JPH0812607A - カルボン酸の水素化方法 - Google Patents

カルボン酸の水素化方法

Info

Publication number
JPH0812607A
JPH0812607A JP6151100A JP15110094A JPH0812607A JP H0812607 A JPH0812607 A JP H0812607A JP 6151100 A JP6151100 A JP 6151100A JP 15110094 A JP15110094 A JP 15110094A JP H0812607 A JPH0812607 A JP H0812607A
Authority
JP
Japan
Prior art keywords
catalyst
carboxylic acid
oxide
acid
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6151100A
Other languages
English (en)
Other versions
JP3754464B2 (ja
Inventor
Kenichi Wakui
顕一 涌井
Takeshi Yokota
武司 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP15110094A priority Critical patent/JP3754464B2/ja
Publication of JPH0812607A publication Critical patent/JPH0812607A/ja
Application granted granted Critical
Publication of JP3754464B2 publication Critical patent/JP3754464B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】 【目的】 比較的低温、低圧で触媒劣化の少ない状態
で、カルボン酸から高い収率でアルコールを得ることが
できる生産性に優れたカルボン酸の水素化方法を提供す
る。 【構成】 銅、亜鉛及びクロムを含む酸化物であって、
CuOとZnOとの重量比が1:1〜10:1であり、
かつ、クロムの金属としての割合が5〜50重量%であ
る触媒の存在下、カルボン酸を水素化するカルボン酸の
水素化方法。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はカルボン酸を水素化して
アルコールとするカルボン酸の水素化方法に関する。
【0002】
【従来の技術】カルボン酸を水素化してアルコールを製
造しようとする方法は多数報告されている。例えば、A
dkins型銅クロマイトのような銅及びクロムを含む
触媒を使用した場合、液相では20MPa以上の圧力が
必要であり、また、カルボン酸による触媒金属の溶出及
びシンタリング等により活性が急激に劣化する問題があ
る(Helv. Chim. Acta.,30,39
(1947))。また、銅及びクロムを含む触媒をカル
ボン酸の気相水素化に用いた場合に触媒の劣化が少ない
ことが報告されており、例えば、ソ連特許第79172
3号明細書には触媒の寿命は500〜1200時間と記
載されている。しかしながら、この場合10MPa以上
の高圧を必要とするといった問題がある。
【0003】米国特許第4804790号明細書には、
酸化亜鉛の含有量が触媒中の他の組成物の含有量に対し
て最も多い触媒を用い、気相でカルボン酸を直接水素化
し、アルコールを得る方法が記載されている。それによ
ると、水素量を化学当量の75〜250倍とし、290
℃以上の高温で水素化を行なうことにより、触媒の劣化
が抑制され、200時間以上劣化のない状態で反応を行
なうことができると記載されている。更に触媒には銅を
1〜5重量%含むことが好ましく、銅の量を多くすると
副生成物が多く生成するため、銅の含有率は15%以下
に抑えることが必要であると記載されている。しかしな
がら、ここに記載されているような亜鉛を主体とする触
媒を用いるカルボン酸の水素化には20〜50MPaと
いう非常に高い圧力が必要であり、工業的実施を不利に
している。
【0004】一方、銅を主体とした銅と亜鉛を含む触媒
を用い、気相において10MPa以下の低圧でカルボン
酸を水素化する方法も報告されている。米国特許第45
88848号明細書には、銅と亜鉛を含む触媒による第
3級カルボン酸の水素化、特開昭61−106528号
公報には銅と亜鉛を含む触媒によるカルボン酸の水素化
について記載されているが、亜鉛とカルボン酸との塩の
析出による触媒の劣化及びリアクターの閉塞が問題とな
っている。
【0005】
【発明が解決しようとする課題】本発明は、比較的低
温、低圧で触媒劣化の少ない状態で、カルボン酸から高
い収率でアルコールを得ることができる生産性に優れた
カルボン酸の水素化方法を提供することを目的とする。
【0006】
【課題を解決するための手段】本発明者らは前記目的を
達成するために鋭意研究を行った結果、カルボン酸を気
相で水素化してアルコールを得る際に、触媒として酸化
銅と酸化亜鉛とが特定の割合であり、かつ特定量のクロ
ムを含む酸化物を触媒として使用して水素化を行なう
と、高い触媒活性が維持され、触媒劣化の少ない状態で
水素化反応が行なわれることを見出し、この知見に基づ
いて本発明を完成するに至った。
【0007】すなわち、本発明は銅、亜鉛及びクロムを
含む酸化物であって、該酸化物中の酸化銅(CuO)と
酸化亜鉛(ZnO)の重量比が1:1〜10:1であ
り、かつ、該酸化物中のクロムの金属としての割合が5
〜50重量%である触媒の存在下、カルボン酸を水素化
することを特徴とするカルボン酸の水素化方法を提供す
るものである。
【0008】本発明で用いられるカルボン酸としては、
特に限定されないが、次の一般式(1)で表わされる嵩
高い第3級カルボン酸をも容易に水素化することができ
るため、それら第3級カルボン酸(1)の水素化に特に
好適に用いられ、水素化反応によりそれらに対応する次
の一般式(2)で表わされるアルコールが得られる。 R123CCOOH (1) R123CCH2OH (2) (式中、R1、R2、R3はそれぞれ水素原子又は炭素数
1〜10の直鎖状、分岐状又は環状のアルキル基を示
し、該アルキル基中には窒素原子、燐原子、酸素原子、
ハロゲン原子が含まれていてもよい。) このようなカルボン酸としては、例えば、2,5,5−
トリメチル−2−t−ブチルヘキサン酸、2,7,7−
トリメチル−2−エチルオクタン酸、2,2,8,8−
テトラメチルノナン酸、2,6,6−トリメチル−2−
プロピルヘプタン酸、2,4,4−トリメチル−2−
(t−ブチルメチル)メチルヘキサン酸、2,6,6−
トリメチル−2−i−プロピルヘプタン酸、2,3,3
−トリメチル−2−エチルブタン酸、2,2,3−トリ
メチルヘキサン酸、2,2,4,4−テトラメチルペン
タン酸、2,2,4−トリメチルヘキサン酸、2,4−
ジメチル−2−エチルペンタン酸、2,2−ジメチルヘ
プタン酸、2−メチル−2−プロピルヘキサン酸、2,
3−ジメチル−2−i−プロピルブタン酸、2,3−ジ
メチル−2−エチルペンタン酸、2−メチル−2−エチ
ルヘキサン酸、2,2−ジエチルペンタン酸、2,2,
3,3,−テトラメチルペンタン酸等が用いられる。特
に好ましくは、2,5,5−トリメチル−2−t−ブチ
ルヘキサン酸、2,3,3−トリメチル−2−エチルブ
タン酸等が挙げられる。これらのアルキル基中の水素は
カルボキシル基、ヒドロキシル基等で置換されていても
よい。また、一般式(1)で表される第3級カルボン酸
の他に、シクロヘキサンジカルボン酸等も好適に用いら
れる。
【0009】本発明の水素化方法は、これらの嵩高い第
3級カルボン酸をも容易に水素化することができるの
で、対応する嵩高いアルコールを製造する際に好適に適
用できる。なお、本発明の水素化方法は第3級カルボン
酸のみならず、ヘキサン酸等の第1級カルボン酸、2−
エチルヘキサン酸等の第2級カルボン酸の水素化にも好
適に利用できる。
【0010】本発明において、触媒としては、脱水素触
媒又はメタノール合成用触媒として一般的に用いられる
銅、亜鉛及びクロムを含有する酸化物であって、酸化銅
(CuO)と酸化亜鉛(ZnO)の重量比が1:1〜1
0:1であり、かつ、クロムの金属としての割合が5〜
50重量%である酸化物が使用される。
【0011】上記酸化物の組成が上記の範囲からはずれ
ると、アルコールの収率が低下したり、低温低圧での反
応性が低下したり、触媒劣化が起こったりする。上記酸
化物中の酸化銅と酸化亜鉛との好ましい重量比は1:1
〜4:1であり、また、クロムの金属としての好ましい
割合は5〜20重量%である。
【0012】なお、ここで、上記酸化物中の銅及び亜鉛
はそれぞれ酸化物(CuO及びZnO換算)として、ク
ロムは金属として触媒中の組成を規定しているが、実際
にはこれらの触媒構成元素は触媒中で多様な形態及び酸
化状態で存在している。カルボン酸の水素化反応中は、
これらの酸化物の一部が還元された状態で反応に関与す
るものと考えられる。
【0013】上記酸化物の製法は、上記条件を満足する
組成を有する酸化物が得られる限り特に制限はない。例
えば、CO/H2ガスからのメタノール合成用触媒の調
製法として従来公知の方法、例えばJournal o
f Catalysts,56, 407−429(1
979)に記載の方法などが好適に採用される。
【0014】上記の酸化銅、酸化亜鉛及びクロムの割合
を満足する限り、上記酸化物は更に、Al、Fe、S
i、Ti、Mn、Ba、Mo、Zr、Na、K等の金属
を、上記酸化物中の酸化物として、あるいは、様々な方
法で上記酸化物に担持した担持金属成分として、又は、
上記酸化物を必要に応じて担持せしめた担体中の金属成
分などとして含んでいてもよい。また、上記酸化物を担
体に担持して用いる場合には、必要に応じ、本発明の目
的を阻害しない限り、他の様々な触媒担体に担持して用
いることも可能である。
【0015】本発明で触媒として用いられる上記酸化物
は、上記の条件を満足する限り脱水素触媒又はメタノー
ル合成触媒として市販されているものも使用可能であ
り、例えば、日揮化学製N211B等が挙げられる。
【0016】水素としては、通常の分子状水素が用いら
れる。反応を阻害しない程度の炭化水素、水分、一酸化
炭素、二酸化炭素等を含んでいてもよい。水素の供給量
は通常、カルボン酸1モルに対して1〜1500モル、
好ましくは50〜1000モルである。
【0017】本発明の水素化反応は通常、150〜35
0℃、好ましくは200〜300℃の温度範囲で、通
常、0.1〜15MPa、好ましくは0.1〜10MP
a、更に好ましくは4〜7MPaの圧力範囲で行なわれ
る。
【0018】本発明の方法は、好ましくは連続方法で行
なわれるが、半連続、バッチ操作でも可能である。
【0019】好ましい方法の例として、まず所定量の触
媒をスチール製の管型固定床流通式リアクターに充填
し、銅系水添触媒の一般的な活性化法で活性化する。
【0020】反応基質は無溶媒で、又は水素化に不活性
な溶剤(例えば、メタノール、ブタノール、アルカン
等)に溶かした状態で気化器にフィードし、気化器で気
化した基質又は基質と溶媒を水素と共にリアクターに導
入する。
【0021】水素化されたリアクター出口液を冷却し、
液体成分と気体成分とを分離すると目的とするアルコー
ルが液体成分として得られる。気体成分は大部分水素で
あるのでそのままリサイクルする。
【0022】
【実施例】以下、本発明を実施例に基づいて詳細に説明
するが、本発明はこれに限定されるものではない。
【0023】なお、触媒の調製は下記の方法により行っ
た。
【0024】触媒(酸化物)の調製は、CO/H2ガス
からのメタノール合成用触媒の調製法として文献、Jo
urnal of Catalysts, 56, 4
07−429(1979)に記載されている方法に従っ
て行った。すなわち、所定量の硝酸銅、硝酸亜鉛及び硝
酸クロムを含む水溶液に85〜90℃で炭酸ナトリウム
水溶液(1M)を滴下し、pHを6.8〜7.0とす
る。次いでこの溶液を放冷し、沈殿物をフィルターで回
収、洗浄する。得られた固体沈殿物を60〜110℃で
12時間乾燥する。得られた触媒前駆体を成形し、電気
炉中で350℃まで50℃/30minで昇温し、35
0℃で3時間焼成することにより触媒を得る。得られた
触媒は8〜16meshに粉砕してリアクターに充填し
て用いる。
【0025】実施例1 外径5/8inch(15.875mm)、肉厚1m
m、長さ30cmのステンレス製のリアクターに、Cu
−Zn−Cr触媒(CuO 40.2重量%、ZnO
35.9重量%、Cr 11.1重量%、CuO:Zn
O重量比=1.12:1)を8〜16meshに粉砕し
たもの25cc(33.4g)を充填した。触媒床長さ
は約17cmとし、触媒床の上下にはガラスビーズを充
填した。
【0026】リアクターを170℃に加熱し、1〜5容
量%のH2を含んだN2ガスを150Nl/hで流通し、
2吸収が見られなくなるまで還元活性化を行なった。
その後、徐々にガス気流を100%H2ガスに置換し
た。
【0027】リアクターの前にはα−アルミナ粉砕品を
充填した内径10mm、長さ2mのステンレス製カラム
を用意し、外部から加熱できるようにした。このカラム
を反応温度付近に加熱し、カラムの中間部分にポンプに
より原料液をフィードする。原料液はカラムを通ってき
た加熱された水素により気化し、水素と共にリアクター
にフィードされる。リアクターの出口は冷却され、気体
と液体生成物を分離した後、液体生成物は背圧調節弁を
通して抜き出される。
【0028】気体は大部分が水素ガスであり、また圧力
低下もわずかであるため、コンプレッサーによりリアク
ター入口圧以上まで昇圧し、メイクアップH2流と共に
再び気化器入口に循環される。
【0029】このようなリアクターに水素を150Nl
/hで流通し、温度を260℃、圧力を6MPaとし
た。原料液として第3級カルボン酸である2,5,5−
トリメチル−2−t−ブチルヘキサン酸を無溶媒で、
1.5cc/h(1.37g/h、6.37×10-3
ル/h)の供給速度でフィードした。12時間後、生成
液を分析したところ、カルボン酸のトータルの転化率は
99.9%であり、アルコール選択率は98.3%であ
った。
【0030】170時間後の生成液を分析したところ、
カルボン酸の転化率は99.8%であり、アルコール選
択率は98.8%であり、触媒の劣化は観測されなかっ
た。また、リアクターの入口と出口の圧力差も0.1P
a以下であった。
【0031】実施例2 実施例1と同様な反応を原料液として第3級カルボン酸
である2,3,3−トリメチル−2−エチルブタン酸を
基質として行なった。カルボン酸は無溶媒で、1.5c
c/h(1.40g/h、8.84×10-3モル/h)
の供給速度でフィードした。反応条件は実施例1と同じ
条件とした。
【0032】12時間後の生成液を分析したところ、カ
ルボン酸の転化率は99.9%であり、アルコール選択
率は98.1%であった。210時間後のカルボン酸の
転化率は99.2%であり、アルコール選択率は98.
5%であり、触媒の劣化はほとんど観測されなかった。
リアクターの入口と出口の圧力差も0.1MPa以下で
あった。
【0033】比較例1 実施例2と同様な反応を、触媒としてクロムを含まない
Cu−Zn触媒(CuO 49.3重量%、ZnO 4
5.1重量%、CuO:ZnO重量比=1.09:1)
25cc(29.3g)を用いて行なった。
【0034】リアクターに水素を150Nl/hで流通
し、温度を240℃、圧力を4MPaとした。12時間
後の生成液を分析したところ、カルボン酸の転化率は9
9%、アルコール選択率は99%であったが、転化率は
急激に低下し、48時間後転化率は70%以下まで低下
した。
【0035】比較例2 比較例1と同様な反応を、温度を260℃、圧力を7M
Paとして行なった。12時間後の生成液を分析したと
ころ、カルボン酸の転化率は99.1%、アルコール選
択率は98.3%であったが、30時間後リアクターの
入口圧と出口圧の差圧が1MPa以上となり、閉塞のた
め運転不能となった。リアクターを開放したところ、触
媒床下部に固体析出物がみられた。運転停止後、これを
分析したところ、カルボン酸の亜鉛塩であることがわか
った。
【0036】比較例3 比較例1と同様な反応を、温度を260℃、圧力を7M
Paとして行なった。ただし、原料液としては実施例1
と同じ第3級カルボン酸(2,5,5−トリメチル−2
−t−ブチルヘキサン酸)を用いた。12時間後、生成
液を分析したところ、カルボン酸の転化率は97.9%
であり、アルコール選択率は99.2%であったが、4
0時間後リアクターの入口圧と出口圧の差圧が1MPa
以上となり、閉塞のため運転不能となった。リアクター
を開放したところ、触媒床下部に固体析出物がみられ
た。運転停止後、これを分析したところ、カルボン酸の
亜鉛塩であることがわかった。
【0037】比較例4 実施例1と同様な反応を、触媒として亜鉛を含まないC
u−Cr触媒(CuO36.5重量%、Cr 31.1
重量%)25cc(35.0g)を用いて行なった。
【0038】リアクターに水素を150Nl/hで流通
し、温度を280℃、圧力を7MPaとした。原料液と
して実施例1と同じ第3級カルボン酸(2,5,5−ト
リメチル−2−t−ブチルヘキサン酸)を無溶媒で、
1.5cc/h(1.37g/h、6.37×10-3
ル/h)の供給速度でフィードした。12時間後の生成
液を分析したところ、カルボン酸の転化率は47.3%
と低かった。150時間後もカルボン酸の転化率は4
6.2%であり、触媒劣化はほとんど見られなかった
が、活性は低かった。
【0039】比較例5 CuO:ZnOの重量比が0.16:1であるCrを含
むCu−Zn−Cr触媒(CuO 10.6重量%、Z
nO 68.1重量%、Cr 12.9重量%)25c
c(40.2g)をリアクターに充填し、他の条件は実
施例1と同じとして水添反応を行なった。
【0040】12時間後の生成液を分析したところ、カ
ルボン酸(2,5,5−トリメチル−2−t−ブチルヘ
キサン酸)の転化率はわずか31.9%であり、アルコ
ール選択率は98.8%であった。100時間後、カル
ボン酸の転化率は20.1%まで低下した。
【0041】実施例3 触媒として実施例1と同じ触媒(Cu−Zn−Cr触
媒、CuO:ZnO重量比=1.12:1、Cr 1
1.1重量%)25cc(33.4g)をリアクターに
充填し、実施例1と同様に活性化を行なった。リアクタ
ーに水素を150Nl/hで流通し、反応温度を220
℃、圧力を3MPaとした。原料液として第1級カルボ
ン酸であるヘキサン酸を6cc/h(5.562g/
h、0.048mol/h)の供給速度でフィードし
た。12時間後、生成液を分析したところ、ヘキサン酸
の転化率は98.8%であり、ヘキサノールの選択率は
95.0%であった。120時間後、転化率は99.0
%、選択率は93.1%であった。
【0042】実施例4 実施例3と同様な反応を、第2級カルボン酸である2−
エチルヘキサン酸を6cc/h(5.418g/h、
0.0376mol/h)の供給速度でフィードして行
った。12時間後、生成液を分析したところ、2−エチ
ルヘキサン酸の転化率は98.8%であり、2−エチル
ヘキサノールの選択率は98.8%であった。140時
間後、転化率は95.7%、選択率は98.0%であっ
た。
【0043】
【発明の効果】本発明によれば比較的低温、低圧で触媒
劣化の少ない状態で、カルボン酸から高い収率でアルコ
ールを得ることができる。
【0044】また、本発明の方法はカルボン酸のリサイ
クルなしに実質的に100%に近い転化率でアルコール
を製造することができ極めて生産性に優れている。

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 銅、亜鉛及びクロムを含む酸化物であっ
    て、該酸化物中の酸化銅(CuO)と酸化亜鉛(Zn
    O)の重量比が1:1〜10:1であり、かつ、該酸化
    物におけるクロムの金属としての割合が5〜50重量%
    である触媒の存在下、カルボン酸を水素化することを特
    徴とするカルボン酸の水素化方法。
  2. 【請求項2】 該酸化物中の酸化銅(CuO)と酸化亜
    鉛(ZnO)の重量比が1:1〜4:1であり、かつ、
    該酸化物におけるクロムの金属としての割合が5〜20
    重量%である請求項1記載のカルボン酸の水素化方法。
  3. 【請求項3】 水素化の反応温度が150〜350℃で
    あり、反応圧力が0.1〜15MPaである請求項1又
    は2記載のカルボン酸の水素化方法。
  4. 【請求項4】 カルボン酸が第3級カルボン酸である請
    求項1、2又は3記載のカルボン酸の水素化方法。
  5. 【請求項5】 第3級カルボン酸が2,5,5−トリメ
    チル−2−t−ブチルヘキサン酸又は2,3,3−トリ
    メチル−2−エチルブタン酸である請求項4記載のカル
    ボン酸の水素化方法。
JP15110094A 1994-07-01 1994-07-01 カルボン酸の水素化方法 Expired - Fee Related JP3754464B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15110094A JP3754464B2 (ja) 1994-07-01 1994-07-01 カルボン酸の水素化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15110094A JP3754464B2 (ja) 1994-07-01 1994-07-01 カルボン酸の水素化方法

Publications (2)

Publication Number Publication Date
JPH0812607A true JPH0812607A (ja) 1996-01-16
JP3754464B2 JP3754464B2 (ja) 2006-03-15

Family

ID=15511344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15110094A Expired - Fee Related JP3754464B2 (ja) 1994-07-01 1994-07-01 カルボン酸の水素化方法

Country Status (1)

Country Link
JP (1) JP3754464B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100903008B1 (ko) * 2007-11-14 2009-06-17 한국화학연구원 n―부탄올의 제조 방법
CN104128181A (zh) * 2014-07-03 2014-11-05 昆明理工大学 一种催化剂的制备方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100903008B1 (ko) * 2007-11-14 2009-06-17 한국화학연구원 n―부탄올의 제조 방법
CN104128181A (zh) * 2014-07-03 2014-11-05 昆明理工大学 一种催化剂的制备方法及应用

Also Published As

Publication number Publication date
JP3754464B2 (ja) 2006-03-15

Similar Documents

Publication Publication Date Title
US7232934B2 (en) Hydrogenation of oxo aldehydes to oxo alcohols in the presence of a nickel-molybdenum catalyst
US7884046B2 (en) Catalyst and process for hydrogenating carbonyl compounds
JPH05505975A (ja) 活性触媒を用いた高転化率及び高選択率のγ―ブチロラクトンへの無水マレイン酸の気相接触水素添加方法
JPH0427969B2 (ja)
KR100659913B1 (ko) 알콜의제조방법
EP3438078B1 (en) Method for preparing butadiene with excellent catalyst reproducibility
JP2003528066A (ja) 3−ヒドロキシプロパナール、β−プロピオラクトン、β−プロピオラクトンのオリゴマー、3−ヒドロキシプロパン酸のエステル、またはこれらの混合物の気相水素化によるプロパン−1,3−ジオールの調製方法
KR920009791B1 (ko) 알코올의 제조 공정(2단계)
JP3754464B2 (ja) カルボン酸の水素化方法
JPS59106441A (ja) 脂肪族第3アミンの製造方法
US4250093A (en) Process for the preparation of laotams
TWI829737B (zh) 催化劑、其製備方法、及選擇性氫化製程
JPS63156739A (ja) カルボニル化合物の製法
JPH05168928A (ja) 脱水素反応用触媒及び該触媒の製造法、並びに該触媒を使用するカルボニル化合物の製造法
RU2261242C2 (ru) Способ получения 1,3-диола
JPS5888330A (ja) 1,1,1,3,3,3‐ヘキサフルオロ‐2‐プロパノールの製法
US4598159A (en) Process for producing furfurylamine and/or tetrahydrofurfurylamine
JPS6351130B2 (ja)
JP2001048819A (ja) ジカルボン酸類の二段階水素化法
JP3579507B2 (ja) ベンゼンの部分的水素化によるシクロヘキセンの連続的製造方法
JPS63152332A (ja) 二酸化炭素の水素化方法
CN114534787B (zh) 一种异戊烯醇气相脱氢催化剂及方法
JPS5980630A (ja) シユウ酸ジエステルの製法
JP4045604B2 (ja) 2−メチルイミダゾールの製造法
JPH05168929A (ja) カルボニル化合物の還元用触媒及び該触媒の製造法、並びに該触媒を使用するアルコールの製造法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041012

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees