JP2682577B2 - Manufacturing method of copper alloy for terminals and connectors - Google Patents

Manufacturing method of copper alloy for terminals and connectors

Info

Publication number
JP2682577B2
JP2682577B2 JP27083788A JP27083788A JP2682577B2 JP 2682577 B2 JP2682577 B2 JP 2682577B2 JP 27083788 A JP27083788 A JP 27083788A JP 27083788 A JP27083788 A JP 27083788A JP 2682577 B2 JP2682577 B2 JP 2682577B2
Authority
JP
Japan
Prior art keywords
weight
copper alloy
connectors
terminals
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27083788A
Other languages
Japanese (ja)
Other versions
JPH02118057A (en
Inventor
宏昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP27083788A priority Critical patent/JP2682577B2/en
Publication of JPH02118057A publication Critical patent/JPH02118057A/en
Application granted granted Critical
Publication of JP2682577B2 publication Critical patent/JP2682577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高導電性を有し、かつ、ばね特性(ばね限界
値)に優れた端子・コネクター用銅合金及びその製造方
法に関するものである。
TECHNICAL FIELD The present invention relates to a copper alloy for terminals / connectors having high conductivity and excellent spring characteristics (spring limit value), and a method for producing the same. .

〔従来の技術及び問題点〕[Conventional technology and problems]

従来、端子・コネクター用銅合金としては、安価な黄
銅又は優れたばね特性を有する洋白、りん青銅等が使用
されてきた。
Conventionally, as the copper alloy for terminals and connectors, inexpensive brass, nickel silver, phosphor bronze or the like having excellent spring characteristics have been used.

しかし黄銅は、端子・コネクター用としては強度、ば
ね特性が劣っており、又りん青銅及び洋白は優れたばね
特性を有しているが、りん青銅は8重量%のSnを含み、
又洋白は18重量%のNiを含むため高価な合金であり、そ
して又、製造上熱間加工性が悪い等の加工上の制約もあ
った。さらに、端子・コネクターの軽薄短小化が従来的
に進むと考えられ、上述の銅合金では導電性が低く、満
足するとは言えなかった。従って、導電性が良好で、し
かもばね特性に優れた安価な合金の現出が待たれてい
た。
However, brass has inferior strength and spring properties for terminals and connectors, and phosphor bronze and nickel silver have excellent spring properties, but phosphor bronze contains 8 wt% Sn.
Further, nickel silver is an expensive alloy because it contains 18% by weight of Ni, and there are also processing restrictions such as poor hot workability in manufacturing. Further, it is considered that the terminals, connectors are made lighter, thinner, shorter, and smaller, and the above-mentioned copper alloys have low conductivity, which cannot be said to be satisfactory. Therefore, the appearance of an inexpensive alloy having excellent conductivity and excellent spring characteristics has been awaited.

〔発明の構成〕[Configuration of the invention]

本発明はかかる点に鑑みなされたもので、導電性が良
好で、しかもばね特性に優れた安価な合金の模索を行
い、合金系としてCu−Cr−Zr系の研究を行った。従来か
らCu−Cr−Zr系は、高強度、高導電型合金として知られ
ているが、ばね特性が不十分であり改良の必要があっ
た。本発明者はCu−Cr−Zr系の製造方法について鋭意検
討した結果、特性の改善がはかれることを見出したもの
である。
The present invention has been made in view of the above points, and an inexpensive alloy having good conductivity and excellent spring characteristics was sought, and a Cu-Cr-Zr alloy system was studied. Conventionally, Cu-Cr-Zr alloys have been known as high-strength, high-conductivity alloys, but their spring properties are insufficient and need to be improved. The present inventor has conducted intensive studies on a method for producing a Cu—Cr—Zr system, and has found that the characteristics can be improved.

