minutes. By using an alumina crucible instead of using a graphite crucible, the C concentration in Cu—Ni—Si—Mg is lowered. Moreover, since the solubility of C in Cu-Ni-Si-Mg increases as the temperature increases, the C concentration increases as the holding temperature of the molten metal increases.

その後,O,S,Se,Te,P,As,Sb,Biを添加して不純物濃度を調整した後,溶湯温度を1200℃に調整し,溶湯を金型に鋳込み,幅60mm,厚み30mmのインゴットを製造した。   Then, after adding O, S, Se, Te, P, As, Sb, Bi and adjusting the impurity concentration, the molten metal temperature is adjusted to 1200 ° C., the molten metal is cast into a mold, and the width is 60 mm and the thickness is 30 mm. An ingot was manufactured.

次に,このインゴットを950℃で3時間加熱した後,厚さ8mmまで熱間圧延した。この熱延材表面の酸化スケ−ルをグラインダ−で研削,除去した後,板厚0.3 mmまで冷間圧延した。溶体化処理として800℃で20秒間加熱し水中で急冷した後,化学研磨により表面酸化膜を除去した。その後,加工度50%の冷間圧延を行い板厚を0.15mmとし,水素中で440℃で6時間の時効処理を行った。時効後,加工度20%の冷間圧延を行い板厚を0.12mmとし,最後に水素中で300℃で30分間加熱し歪取り焼鈍を行った。実施例1の工程が曲げや伸び等の延性を重視した工程であるのに対し,実施例2の工程は強度を重視した工程である。   Next, this ingot was heated at 950 ° C. for 3 hours and then hot-rolled to a thickness of 8 mm. The oxide scale on the surface of the hot-rolled material was ground and removed by a grinder, and then cold-rolled to a thickness of 0.3 mm. As a solution treatment, after heating at 800 ° C. for 20 seconds and quenching in water, the surface oxide film was removed by chemical polishing. Thereafter, cold rolling with a workability of 50% was performed to a plate thickness of 0.15 mm, and an aging treatment was performed in hydrogen at 440 ° C. for 6 hours. After aging, it was cold-rolled with a workability of 20% to a sheet thickness of 0.12 mm, and finally heated in hydrogen at 300 ° C. for 30 minutes for strain relief annealing. While the process of Example 1 is a process that places importance on ductility such as bending and elongation, the process of Example 2 is a process that places importance on strength.

作製した試料について,実施例1と同様の方法で,成分分析を行い,0.2%耐力および応力緩和特性を評価した。   The prepared sample was subjected to component analysis in the same manner as in Example 1 to evaluate 0.2% proof stress and stress relaxation characteristics.

Figure 0003946709
表2に,成分組成,0.2%耐力および応力緩和率を示す。Tを0.0005程度に調整し,るつぼの種類および溶湯保持温度によりC濃度を変化させている。図5,6に示すように,
Figure 0003946709
の範囲において,C濃度の増加とともに,0.2%耐力が増加し,応力緩和率が低下している。C添加の効果は,[%C]=0.0005%でほぼ飽和している。0.00015質量%を超えるCを含有するNo.27〜28では,インゴットの内部において,Cの粒界偏析に起因する割れが発生し,この割れにより製造歩留まりが低下した。
(実施例3)
Figure 0003946709
Table 2 shows the component composition, 0.2% proof stress and stress relaxation rate. T is adjusted to about 0.0005, and the C concentration is changed depending on the type of the crucible and the molten metal holding temperature. As shown in FIGS.
Figure 0003946709
In the range, the 0.2% proof stress increases and the stress relaxation rate decreases as the C concentration increases. The effect of C addition is almost saturated at [% C] = 0.0005%. No. containing C exceeding 0.00015% by mass. In Nos. 27 to 28, cracks due to segregation of C grain boundaries occurred inside the ingot, and the production yield decreased due to the cracks.
(Example 3)

Sn,Fe,Co,Mo,Mn,Zn,Ag等の元素を添加したCu−Ni−Si−Mg系銅合金条について,本発明の効果を検証した。実験方法は,実施例1と同じである。ただし,Sn,Fe,Co,Mo,Mn,ZnおよびAg濃度はICP−発光分光法で測定した。   The effect of the present invention was verified for Cu—Ni—Si—Mg based copper alloy strips to which elements such as Sn, Fe, Co, Mo, Mn, Zn, and Ag were added. The experimental method is the same as in Example 1. However, Sn, Fe, Co, Mo, Mn, Zn and Ag concentrations were measured by ICP-emission spectroscopy.

Figure 0003946709

表3に評価結果を示す。Sn,Fe,Co,Mo,Mn,Zn,Ag等の元素を添加したCu−Ni−Si−Mg系銅合金条においても,
Figure 0003946709
に調整することにより,0.2%耐力が上昇し,応力緩和率が小さくなることがわかった。
Figure 0003946709

Table 3 shows the evaluation results. Even in a Cu—Ni—Si—Mg based copper alloy strip to which elements such as Sn, Fe, Co, Mo, Mn, Zn, and Ag are added,
Figure 0003946709
It was found that the 0.2% proof stress increased and the stress relaxation rate decreased by adjusting to.

応力緩和試験法の説明図である。It is explanatory drawing of a stress relaxation test method. 応力緩和試験法の永久変形量に関する説明図である。It is explanatory drawing regarding the amount of permanent deformation of a stress relaxation test method. [%Mg]−24Tと0.2%耐力との関係を示す図である。It is a figure which shows the relationship between [% Mg] -24T and 0.2% yield strength. [%Mg]−24Tと応力緩和率との関係を示す図である。It is a figure which shows the relationship between [% Mg] -24T and a stress relaxation rate. C濃度と0.2%耐力との関係を示す図である。It is a figure which shows the relationship between C density | concentration and 0.2% yield strength. C濃度と応力緩和率との関係を示す図である。It is a figure which shows the relationship between C density | concentration and a stress relaxation rate.

Claims (1)

1.0〜4.5質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度のSiを含有し、さらにMgを含有し、残部がCuおよび不可避的不純物より構成されるCu合金であって,0.00054〜0.0015質量%のCを有し、Mg濃度ならびに該不可避的不純物中のO,S,Se,Te,P,As,SbおよびBiの等価濃度(T)を次式の範囲に調整してフリーのMg含有量を0.01質量%以上とすることにより、600MPaを超える耐力と15%未満の応力緩和率を備えていることを特徴とする応力緩和特性に優れたCu−Ni−Si−Mg系銅合金条。
Figure 0003946709
Containing 1.0 to 4.5% by mass of Ni, containing Si at a concentration of 1/6 to 1/4 with respect to the mass% concentration of Ni, further containing Mg, the balance being Cu and inevitable impurities Cu alloy composed of 0.00054 to 0.0015 mass% of C, Mg concentration and O, S, Se, Te, P, As, Sb and Bi in the inevitable impurities By adjusting the equivalent concentration (T) to the range of the following formula and setting the free Mg content to 0.01% by mass or more, it has a proof stress exceeding 600 MPa and a stress relaxation rate of less than 15%. Cu-Ni-Si-Mg-based copper alloy strips having excellent stress relaxation properties.
Figure 0003946709
JP2004143258A 2004-05-13 2004-05-13 Cu-Ni-Si-Mg copper alloy strip Active JP3946709B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004143258A JP3946709B2 (en) 2004-05-13 2004-05-13 Cu-Ni-Si-Mg copper alloy strip
TW094112845A TW200600594A (en) 2004-05-13 2005-04-22 Cu-Ni-Si-Mg-based copper alloy strip
CNB2005100712219A CN100410403C (en) 2004-05-13 2005-05-13 Cu-Ni-Si-Mg seris copper alloy strip
KR1020050040233A KR100684095B1 (en) 2004-05-13 2005-05-13 Cu-Ni-Si-Mg BASED COPPER ALLOY STRIP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143258A JP3946709B2 (en) 2004-05-13 2004-05-13 Cu-Ni-Si-Mg copper alloy strip

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006312908A Division JP4287878B2 (en) 2006-11-20 2006-11-20 Cu-Ni-Si-Mg copper alloy strip

Publications (2)

Publication Number Publication Date
JP2005325390A JP2005325390A (en) 2005-11-24
JP3946709B2 true JP3946709B2 (en) 2007-07-18

Family

ID=35349209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143258A Active JP3946709B2 (en) 2004-05-13 2004-05-13 Cu-Ni-Si-Mg copper alloy strip

Country Status (4)

Country Link
JP (1) JP3946709B2 (en)
KR (1) KR100684095B1 (en)
CN (1) CN100410403C (en)
TW (1) TW200600594A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247021B2 (en) * 2005-11-28 2013-07-24 Jx日鉱日石金属株式会社 Cu-Ni-Si-based alloy plate / strip with reduced wrinkles in the bent portion and method for producing the same
CN102562808B (en) * 2011-12-15 2015-01-07 广州安达精密工业股份有限公司 Substrate layer for bearing bush
JP6039868B2 (en) * 2012-12-27 2016-12-07 株式会社Uacj製箔 Method for producing negative electrode current collector for secondary battery
JP6266354B2 (en) * 2014-01-15 2018-01-24 株式会社神戸製鋼所 Copper alloy for electrical and electronic parts
CN112725657B (en) * 2020-12-24 2021-09-17 国工恒昌新材料沧州有限公司 Preparation method of C70350 nickel-silicon bronze strip

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594221A (en) * 1985-04-26 1986-06-10 Olin Corporation Multipurpose copper alloys with moderate conductivity and high strength
JPH0830235B2 (en) * 1991-04-24 1996-03-27 日鉱金属株式会社 Copper alloy for conductive spring
JP2797846B2 (en) * 1992-06-11 1998-09-17 三菱伸銅株式会社 Cu alloy lead frame material for resin-encapsulated semiconductor devices
JP3800269B2 (en) * 1997-07-23 2006-07-26 株式会社神戸製鋼所 High strength copper alloy with excellent stamping workability and silver plating
JP4154100B2 (en) * 1999-12-17 2008-09-24 日鉱金属株式会社 Copper alloy for electronic materials having excellent surface characteristics and method for producing the same
US7090732B2 (en) * 2000-12-15 2006-08-15 The Furukawa Electric, Co., Ltd. High-mechanical strength copper alloy
JP3520046B2 (en) * 2000-12-15 2004-04-19 古河電気工業株式会社 High strength copper alloy

Also Published As

Publication number Publication date
CN1696320A (en) 2005-11-16
CN100410403C (en) 2008-08-13
TWI297734B (en) 2008-06-11
JP2005325390A (en) 2005-11-24
KR20060047904A (en) 2006-05-18
TW200600594A (en) 2006-01-01
KR100684095B1 (en) 2007-02-20

Similar Documents

Publication Publication Date Title
JP4068626B2 (en) Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same
KR101211984B1 (en) Cu-ni-si-based alloy for electronic material
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
KR101297485B1 (en) Cu-ni-si-co-cr alloy for electronic material
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP5225787B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
KR100622320B1 (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP4959141B2 (en) High strength copper alloy
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP2007126739A (en) Copper alloy for electronic material
JP4813814B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
KR100684095B1 (en) Cu-Ni-Si-Mg BASED COPPER ALLOY STRIP
JP4287878B2 (en) Cu-Ni-Si-Mg copper alloy strip
JP4574583B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP2007039789A (en) Cu-Ni-Si-Zn-Sn BASED ALLOY STRIP EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING, AND TIN PLATED STRIP THEREOF
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP6228725B2 (en) Cu-Co-Si alloy and method for producing the same
JP4020881B2 (en) Cu-Ni-Si-Mg copper alloy strip
JP4642701B2 (en) Cu-Ni-Si alloy strips with excellent plating adhesion
JP4175920B2 (en) High strength copper alloy
JP4130593B2 (en) High strength and high conductivity copper alloy with excellent fatigue and intermediate temperature characteristics
JP3837140B2 (en) Cu-Ni-Si-Mg copper alloy strip
KR20160001634A (en) Copper alloy material, method for producing copper alloy material, lead frames and connectors
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060405

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070411

R150 Certificate of patent or registration of utility model

Ref document number: 3946709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250