JPH06179932A - Copper alloy for conductive spring - Google Patents

Copper alloy for conductive spring

Info

Publication number
JPH06179932A
JPH06179932A JP16040391A JP16040391A JPH06179932A JP H06179932 A JPH06179932 A JP H06179932A JP 16040391 A JP16040391 A JP 16040391A JP 16040391 A JP16040391 A JP 16040391A JP H06179932 A JPH06179932 A JP H06179932A
Authority
JP
Japan
Prior art keywords
plating
stress relaxation
copper alloy
heat
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16040391A
Other languages
Japanese (ja)
Inventor
Takatsugu Hatano
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP16040391A priority Critical patent/JPH06179932A/en
Publication of JPH06179932A publication Critical patent/JPH06179932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a copper alloy for conductive spring used for terminal, connector, relay, switch, etc. CONSTITUTION:The alloy has a composition consisting of 15-43% Zn, 0.01-0.3% Mg, <=0.0015% S, <=0.0015% O, and the balance Cu or further containing, as accessory components, 0.005-2.0% of one or >=2 elements among Sn, P, Ni, Cr, Co, Al, Mn, Fe, Si, Ti, Zr, In, and B and further containing, besides the above, 0.01-15% Zn. By this method, the copper alloy having high strength and high electric conductivity and excellent in stress relaxation property, thermal peeling resistance of plating, silver plating suitability, and migration resistance can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は端子、コネクター、リレ
ー、スイッチ等に用いられる導電性ばね用銅合金に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy for conductive springs used in terminals, connectors, relays, switches and the like.

【0002】[0002]

【従来の技術】従来、これらばね用銅合金の一つとし
て、黄銅が広く用いられていった。
2. Description of the Related Art Conventionally, brass has been widely used as one of these spring copper alloys.

【0003】[0003]

【発明が解決しようとする課題】近年、機器、部品の小
型化により、強度、ばね特性の高いものが求められてお
り、特にばね特性の長期信頼性という観点からは応力緩
和特性の良好な材料が求められている。又、応力緩和特
性を良好にするには使用時の部品の温度上昇を極力防ぐ
必要があるため、放熱性の良好な、即ち電気伝導度の高
い材料が求められている。
In recent years, due to the miniaturization of equipment and parts, materials having high strength and spring characteristics have been demanded, and particularly from the viewpoint of long-term reliability of spring characteristics, materials having good stress relaxation characteristics. Is required. Further, in order to improve the stress relaxation characteristic, it is necessary to prevent the temperature rise of the parts during use as much as possible, and therefore, a material having a good heat dissipation property, that is, a high electric conductivity is required.

【0004】さらにはSnめっき、はんだめっきの耐熱
剥離性が良好であり、又水分の存在下におけるマイグレ
ーション現象のない高信頼性材料が求められている。
Further, there is a demand for a highly reliable material which has good heat-resistant peeling property of Sn plating and solder plating and which does not cause a migration phenomenon in the presence of water.

【0005】これらの要求特性に対し、従来から使用さ
れている黄銅にはばね特性の長期信頼性、すなわち、応
力緩和特性の改善が望まれていた。そして、Mgを添加
することにより、応力緩和特性が向上することがわかっ
た。
In response to these required characteristics, it has been desired that brass used conventionally has long-term reliability of spring characteristics, that is, improvement of stress relaxation characteristics. Then, it was found that the stress relaxation characteristic is improved by adding Mg.

【0006】しかし、本合金はMgを添加することによ
り、めっきの耐熱剥離性が著しく劣化することがわかっ
ており、改善が求められていた。
[0006] However, it has been known that the heat-resistant peeling property of the plating is remarkably deteriorated by adding Mg to this alloy, and an improvement has been demanded.

【0007】[0007]

【課題を解決するための手段】かかる状況に鑑み、Cu
−Zn−Mg系合金について研究を行った結果、ばね材
として良好な特性を有する合金を得るに至った。
In view of such a situation, Cu
As a result of research on -Zn-Mg-based alloys, an alloy having good properties as a spring material has been obtained.

【0008】すなわち、本発明は、Zn:15〜43
%、Mg:0.01〜0.3%、S:0.0015%以
下、O:0.0015%以下、残部Cuからなる銅合金
あるいは上記にさらにP、Sn、Ni、Cr、Co、A
l、Mn、Fe、Si、Ti、Zr、In、Bのうち1
種又は2種以上を0.005〜2.0%含有する銅合金
導電性ばね用合金である。
That is, according to the present invention, Zn: 15-43
%, Mg: 0.01 to 0.3%, S: 0.0015% or less, O: 0.0015% or less, and a copper alloy consisting of the balance Cu or P, Sn, Ni, Cr, Co, A as described above.
1 of l, Mn, Fe, Si, Ti, Zr, In and B
It is a copper alloy conductive spring alloy containing 0.005 to 2.0% of one kind or two or more kinds.

【0009】本発明合金の各成分限定理由を以下に示
す。
The reasons for limiting the components of the alloy of the present invention are shown below.

【0010】Znはコストを低減し、かつ機械的強度及
び耐マイグレーション性を向上させるため添加し、その
含有量を15〜43%とする理由は、15%未満では強
度が不足し、43%を越えて添加するとβ相が析出し、
耐食性及び冷間加工性が劣化するためである。
Zn is added in order to reduce the cost and improve the mechanical strength and the migration resistance, and the reason for setting its content to 15 to 43% is that if the content is less than 15%, the strength is insufficient and if 43% is required. If added over, β phase will precipitate,
This is because the corrosion resistance and cold workability deteriorate.

【0011】Mg含有量を0.01〜0.3%とする理
由は、Mgは応力緩和特性を向上させるが、めっきの耐
熱剥離性を劣化させる成分であり、0.01%未満では
S、Oを規定しても応力緩和特性を改善する事ができ
ず、0.3%を超えるとめっきの耐熱剥離性が低下する
ためである。
The reason for setting the Mg content to 0.01 to 0.3% is that Mg improves the stress relaxation characteristics but deteriorates the heat-resistant peeling property of the plating. This is because even if O is specified, the stress relaxation characteristics cannot be improved, and if it exceeds 0.3%, the heat-resistant peeling property of the plating decreases.

【0012】S含有量を0.0015%以下とする理由
は、Mg含有量を低くし、めっきの耐熱剥離性を改善し
ながら、さらに応力緩和特性も良好にするには、S含有
量が非常に重要な影響を及ぼすことがわかったためであ
り、Sが0.0015%を超えて存在すると、Mgが多
量に硫化物となって材料中に分散され、応力緩和特性が
改善されないばかりでなく、Mg含有量が低くてもめっ
きの耐熱剥離性が劣化するとともに、めっき品を加熱す
るとしみ、ふくれといった不良が発生するようになるた
めである。
The reason why the S content is 0.0015% or less is that the S content should be very low in order to lower the Mg content and improve the heat-resistant peeling property of the plating while improving the stress relaxation characteristics. This is because it was found that when S exceeds 0.0015%, a large amount of Mg becomes a sulfide and is dispersed in the material, and the stress relaxation characteristics are not improved. This is because, even if the Mg content is low, the heat-resistant peeling property of the plating deteriorates, and when the plated product is heated, defects such as swelling and blistering will occur.

【0013】O含有量を0.0015%以下とする理由
は、Mgが酸化物となり、応力緩和特性が改善されない
ばかりでなく、めっきの耐熱剥離性が劣化するととも
に、めっき品を加熱するとしみ、ふくれといった不良が
発生するためである。
The reason why the O content is 0.0015% or less is that not only the stress relaxation characteristics are not improved by Mg as an oxide, but also the heat-resistant peeling property of the plating is deteriorated, and the plated product is heated. This is because defects such as blister occur.

【0014】すなわち、S、Oの含有量をともに0.0
015%以下とする事により始めてMg含有量を低くし
ても応力緩和特性を改善でき、かつ低くする事によりめ
っきの耐熱剥離性を改善できることとなった。
That is, the contents of S and O are both 0.0
By setting the content to 015% or less, the stress relaxation property can be improved even if the Mg content is lowered, and the heat peeling resistance of the plating can be improved by lowering the Mg content.

【0015】さらには少量のMgでもめっきの耐熱剥離
性並びにめっきのしみ、ふくれを防止するにはS、Oの
含有量の規定がキーポイントである事が判明した。
Further, it has been found that the regulation of the contents of S and O is a key point in order to prevent the heat-resistant peeling property of the plating and the stains and blisters of the plating even with a small amount of Mg.

【0016】P、Bその他の副成分の含有量を0.00
5〜2.0%とする理由は、副成分の添加は強度を改善
するが、0.005%未満ではその効果がなく、2.0
%を超えると加工性が低下するとともに導電性が著しく
低下するためである。
The content of P, B and other subcomponents is 0.00
The reason for setting it to 5 to 2.0% is that the addition of a subcomponent improves the strength, but if it is less than 0.005%, it has no effect, and
This is because if it exceeds%, the workability is lowered and the conductivity is remarkably lowered.

【0017】[0017]

【実施例】次に実施例並びに比較例について説明する。EXAMPLES Next, examples and comparative examples will be described.

【0018】表1は試験をした実施例の銅合金の成分組
成、表2は試験をした比較例の銅合金の成分組成であ
る。これらの組成の銅合金を大気中で溶解鋳造し、30
mmt×60mmw×120mmlの大きさのインゴッ
トを得た。これらのインゴットを片面3mm面削し表面
欠陥を機械的に除去した後、750〜800℃の温度で
2時間加熱後熱間圧延により6mmtの厚さに仕上げ
た。酸洗し表面のスケールを除去した後0.5mmtの
厚さまで冷間圧延した。その後500℃で所定の時間焼
鈍を行った。なお、この焼鈍後の結晶粒度は10μmに
調整した。そして0.3mmtまでの仕上げ冷間圧延
後、最後は#1200エメリー紙により表面研磨し、ス
ケール等の表面欠陥を除去し供試材とした。
Table 1 shows the composition of the copper alloys of the tested examples, and Table 2 shows the composition of the tested copper alloys of the comparative example. The copper alloys with these compositions are melt-cast in the atmosphere,
An ingot having a size of mmt × 60 mmw × 120 mml was obtained. These ingots were chamfered on one side by 3 mm to mechanically remove surface defects, then heated at a temperature of 750 to 800 ° C. for 2 hours and then hot rolled to a thickness of 6 mmt. After pickling to remove surface scale, cold rolling was performed to a thickness of 0.5 mmt. After that, annealing was performed at 500 ° C. for a predetermined time. The grain size after this annealing was adjusted to 10 μm. Then, after finishing cold rolling to 0.3 mmt, the surface was finally ground with # 1200 emery paper to remove surface defects such as scales and the like, to give a test material.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】供試材について引張強さ、伸び、導電率、
応力緩和特性、錫めっき耐熱剥離性、銀めっき性、耐マ
イグレーション性を試験した。引張強さ、伸びはJIS
13B引張試験片を用い引張試験を行い測定した。導電
率は10mmw×100mmlの試験片に加工後四端子
法により20℃にて電気抵抗を測定し、導電率に換算し
た。応力緩和特性は図1の様に10mmw×100mm
lに加工した板厚0.3mmの試験片に標点距離l=5
0mmで高さy0=20mmの曲げ応力を負荷し、15
0℃にて1000時間加熱後の図2に示す永久変形量
(高さ)yを測定し応力緩和率{[y(mm)/y
0(mm)]×100(%)}を算出した。錫めっき耐
熱剥離性は供試材に0.5〜0.8μmの銅下地めっき
を施した後、1〜1.5μmの錫を電気めっきした後加
熱リフロー処理したものについて10mmw×100m
mlに切断後150℃にて所定時間(100時間毎)加
熱し、曲げ半径0.3mm(=板厚)で片側の90°曲
げを往復1回行い、20倍の視野で表裏面の曲げ部近傍
を観察しめっき剥離の有無を確認した。銀めっき性は供
試材に銅フラッシュめっきを下地として銀めっきを1μ
m施したものについて450℃で2分間加熱後1470
mm2(7mm□×30個)の領域についてふくれの数
を計測した。耐マイグレーション性は供試材を10mm
w×100mmlに加工し、図3のように2枚1組でセ
ットし、図4の様に水道水(300ml)中に浸漬し
た。次にこれら2枚の供試材間に14Vの直流電圧を印
加し、経過時間に対する電流値の変化を測定した。この
結果の代表例を図5に示す。そして耐マイグレーション
性の評価は電流値が1.0Aになるまでの時間(図5中
矢印)で行った。
About the test materials, tensile strength, elongation, conductivity,
Stress relaxation characteristics, heat resistance peeling property of tin plating, silver plating property, and migration resistance were tested. JIS tensile strength and elongation
A 13B tensile test piece was used to perform a tensile test for measurement. The electrical conductivity was converted into electrical conductivity by measuring the electrical resistance at 20 ° C. by a four-terminal method after processing a test piece of 10 mmw × 100 mml. The stress relaxation characteristic is 10mmw × 100mm as shown in Fig.1.
On a test piece with a plate thickness of 0.3 mm processed into 1
A bending stress of 0 mm and height y 0 = 20 mm is applied, and
After heating at 0 ° C. for 1000 hours, the permanent deformation amount (height) y shown in FIG. 2 was measured and the stress relaxation rate {[y (mm) / y
0 (mm)] × 100 (%)} was calculated. The tin-plating heat-resistant peeling resistance is 10 mmw × 100 m when the test material is subjected to copper underlayer plating of 0.5 to 0.8 μm, electroplated with tin of 1 to 1.5 μm, and then subjected to heat reflow treatment.
After cutting into ml, heat at 150 ° C for a predetermined time (every 100 hours), bend 90 ° on one side once with a bending radius of 0.3 mm (= plate thickness) once, and bend the front and back sides with a field of view of 20 times. The vicinity was observed to confirm the presence or absence of peeling of the plating. The silver plating property is 1μ with silver flash plating on the test material with copper flash plating as the base.
1470 after heating at 450 ° C for 2 minutes
The number of blisters was measured in an area of mm 2 (7 mm □ × 30 pieces). Migration resistance is 10 mm for the test material
It was processed into w × 100 ml, set as a set of two pieces as shown in FIG. 3, and immersed in tap water (300 ml) as shown in FIG. Next, a DC voltage of 14 V was applied between these two test materials, and the change in current value with respect to the elapsed time was measured. A representative example of this result is shown in FIG. The migration resistance was evaluated by the time until the current value reached 1.0 A (arrow in FIG. 5).

【0022】これらの評価結果を表3に示す。Table 3 shows the results of these evaluations.

【0023】[0023]

【表3】 この表から本発明合金は良好な強度、導電性を有し、応
力緩和特性も良好であり、錫めっき耐熱剥離性、銀めっ
き性といった表面品質も非常に良好であることがわか
る。
[Table 3] From this table, it is understood that the alloy of the present invention has good strength and conductivity, good stress relaxation property, and very good surface quality such as heat resistance peeling property of tin plating and silver plating property.

【0024】これらに反し比較合金については、No.
19はZn量が低いため、強度が低く耐マイグレーショ
ン性も劣る。一方、No.20はZn量が高いため、伸
びが低く冷間加工性が悪い。No.21はMg量が入っ
ていないため応力緩和特性が悪い。No.22はMg量
が高いため錫めっき耐熱剥離性が劣る。
Contrary to these, No.
Since No. 19 has a low Zn content, it has low strength and poor migration resistance. On the other hand, No. Since No. 20 has a high Zn content, it has low elongation and poor cold workability. No. No. 21 has a poor stress relaxation characteristic because it contains no Mg amount. No. No. 22 has a high amount of Mg and is inferior in heat resistance peeling property of tin plating.

【0025】No.23、No.24はO、S量が高い
ため、応力緩和特性、錫めっき耐熱剥離性、銀めっき性
が悪い。
No. 23, No. Since No. 24 has a large amount of O and S, the stress relaxation property, the heat resistance peeling property of tin plating, and the silver plating property are poor.

【0026】以上説明したように本発明合金はCu−Z
n−Mg系合金のO、S量を規定し、さらにSn、P、
Ni、Cr、Co、Al、Mn、Fe、Si、Ti、Z
r、In、Bのうち1種又は2種以上を添加することに
より、高強度、高導電でしかも応力緩和特性も良好で、
めっき耐熱剥離性、銀めっき性、耐マイグレーション性
も良好なものである。
As described above, the alloy of the present invention is Cu-Z.
The O and S contents of the n-Mg-based alloy are specified, and Sn, P and
Ni, Cr, Co, Al, Mn, Fe, Si, Ti, Z
By adding one or more of r, In, and B, high strength, high conductivity, and good stress relaxation characteristics,
The heat-resistant peeling property of the plating, the silver plating property, and the migration resistance are also good.

【0027】[0027]

【発明の効果】本発明合金は高強度、高導電で応力緩和
特性、めっき耐熱剥離性、銀めっき性、耐マイグレーシ
ョン性が良好な銅合金であって、端子、コネクター、リ
レー、スイッチ等広く電子部品分野で使用されるべき銅
合金である。
INDUSTRIAL APPLICABILITY The alloy of the present invention is a copper alloy having high strength, high conductivity, stress relaxation characteristics, heat-resistant peeling property for plating, silver plating property, and migration resistance, and is widely used in terminals, connectors, relays, switches, etc. It is a copper alloy that should be used in the field of parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】応力緩和特性試験法の説明図である。FIG. 1 is an explanatory diagram of a stress relaxation characteristic test method.

【図2】応力緩和特性試験の永久変形量についての説明
図である。
FIG. 2 is an explanatory diagram of a permanent deformation amount in a stress relaxation characteristic test.

【図3】耐マイグレーション性試験供試材の説明図であ
る。
FIG. 3 is an explanatory diagram of a test material for a migration resistance test.

【図4】耐マイグレーション性試験の説明図である。FIG. 4 is an explanatory diagram of a migration resistance test.

【図5】耐マイグレーション性試験における経過時間に
対する電流値の変化を示すグラフである。
FIG. 5 is a graph showing changes in current value with respect to elapsed time in a migration resistance test.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年8月15日[Submission date] August 15, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】従来、これらばね用銅合金の一つとし
て、黄銅が広く用いられていた
Conventionally, as one of these spring copper alloy had brass widely used.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Zn:15〜43%(重量%、以下同
じ)、Mg:0.01〜0.3%、S:0.0015%
以下、O:0.0015%以下、残部Cuからなること
を特徴とする導電性ばね用銅合金。
1. Zn: 15 to 43% (weight%, the same hereinafter), Mg: 0.01 to 0.3%, S: 0.0015%
Hereinafter, O: 0.0015% or less and the balance being Cu, a copper alloy for conductive springs.
【請求項2】 Zn:15〜43%、Mg:0.01〜
0.3%、S:0.0015%以下、O:0.0015
%以下、さらに副成分としてSn、P、Ni、Cr、C
o、Al、Mn、Fe、Si、Ti、Zr、In、Bの
うち1種又は2種以上を0.005〜2.0%含有し、
残部Cuからなることを特徴とする導電性ばね用銅合
金。
2. Zn: 15-43%, Mg: 0.01-
0.3%, S: 0.0015% or less, O: 0.0015
% Or less, and Sn, P, Ni, Cr, C as sub-components
O, Al, Mn, Fe, Si, Ti, Zr, In, and 0.005 to 2.0% of one or more kinds of B are contained,
A copper alloy for conductive springs, characterized in that the balance is Cu.
JP16040391A 1991-07-01 1991-07-01 Copper alloy for conductive spring Pending JPH06179932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16040391A JPH06179932A (en) 1991-07-01 1991-07-01 Copper alloy for conductive spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16040391A JPH06179932A (en) 1991-07-01 1991-07-01 Copper alloy for conductive spring

Publications (1)

Publication Number Publication Date
JPH06179932A true JPH06179932A (en) 1994-06-28

Family

ID=15714189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16040391A Pending JPH06179932A (en) 1991-07-01 1991-07-01 Copper alloy for conductive spring

Country Status (1)

Country Link
JP (1) JPH06179932A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029632A1 (en) * 1998-11-16 2000-05-25 Olin Corporation Stress relaxation resistant brass
JP2007051370A (en) * 2005-07-22 2007-03-01 Nikko Kinzoku Kk Cu-zn-sn alloy strip excellent in heat-peeling resistance of sn plating and sn-plated strip made of the same
JP2009185341A (en) * 2008-02-07 2009-08-20 Dowa Holdings Co Ltd Copper alloy sheet material, and method for producing the same
WO2011096576A1 (en) * 2010-02-08 2011-08-11 日立電線株式会社 Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using same
WO2012124804A1 (en) * 2011-03-17 2012-09-20 日立電線株式会社 Soft dilute-copper alloy wire, soft dilute-copper alloy twisted wire, and insulated wire, coaxial cable, and composite cable using these
US9809872B2 (en) 2009-04-17 2017-11-07 Hitachi Metals, Ltd. Dilute copper alloy material, dilute copper alloy wire, dilute copper alloy twisted wire and cable using the same, coaxial cable and composite cable, and method of manufacturing dilute copper alloy material and dilute copper alloy wire
KR101965345B1 (en) * 2018-12-19 2019-04-03 주식회사 풍산 Copper alloy for terminal and connector having excellent bending workability and method for manufacturing the same
EP4124667A1 (en) * 2021-07-27 2023-02-01 Diehl Brass Solutions Stiftung & Co. KG Lead and antimony-free brass alloy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029632A1 (en) * 1998-11-16 2000-05-25 Olin Corporation Stress relaxation resistant brass
JP2007051370A (en) * 2005-07-22 2007-03-01 Nikko Kinzoku Kk Cu-zn-sn alloy strip excellent in heat-peeling resistance of sn plating and sn-plated strip made of the same
JP2009185341A (en) * 2008-02-07 2009-08-20 Dowa Holdings Co Ltd Copper alloy sheet material, and method for producing the same
US9809872B2 (en) 2009-04-17 2017-11-07 Hitachi Metals, Ltd. Dilute copper alloy material, dilute copper alloy wire, dilute copper alloy twisted wire and cable using the same, coaxial cable and composite cable, and method of manufacturing dilute copper alloy material and dilute copper alloy wire
WO2011096576A1 (en) * 2010-02-08 2011-08-11 日立電線株式会社 Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using same
US10030287B2 (en) 2010-02-08 2018-07-24 Hitachi Metals, Ltd. Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using same
WO2012124804A1 (en) * 2011-03-17 2012-09-20 日立電線株式会社 Soft dilute-copper alloy wire, soft dilute-copper alloy twisted wire, and insulated wire, coaxial cable, and composite cable using these
US9734937B2 (en) 2011-03-17 2017-08-15 Hitachi Metals, Ltd. Soft dilute-copper alloy wire, soft dilute-copper alloy twisted wire, and insulated wire, coaxial cable, and composite cable using these
KR101965345B1 (en) * 2018-12-19 2019-04-03 주식회사 풍산 Copper alloy for terminal and connector having excellent bending workability and method for manufacturing the same
WO2020130403A1 (en) * 2018-12-19 2020-06-25 주식회사 풍산 Copper alloy, for terminal and connector, exhibiting excellent bending processability and preparation method thereof
EP4124667A1 (en) * 2021-07-27 2023-02-01 Diehl Brass Solutions Stiftung & Co. KG Lead and antimony-free brass alloy

Similar Documents

Publication Publication Date Title
JPS60245754A (en) High strength copper alloy having high electric conductivity
EP0189637B1 (en) Copper alloy and production of the same
JPH0551671A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JPH0559468A (en) Copper alloy for conductive spring
JP2010031339A (en) COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JPH06179932A (en) Copper alloy for conductive spring
JP2516623B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPH05311278A (en) Copper alloy improved in stress relaxing property
JPH05311288A (en) Copper alloy improved in stress relaxation property
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS62182240A (en) Conductive high-tensile copper alloy
JP2020002439A (en) Copper alloy for fuse
JPH0280532A (en) High tensile copper alloy having excellent bendability
JPH1081926A (en) Copper alloy for electronic device
JPH0559467A (en) Copper alloy improved in stress relaxation property
JP3470889B2 (en) Copper alloy for electric and electronic parts
JPH0551673A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JPH05311289A (en) Copper alloy for conductive spring
JPH04358033A (en) Copper alloy for conductive spring
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPH04231432A (en) Electrifying material
JPH04231433A (en) Electrifying material
JPH0551674A (en) High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
KR101208578B1 (en) copper alloy with high strength and moderate conductivity, and method of manufacturing thereof