すなわち、本発明は、Cr0.1〜1.5重量%、Zr0.05〜1.
0重量%及びZn0.01〜3.0重量%を含み、残部Cu及び不可
避不純物からなる銅合金を熱間圧延し、熱間圧延以降の
工程で時効処理した後、10%以上の加工度での冷間加工
を施してから300〜600℃の温度で10sec〜60min焼鈍する
ことを特徴とする端子・コネクター用銅合金の製造方法
及びCr0.1〜1.5重量%、Zr0.05〜1.0重量%、Zn0.01〜
3.0重量%及びAg、Al、Be、Co、Fe、Hf、Mg、Ni、P、S
n、Tiからなる群より選択された1種又は2種以上を総
量で0.01〜1.0重量%を含み、残部Cu及び不可避不純物
からなる銅合金を熱間圧延し、熱間圧延以降の工程で時
効処理した後、10%以上の加工度で冷間加工を施してか
ら、300〜600℃の温度で10sec〜60min焼鈍することを特
徴とする端子・コネクター用銅合金の製造方法に関する
ものである。
That is, the present invention, Cr 0.1 ~ 1.5 wt%, Zr0.05 ~ 1.
After hot rolling a copper alloy containing 0 wt% and 0.01 to 3.0 wt% Zn and the balance Cu and unavoidable impurities, after aging treatment in the steps after hot rolling, cooling at a working degree of 10% or more is performed. A method for manufacturing a copper alloy for terminals and connectors, characterized by annealing for 10 seconds to 60 minutes at a temperature of 300 to 600 ° C after hot working, and Cr 0.1 to 1.5% by weight, Zr 0.05 to 1.0% by weight, Zn0 .01 ~
3.0% by weight and Ag, Al, Be, Co, Fe, Hf, Mg, Ni, P, S
One or two or more selected from the group consisting of n and Ti is included in a total amount of 0.01 to 1.0% by weight, and a copper alloy consisting of the balance Cu and unavoidable impurities is hot-rolled and aged after the hot-rolling. The present invention relates to a method for producing a copper alloy for a terminal / connector, which comprises performing cold working at a working degree of 10% or more and then annealing at a temperature of 300 to 600 ° C. for 10 seconds to 60 minutes.

〔発明の具体的説明〕[Specific description of the invention]

次に、本発明を構成する合金成分及び製造方法の限定
理由を説明する。Crの含有量を0.1〜1.5重量%とする理
由は、Cu自体の高導電性を損なわず微細なCr粒による析
出硬化が期待でき、さらにそれに伴う耐熱性が得られる
ためである。Crの含有量が0.1重量%未満では前述の効
果が期待できず、逆に1.5重量%を超えると導電性の低
下が著しくなるためである。Zrの含有量を0.05〜1.0重
量%とする理由は、析出硬化を促進させ、それに伴う耐
熱性を得るためである。Zrの含有量が0.05重量%未満で
は前述の硬化が得られず、逆に1.0重量%を超えると導
電率及び加工性の低下が著しくなるためである。Znの含
有量を0.01重量%以上、3.0重量%以下とするのは、Zn
添加により導電性を大きく低下させずに半田耐熱剥離性
が非常に改善できるためで、Znの含有量を0.01重量%未
満では前述の効果が期待できず、逆に3.0重量%を超え
ると著しい導電性の低下が起こるためである。半田耐熱
剥離性は、接触抵抗低減、耐食性の向上等の理由でSn又
は半田めっきが素材に施されることが多いため、近年の
信頼性向上の要求から極めて重要となってきている。
Next, the reasons for limiting the alloy components and the manufacturing method constituting the present invention will be described. The reason for setting the Cr content to 0.1 to 1.5% by weight is that precipitation hardening due to fine Cr particles can be expected without impairing the high conductivity of Cu itself, and further heat resistance accompanying it can be obtained. This is because if the Cr content is less than 0.1% by weight, the above-mentioned effects cannot be expected, and conversely, if it exceeds 1.5% by weight, the conductivity is significantly lowered. The reason for setting the Zr content to 0.05 to 1.0% by weight is to accelerate precipitation hardening and obtain heat resistance accompanying it. This is because if the Zr content is less than 0.05% by weight, the above-mentioned curing cannot be obtained, and conversely if it exceeds 1.0% by weight, the conductivity and workability are significantly deteriorated. Zn content of 0.01% by weight or more and 3.0% by weight or less is
This is because the addition of ZnO can improve the heat resistance peeling property of the solder without significantly lowering the conductivity. If the Zn content is less than 0.01% by weight, the above-mentioned effect cannot be expected. This is because sex deterioration occurs. Solder heat resistance peeling property has become extremely important in recent years because of the demand for improved reliability because Sn or solder plating is often applied to the material for the purpose of reducing contact resistance, improving corrosion resistance, and the like.

さらに、Ag、Al、Be、Co、Fe、Hf、Mg、Ni、P、Sn、
Tiからなる群より選択された1種又は2種以上を総量で
0.01〜1.0重量%添加するのは、これらの添加によって
導電性を大きく低下させずに、強度、耐熱性を向上させ
る効果が期待できるためである。含有量を総量で0.01重
量%以上、1.0重量%以下とする理由は、0.01重量%未
満では前述の効果が期待できず、1.0重量%を超えると
導電率の低下が著しくなるからである。
In addition, Ag, Al, Be, Co, Fe, Hf, Mg, Ni, P, Sn,
The total amount of one or more selected from the group consisting of Ti
The reason for adding 0.01 to 1.0% by weight is that these effects can be expected to have the effect of improving strength and heat resistance without significantly reducing conductivity. The reason why the total content is set to 0.01% by weight or more and 1.0% by weight or less is that if the content is less than 0.01% by weight, the above-mentioned effect cannot be expected, and if it exceeds 1.0% by weight, the conductivity is remarkably lowered.

10%以上の加工度で冷間加工を施し、引き続き300〜6
00℃の温度で10sec〜60min焼鈍する理由は、ばね特性を
向上させる効果と、バッチ式により時効を行った場合、
巻きぐせのついた材料を矯正できる効果と、さらに、冷
間圧延によて伸びが低下し、曲げ性が劣化したのを再び
良好な曲げ性にする効果が期待できるためである。10%
未満の加工度の冷間加工では前述の効果が期待できず、
又、焼鈍温度が300℃未満でも又焼鈍時間が10sec未満で
あっても前述の効果が期待できない。逆に、焼鈍温度が
600℃を超えても、又焼鈍時間が60minを超えても材料の
軟化が起こり、ばね特性の向上は期待できない。好まし
くは、テンションアニールを行うことで、さらに良好な
形状が得られる。
Cold-worked with a workability of 10% or more, then 300-6
The reason for annealing for 10 seconds to 60 minutes at a temperature of 00 ° C is that the effect of improving the spring characteristics and the aging by the batch method are
This is because it is possible to expect an effect of straightening a curled material and an effect of making the bendability deteriorated due to cold rolling to have good bendability again. Ten%
In cold working with a working degree of less than the above effect cannot be expected,
Further, even if the annealing temperature is less than 300 ° C. and the annealing time is less than 10 seconds, the above effects cannot be expected. Conversely, if the annealing temperature is
Even if the temperature exceeds 600 ° C or if the annealing time exceeds 60 min, the material softens and the spring characteristics cannot be expected to improve. Preferably, tension annealing is performed to obtain a better shape.

次に、本発明の実施例を説明する。 Next, examples of the present invention will be described.

〔実施例〕〔Example〕

第1表に示した組成の合金を電気銅あるいは無酸素銅
を原料として高周波溶解炉で、大気、不活性又は還元性
雰囲気中で溶解・鋳造した。
Alloys having the compositions shown in Table 1 were melted and cast from electrolytic copper or oxygen-free copper in a high-frequency melting furnace in the atmosphere, an inert or reducing atmosphere.

次に、鋳造したインゴットを900℃で熱間圧延し、9mm
の板とした。その後、950℃・1hrの溶体化処理を行い、
面削を行って冷間圧延で第1表に示す板厚に調整した。
この板厚での時効処理(400℃)後の製造条件は、第1
表に示す通りである。
Next, the cast ingot was hot-rolled at 900 ℃,
Plate. After that, solution treatment is performed at 950 ° C for 1 hr,
Face cutting was performed and cold rolling was performed to adjust the plate thickness shown in Table 1.
The manufacturing conditions after aging treatment (400 ° C) at this plate thickness are as follows:
It is as shown in the table.

これらの供試材について、引張強さ、伸び、導電率を
測定し、ばね特性をばね限界値(kb)の測定により評価
を行った。半田付け性は、垂直式浸漬法によって230±
5℃の半田浴(Sn60%、Pb40%)に5秒間浸漬して半田
の漏れの状態を目視観察することにより評価した。半田
の耐熱剥離性は、上記の方法で半田付けした試料を大気
中150℃、1500時間加熱後、材料板厚と同じ曲げ半径に
より90゜曲げを行い剥離の有無を評価した。
Tensile strength, elongation, and electrical conductivity of these test materials were measured, and the spring characteristics were evaluated by measuring the spring limit value (kb). Solderability is 230 ± by vertical dipping method
It was evaluated by immersing in a solder bath (Sn 60%, Pb 40%) at 5 ° C for 5 seconds and visually observing the state of solder leakage. Regarding the heat-resistant peeling resistance of the solder, the sample soldered by the above method was heated in air at 150 ° C. for 1500 hours, and then bent 90 ° at the same bending radius as the material plate thickness to evaluate the presence or absence of peeling.

曲げ性は、材料板厚と同じ曲げ半径によりW曲げを行
い曲げ部を観察することにより実施した。焼鈍後の材料
形状を圧延方向で200mmの長さに切断し、定盤上に置
き、最大の材料持ち上り高さを測定することで評価を行
った。
The bendability was measured by performing W bending with the same bending radius as the material plate thickness and observing the bent portion. The shape of the annealed material was cut into a length of 200 mm in the rolling direction, placed on a surface plate, and evaluated by measuring the maximum material lifting height.

第1表から明らかなように本発明例の1は副成分を含
まない基本合金系のもので、高いばね限界値を有し、し
かも引張り強さも高く高導電率を示している。特に半田
の耐熱剥離性は150℃、1500時間加熱後においても剥離
は認められない。本発明例3は副成分を添加した合金で
製造条件は本発明例1と同じである。若干、引張り強
さ、ばね限界値に優れるが、逆に導電率は若干低下す
る。その他の特性についてはほとんど同じである。比較
例の1から8までは本発明の基本合金系のものである
が、焼鈍前加工度がいずれも10%未満で製造したもの
で、本発明例合金に比べ、ばね限界値、引張り強さに劣
っており、また、材料形状も劣っていることがわかる。
比較例9はZnを添加していないため、半田の耐熱剥離性
が劣化してしまう。比較例10はZrを添加していないた
め、また、比較例12は焼鈍温度が700℃と高いため、共
に本発明例合金に比べ引張り強さ、ばね限界値が劣って
いる。比較例11は焼鈍前加工及び焼鈍を施さないため材
料形状が非常に悪い。比較例13は、クロム含有量が本発
明を越えるため、著しい導電率の低下が認められる。
As is clear from Table 1, 1 of the present invention example is a basic alloy system containing no subcomponents, which has a high spring limit value, high tensile strength, and high conductivity. In particular, the heat-resistant peeling property of solder does not show peeling even after heating at 150 ° C for 1500 hours. Inventive Example 3 is an alloy to which subcomponents are added, and manufacturing conditions are the same as those of Inventive Example 1. The tensile strength and the spring limit value are slightly better, but the conductivity is slightly lower. The other properties are almost the same. Comparative Examples 1 to 8 are based on the basic alloy of the present invention, but are manufactured with a pre-annealing workability of less than 10%, and have spring limit values and tensile strengths higher than those of the inventive alloys. It can be seen that the material shape is also inferior.
In Comparative Example 9, since Zn was not added, the heat-resistant peeling property of the solder deteriorates. Comparative Example 10 does not contain Zr, and Comparative Example 12 has an annealing temperature as high as 700 ° C., so that the tensile strength and the spring limit value are inferior to those of the inventive alloys. In Comparative Example 11, the material shape is very bad because the pre-annealing process and the annealing are not performed. In Comparative Example 13, since the chromium content exceeds the present invention, a remarkable decrease in conductivity is recognized.

〔発明の効果〕〔The invention's effect〕

本発明の製造方法を施したCu−Cr−Zr−Zn系合金は高
導電性を有し、かつばね特性に優れた合金であり端子・
コネクター用材料として好適である。
The Cu-Cr-Zr-Zn-based alloy that has been subjected to the manufacturing method of the present invention has high conductivity and is an alloy excellent in spring characteristics.
It is suitable as a material for connectors.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22F 1/00 684 8719−4K C22F 1/00 684C 685 8719−4K 685Z 686 8719−4K 686A 691 8719−4K 691B 8719−4K 691C 694 8719−4K 694A Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location C22F 1/00 684 8719-4K C22F 1/00 684C 685 8719-4K 685Z 686 8719-4K 686A 691 8719-4K 691B 8719-4K 691C 694 8719-4K 694A

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Cr0.1〜1.5重量%、Zr0.05〜1.0重量%及
びZn0.01〜3.0重量%を含み、残部Cu及び不可避不純物
からなる銅合金を熱間圧延し、熱間圧延以降の工程で時
効処理し、10%以上の加工度で冷間圧延をしてから300
〜600℃の温度で10sec〜60min焼鈍することを特徴とす
る端子・コネクター用銅合金の製造方法。
1. A copper alloy containing 0.1 to 1.5% by weight of Cr, 0.05 to 1.0% by weight of Zr and 0.01 to 3.0% by weight of Zn, and the balance of Cu and unavoidable impurities is hot-rolled and after hot rolling. After aging treatment in the process of, and cold rolling at a working degree of 10% or more, 300
A method for producing a copper alloy for terminals and connectors, which comprises annealing at a temperature of ~ 600 ° C for 10 sec ~ 60 min.
【請求項2】Cr0.1〜1.5重量%、Zr0.05〜1.0重量%、Z
n0.01〜3.0重量%及びAg,Al,Be,Co,Fe,Hf,Mg,Ni,P,Sn,T
iからなる群より選択された1種又は2種以上を総量で
0.01〜1.0重量%を含み、残部Cu及び不可避不純物から
なる銅合金を熱間圧延し、熱間圧延以降の工程で時効処
理し、10%以上の加工度で冷間加工を施してから、300
〜600℃の温度で10sec〜60min焼鈍することを特徴とす
る端子・コネクター用銅合金の製造方法。
2. Cr 0.1 to 1.5% by weight, Zr 0.05 to 1.0% by weight, Z
0.01 to 3.0 wt% and Ag, Al, Be, Co, Fe, Hf, Mg, Ni, P, Sn, T
The total amount of one or more selected from the group consisting of i
Hot-rolling a copper alloy containing 0.01 to 1.0% by weight and the balance Cu and unavoidable impurities, aging treatment in the steps after hot rolling, and cold working at a working degree of 10% or more, and then 300
A method for producing a copper alloy for terminals and connectors, which comprises annealing at a temperature of ~ 600 ° C for 10 sec ~ 60 min.
JP27083788A 1988-10-28 1988-10-28 Manufacturing method of copper alloy for terminals and connectors Expired - Fee Related JP2682577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27083788A JP2682577B2 (en) 1988-10-28 1988-10-28 Manufacturing method of copper alloy for terminals and connectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27083788A JP2682577B2 (en) 1988-10-28 1988-10-28 Manufacturing method of copper alloy for terminals and connectors

Publications (2)

Publication Number Publication Date
JPH02118057A JPH02118057A (en) 1990-05-02
JP2682577B2 true JP2682577B2 (en) 1997-11-26

Family

ID=17491700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27083788A Expired - Fee Related JP2682577B2 (en) 1988-10-28 1988-10-28 Manufacturing method of copper alloy for terminals and connectors

Country Status (1)

Country Link
JP (1) JP2682577B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486244A (en) * 1992-11-04 1996-01-23 Olin Corporation Process for improving the bend formability of copper alloys
CN108467954B (en) * 2018-02-02 2020-04-28 陕西斯瑞新材料股份有限公司 Manufacturing method of chromium bronze material for isolating switch contact

Also Published As

Publication number Publication date
JPH02118057A (en) 1990-05-02

Similar Documents

Publication Publication Date Title
JP4056175B2 (en) Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP2000080428A (en) Copper alloy sheet excellent in bendability
JP2000073130A (en) Copper alloy sheet excellent in press punchability
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP4154100B2 (en) Copper alloy for electronic materials having excellent surface characteristics and method for producing the same
JP2521879B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPH10195562A (en) Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP2682577B2 (en) Manufacturing method of copper alloy for terminals and connectors
JP3980808B2 (en) High-strength copper alloy excellent in bending workability and heat resistance and method for producing the same
JPH0987814A (en) Production of copper alloy for electronic equipment
JP3733548B2 (en) Method for producing a copper-based alloy having excellent stress relaxation resistance
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH09316569A (en) Copper alloy for lead frame and its production
JPS6142772B2 (en)
JP2004225112A (en) High strength and high conductivity copper alloy having excellent fatigue and intermediate temperature property
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JP2514234B2 (en) Copper alloy for terminals and connectors with excellent strength and conductivity
JPS62243750A (en) Manufacture of copper alloy excellent in property of proof stress relaxation
JPH0469217B2 (en)
JPS63109132A (en) High-strength conductive copper alloy and its production
JPH09143597A (en) Copper alloy for lead frame and its production
JPH0456755A (en) Manufacture of phosphor bronze excellent in bendability
JPS6312930B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees