RU2261242C2 - Способ получения 1,3-диола - Google Patents

Способ получения 1,3-диола Download PDF

Info

Publication number
RU2261242C2
RU2261242C2 RU2002128144/04A RU2002128144A RU2261242C2 RU 2261242 C2 RU2261242 C2 RU 2261242C2 RU 2002128144/04 A RU2002128144/04 A RU 2002128144/04A RU 2002128144 A RU2002128144 A RU 2002128144A RU 2261242 C2 RU2261242 C2 RU 2261242C2
Authority
RU
Russia
Prior art keywords
catalyst
hydroxyaldehyde
hydrogenation
hydroformylation
synthesis gas
Prior art date
Application number
RU2002128144/04A
Other languages
English (en)
Other versions
RU2002128144A (ru
Inventor
Жан-Поль ЛАНЖ (NL)
Жан-Поль Ланж
Original Assignee
Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шелл Интернэшнл Рисерч Маатсхаппий Б.В. filed Critical Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Publication of RU2002128144A publication Critical patent/RU2002128144A/ru
Application granted granted Critical
Publication of RU2261242C2 publication Critical patent/RU2261242C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/56Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds
    • C07C45/57Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom
    • C07C45/58Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom in three-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Saccharide Compounds (AREA)

Abstract

Изобретение относится к способу получения 1,3-алкандиола гидрированием сырья, включающего 3-гидроксиальдегид, в присутствии катализатора и источника водорода, где в качестве источника водорода используют синтез-газ, и катализатор представляет собой гетерогенный катализатор, включающий медь на носителе, а также к способу получения 1,3-алкандиола путем конверсии оксирана в процессе, включающем гидроформилирование и гидрирование, при этом указанные стадии необязательно можно осуществлять одновременно в одном реакционном сосуде. Достигнутый технический результат заключается в существенном сокращении установленной стоимости оборудования и приведению к «одностадийному» получению 1,3-пропандиола (или подобного 3-алкандиола) из этиленоксида (или соответствующего оксирана). 2 н. и 7 з.п.ф-лы, 2 табл.

Description

Область изобретения
Настоящее изобретение относится к способу получения 1,3-диола гидрированием сырья, включающего 3-гидроксиальдегид, в присутствии катализатора и источника водорода, где в качестве источника водорода используют синтез-газ, и катализатор представляет собой гетерогенный катализатор, включающий медь на носителе.
Известный уровень техники
1,3-Диолы имеют множество применений, в частности в синтезе полимеров. Например, "CORTERRA" (торговая марка) представляет собой сложный полиэфир, полученный из 1,3-пропандиола (PDO) и терефталевой кислоты, и такой полимер обладает замечательными свойствами. Замещенные варианты PDO находят подобное применение. Поэтому весьма желательно найти коммерческие способы получения 1,3-диолов.
Один из наиболее важных путей получения 1,3-диолов включает гидроформилирование оксирана с последующим гидрированием промежуточного 3-гидроксиальдегида. Альтернативный способ включает гидратирование акролеина или высших гомологов, за которым также следует гидрирование полученного 3-гидроксиальдегида.
Гидроформилирование оксиранов (эпоксидов) описано в "New Synthesis with Carbon Monoxide" (Springer-Verlag, 1980), pp. 131-132 и в различных патентах Shell (способы гидроформилирования были, например, описаны в ЕР-А-0478850 и в US-A-5463144; US-A-5463145; US-A-5463146; US-A-5527973; USA-5545765; US-A-5545766; US-A-5545767; US-A-5563302; US-A-5576471; US-A-5585528; US-A-5684214; US-A-5723389; US-A-5770776; US-A-5786524; US-A-5841003; US-A-5945570 и US-A-5986145).
Конверсию 3-гидроксиальдегида обычно осуществляют путем его гидрирования газообразным водородом в присутствии гомогенного или гетерогенного катализатора. Например, гидрирование 3-гидроксипропаналя (НРА) до 1,3-пропандиола (PDO) в присутствии гетерогенного катализатора описано в WO-A-98/57913 и в документах предшествующего уровня техники, на которые ссылаются в указанном ссылочном документе. Этот ссылочный документ также описывает важные критерии подходящего катализатора: высокая активность и селективность при малом объеме катализатора, долгий срок службы и разумная цена.
Однако многие такие катализаторы не обладают селективностью и/или стабильностью в слабокислотной среде и/или в присутствии оксида углерода. Поэтому потенциально привлекательный источник водорода в форме синтез-газа («синтез-газ» - смесь H2 и СО) не используют. Настоящее изобретение направлено на обеспечение катализаторов, которые можно использовать в получении 1,3-диола путем гидрирования 3-гидроксиальдегида в присутствии синтез-газа в качестве источника водорода.
Как указывалось, 1,3-диолы могут представлять собой продукты многостадийного способа, где синтез-газ используют на стадии, предшествующей гидрированию, т.е. на стадии гидроформилирования. В таких способах катализатор, способный к гидрированию продукта предшествующей стадии гидроформилирования, был бы особенно предпочтительным.
Поэтому объектом изобретения является способ получения 1,3-диола путем гидрирования сырья, включающего 3-гидроксиальдегид, в присутствии катализатора и источника водорода, где катализатор способен к регулированию синтез-газа как источника водорода и где катализатор соответствует указанным выше важным критериям.
Краткое описание изобретения
Следовательно, настоящее изобретение относится к способу получения 1,3-диола гидрированием сырья, включающего 3-гидроксиальдегид, в присутствии катализатора и источника водорода, где в качестве источника водорода используют синтез-газ, и катализатор представляет собой гетерогенный катализатор, включающий медь на носителе.
Сырье для способа по настоящему изобретению предпочтительно включает продукт стадии гидроформилирования оксирана, при этом такой продукт включает 3-гидроксиальдегид, растворитель и гомогенный катализатор гидроформилирования. Указанный гомогенный катализатор гидроформилирования предпочтительно включает катализатор гидроформилирования на основе Со и/или Ph.
Более предпочтительно
а) осуществление гидроформилирования оксирана путем взаимодействия с синтез-газом в присутствии гомогенного катализатора гидроформилирования и растворителя с образованием 3-гидроксиальдегидного сырья,
b) гидрирование 3-гидроксиальдегида в присутствии катализатора и синтез-газа в качестве источника водорода.
Предпочтительно стадию гидроформилирования а) и стадию гидрирования b) осуществляют в смежных реакционных сосудах или в одном реакционном сосуде.
Более предпочтительно стадию гидроформилирования а) и стадию гидрирования b) осуществляют одновременно в одном реакционном сосуде.
Настоящее изобретение также обеспечивает способ получения 1,3-алкандиола путем конверсии оксирана в процессе, включающем гидроформилирование и гидрирование, при этом эти стадии необязательно можно осуществлять одновременно в одном реакционном сосуде.
Описание настоящего изобретения касается получения PDO, и предпочтительный вариант воплощения изобретения описан при помощи примера.
Подробное описание изобретения
Способ по настоящему изобретению включает гидрирование сырья, включающего 3-гидроксиальдегид, т.е. соединение общей формулы
R2C(OH)-C(R)2-CH=O
где каждый R независимо может представлять атом водорода или (совместно) углеводородную группу, замещенную или незамещенную, и/или может быть алифатическим или ароматическим. Каждая группа R может независимо быть разной по размеру, например от 1 до 20 атомов углерода, предпочтительно от 1 до 10 атомов углерода. Кроме того, они могут содержать один или несколько заместителей, выбранных из гидрокси, алкокси, карбонильной, карбоксильной, амино, циано, цианато, меркапто, фосфино, фосфонильной и/или силильной группы и/или одного или нескольких атомов галогена. Предпочтительными 3-гидроксиальдегидами являются такие, общее количество атомов углерода которых составляет от 3 до 12, более предпочтительно от 3 до 8 атомов углерода. Наиболее предпочтительными 3-гидроксиальдегидами являются НРА, т.е. где каждый R является атомом водорода.
Синтез-газ представляет собой смесь водорода и оксида углерода. Типично он образуется при частичном сгорании углеводородного сырья. Коммерческий синтез-газ включает водород и окись углерода при отношении Н2/СО, составляющем 1,0-2,0. Синтез-газ с большим отношением Н2/СО, например до 10,0 и выше, может быть получен путем, так называемой, реакции изменения соотношения оксида углерода и водорода в водяном газе, и такие газы также можно использовать в способе по настоящему изобретению. С другой стороны, преимуществом настоящего изобретения является то, что оно может работать с обогащенными оксидом углерода газами при таких низких отношениях Н2/СО как 0,5. Предпочтительным отношением Н2/СО, следовательно, является отношение от 0,5 до 10, более предпочтительно от 1,0 до 5,0.
Как было указано, катализатор включает медь на носителе, которая в условиях работы способа, как полагают, должна быть, по крайней мере, частично в форме металла. Катализатор может представлять собой сложный катализатор, в котором медь является частью сплава и/или катализатор, включающий дополнительные металлы в качестве промоторов. Подходящие промоторные металлы включают металлы Групп 1-7. Однако, как было обнаружено, вполне подходящими являются ординарные катализаторы на основе меди как единственного активного компонента.
Природа носителя катализатора не является существенной. Подходящие носители включают инертные носители, представляющие глину, металлическую или стеклянную губчатую структуру, или носители на основе неорганического карбида, или оксида, или угля. Например, носитель может быть на основе оксидов металлов групп 2-6 и 12-14 и их смесей, например ZnO, диоксид титана, оксид алюминия, диоксид циркония, диоксид кремния и/или цеолиты. Предпочтительные носители являются стойкими к кислотной среде. Подходящие результаты были получены при использовании меди на ZnO, на диоксиде кремния и на Cr2О3.
Носитель можно использовать в виде тонкоизмельченного порошка или он может быть получен формованием, например, в форме шариков, гранул или экструдатов с использованием известных в технике способов, таких как описанные в US-A-5364984. Альтернативно носитель может быть в форме медовых сот, пены, губки или подобных крупных монолитов.
Количество меди также может сильно варьировать. Например, медь может присутствовать на носителе в количестве от 0,1 до 80% мас., предпочтительно от 10 до 50% мас., более предпочтительно 25-30% мас. по отношению к носителю.
Синтез медного катализатора является обычным, типично включающим совместное осаждение меди и предшественника катализатора. Он также может быть получен путем заливки носителя раствором меди, обжигом нагруженного носителя и восстановлением его при повышенных температурах в атмосфере H2. Различные медные катализаторы на носителе являются коммерчески доступными, например, для использования в гидрировании сложных эфиров до соответствующих спиртов. Содержащие медь катализаторы также описаны в UA-A-5096688 в двухстадийном способе конверсии синтез-газа в высшие спирты. Этот документ описывает использование катализатора для гидрирования нежелательных неспиртовых оксигенатов и конверсии воды и оксида углерода в газообразный водород и оксид углерода.
Медный катализатор на носителе можно использовать в непрерывном способе, полунепрерывном способе или периодическом способе. Предпочтительный путь описан в связи с предпочтительным вариантом осуществления изобретения, раскрытым ниже.
Условия гидрирования не являются особенно критическими. Типично подаваемый карбонил гидрируют при температуре в пределах от комнатной до 150°С, предпочтительно от 40 до 80°С, и при давлении в пределах от атмосферного до 15 МПа (150 бар), предпочтительно от 4 до 10 МПа (40-100 бар). В случае непрерывного способа предпочтительна объемная скорость расхода жидкости 0,1-10 h-1. В периодическом способе время реакции в пределах от 0,1 до 10 час является подходящим. Наконец, в периодическом способе катализатор можно использовать в любом подходящем количестве в пределах от 0,1 до 50% мас., предпочтительно от 1,0 до 10% мас. катализатора в расчете на массу карбонильного соединения.
Предпочтительный вариант воплощения изобретения включает гидрирование водных растворов НРА, например растворов, полученных гидроформилированием этиленоксида (ЕО) в присутствии кобальтового или родиевого катализатора. В принципе, можно использовать любой оксиран, приводящий к 3-гидроксиальдегиду, указанному выше.
Способ по настоящему изобретению особенно выгодно использовать для многостадийного получения PDO из ЕО, в котором обычно осуществляют удаление катализатора гидроформилирования до гидрирования. Так, известно, что для многих катализаторов на основе кобальта для того, чтобы они оставались в растворе, требуется присутствие оксида углерода. Поскольку в "традиционном" процессе гидрирования НРА присутствует только газообразный водород, любой оставшийся катализатор осаждается и загрязняет реактор. В способе по настоящему изобретению такие катализаторы гидроформилирования уже не требуется извлекать до гидрирования.
К удивлению было обнаружено, что медный катализатор на носителе может гидрировать НРА с синтез-газом в условиях, которые полностью отравляют традиционные катализаторы гидрирования на основе металлов Групп 8-10. Кроме того, катализатор на основе меди может присутствовать в процессе гидроформилирования оксирана, таким образом существенно сокращая установленную стоимость оборудования. В наиболее предпочтительном варианте осуществления изобретения это будет приводить к "одностадийному" получению PDO (или подобного 3-алкандиола) из ЕО (или соответствующего оксирана).
Настоящее изобретение иллюстрируется на примере гидрирования 3-гидроксиальдегида (НРА) в атмосфере синтез-газа при сравнении способа по настоящему изобретению со способом предшествующего уровня техники, использующим катализатор на основе рутения. Настоящее изобретение также иллюстрируется на примере "одностадийного" способа получения PDO.
Примеры
В примерах были использованы следующие катализаторы гидрирования:
Cu/Zn - ZnO/алюминий оксидный катализатор, содержащий ~40% мас. Cu
Cu/Cr - хромитный катализатор, содержащий ~37% мас. Cu
Ag/Al - катализатор на основе оксида алюминия, содержащий ~14% мас. Ag
Au/Ti - катализатор на основе диоксида титана, содержащий ~2% мас. Au
Ru/пена - катализатор на основе пенообразного альфа-алюминия с количеством пор 40 пор/дюйм, содержащий ~2% мас. Ru
Перед реакцией катализатор гидрирования восстанавливают при 300°С в течение 11 час при давлении Н2 0,5 МПа (5 бар).
Эксперимент А
В типичном эксперименте в 300 мл автоклав загружают различные количества катализатора гидрирования. Затем в автоклав загружают 150 мл водного раствора, содержащего ~21% мас. НРА, с осуществлением периодической работы способа при 45°С и давлении H2 9 МПа (90 бар) или давлении синтез-газа 9 МПа (90 бар) (3:1 Н2:СО) в течение нескольких часов.
Результаты и обсуждение эксперимента А
Исследовали два катализатора: Cu/Cr и Ru/пена. Результаты, приведенные в таблице 1 ниже, ясно показывают, что катализатор на основе RU был активным в атмосфере чистого водорода, но почти неактивным в атмосфере синтез-газа. В отличие от этого, Cu/Cr катализатор показал хорошую активность как в атмосфере водорода, так и в атмосфере синтез-газа. Необходимо отметить, что ацетали могут быть образованы путем конденсации НРА с PDO.
ТАБЛИЦА 1
Гидрирование НРА в атмосфере синтез-газа
Катализатор гидрирования НРА Время Выход
PDO ацеталь PDO+ ацеталь
Эксп. № название [г] [ммоль] [час] [моль на 100 моль НРА в сырье]
Гидрирование при давлении Н2 9 МПа (90 бар) (65°С)
37 Ru/пена 49 206,00 0,75 21,0 5,0 26,1
1,5 37,1 5,1 42,2
5 85,9 5,2 91,1
66 Cu/Cr 20 167,80 0,75 21,0 9,0 30,0
1,5 43,9 7,6 51,6
5 91,5 7,8 99,3
Гидрирование при давлении Н2 6 МПа (60 бар) и давлении СО
3 МПа (30 бар) (65°С)
38 Ru/пена 49 185,67 0,75 3,8 5,3 9,1
1,5 4,0 5,3 9,3
5 4,4 5,4 9,8
85 Cu/Cr 20 153,81 0,75 16,8 6,3 23,1
1,5 29,4 6,2 35,6
5 87,1 6,5 93,6
Эксперимент В
Проводили также эксперименты для иллюстрации "одностадийного" способа получения PDO в атмосфере синтез-газа. Эти эксперименты также проводили в 300 мл автоклаве, в который загружали 150 мл смеси МТВЕ, содержащей 685 мг Co2(CO)8, 300 мг N,N-диметилдодециламина и 7,00 г ЕО, и 10 г катализатора гидрирования. Затем в автоклаве создавали давление при помощи синтез-газа (4:1 Н2:СО) до 8 МПа (80 бар) и нагревали до 75°С. В автоклаве поддерживали давление 8 МПа (80 бар) добавлением синтез-газа (2:1 Н2:СО). Образцы отбирали каждые 15 минут в течение первого часа и каждые 30 минут в течение оставшегося времени. Выходы выражали как мольный % в расчете на подаваемый ЕО.
Результаты и обсуждение эксперимента В
Результаты экспериментов обобщены в таблице 2. В соответствии с таблицей 2 не происходило никакого образования НРА и PDO в сравнительных экспериментах, где не использовали ни катализатор гидроформилирования Со2(СО)8, ни какой-либо металл на носителе в качестве катализатора гидрирования (эксп. 122). Присутствие Со2(СО)8 и отсутствие катализатора гидрирования на основе металла на носителе приводило к образованию НРА с крайне малыми количествами PDO (эксп. 132).
При добавлении Cu/Zn или Cu/Cr к Со2 (СО)8-содержащей системе происходило образование PDO а существенных количествах (эксп. 127-128 и 120-121). Правильное определение количества вводимых катализаторов на основе меди и Со2(СО)8 позволяет получить максимальное образование PDO при минимальном образовании ацеталей (эксп. 120).
В отличие от этого другие металлы группы 11, такие как Ag/Al или Au/Ti не приводят к образованию значительного количества РДО (эксперименты 125-126).
ТАБЛИЦА 2
Катализатор гидрирования Со2(СО)8 ЕО Время Выход
HPA PDO ацеталь PDO+ ацеталь
Эксп. № название [г] [г] [г] [час] [моль на 100 моль HPA в сырье]
Без катализатора гидрирования
122 нет 0 0 7,20 0,75 0,0 0,0 0,0 0,0
1,5 0, 0 0,0 0,0 0,0
132 нет 0 0,714 6,97 0,75 40,5 1,1 1,9 3,0
1,5 31,3 0,3 2,3 2,7
Катализатор на основе меди
127 Cu/Zn 10 0, 688 7,19 0,75 17,7 10,4 1,1 11,5
1,5 7,8 15,4 1,2 16,7
3,5 0,7 19,8 1,2 21,1
128 Cu/Zn 15 0, 687 6,98 0, 75 9,9 14,8 0,9 15,7
1,5 3,5 19,2 0,9 20, 1
3,5 0,2 21,1 0,8 21, 9
121 Cu/Cr 10 0,05 6,88 0,75 1,1 1,5 0,0 1,5
1,5 0,5 3,1 0,1 3,2
4 0,3 4,3 0,0 4,3
120 Cu/Cr 10 0, 14 7,00 0, 75 10, 9 5,3 0,1 5,4
(*) без обновления газа 1,5 9,0 10,4 0,1 10, 5
4 1,6 19,4 0,2 19,6
Другие катализаторы на основе металлов Группы 11
125 Ag/Ai 8 0, 668 6, 97 0,75 35, 3 0,8 1,5 2,3
1,5 29,5 0,2 2,0 2,2
126 Au/Ti 5 0,686 7,45 0,75 41, 4 3,9 0,1 4,0
1,5 44, 3 1,4 1,9 3,4

Claims (9)

1. Способ получения 1,3-алкандиола гидрированием сырья, включающего 3-гидроксиальдегид, в присутствии катализатора и источника водорода, где 3-гидроксиальдегид имеет общую формулу
R2C(OH)-C(R)2-CH=O,
где каждый R независимо может представлять атом водорода или (совместно) представлять углеводородную группу, имеющую от 1 до 20 атомов углерода, и где в качестве источника водорода используют синтез-газ, и катализатор представляет собой гетерогенный катализатор, включающий медь на носителе.
2. Способ по п.1, где катализатор включает медь на носителе, причем указанная медь, по крайней мере, частично должна быть в форме металла в условиях реакции.
3. Способ по п.1 или 2, где носитель состоит из глины, металлической или стеклянной губки или на основе неорганического карбида или оксида или угля.
4. Способ по любому из пп.1-3, где сырье включает продукт стадии гидроформилирования оксирана, при этом продукт включает 3-гидроксиальдегид, растворитель и гомогенный катализатор гидроформилирования.
5. Способ по п.4, где гомогенный катализатор гидроформилирования включает катализатор гидроформилирования на основе Со и/или Rh.
6. Способ по п.4 или 5, где
а) оксиран гидроформилируют путем взаимодействия с синтез-газом в присутствии гомогенного катализатора гидроформилирования и растворителя с образованием 3-гидроксиальдегидного сырья и
b) 3-гидроксиальдегидное сырье гидрируют в присутствии катализатора и синтез-газа как источника водорода.
7. Способ по п.6, где стадию гидроформилирования а) и стадию гидрирования b) осуществляют в сообщающихся реакционных сосудах или в одном реакционном сосуде.
8. Способ по п.7, где стадию гидроформилирования а) и стадию гидрирования b) осуществляют в одном реакционном сосуде.
9. Способ получения 1,3-алкандиола по которому а) оксиран гидроформилируют путем взаимодействия с синтез-газом в присутствии гомогенного катализатора гидроформилирования и растворителя с образованием 3-гидроксиальдегидного сырья, где 3-гидроксиальдегид имеет общую формулу
R2C(OH)-C(R)2-CH=O,
где каждый R независимо может представлять атом водорода или (совместно) представлять углеводородную группу, имеющую от 1-20 атомов углерода, и b) 3-гидроксиальдегидное сырье гидрируют в присутствии катализатора и синтез-газа как источника водорода, при этом указанные стадии можно осуществлять одновременно в одном реакционном сосуде.
RU2002128144/04A 2000-03-22 2001-03-22 Способ получения 1,3-диола RU2261242C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00302362.9 2000-03-22
EP00302362 2000-03-22

Publications (2)

Publication Number Publication Date
RU2002128144A RU2002128144A (ru) 2004-02-27
RU2261242C2 true RU2261242C2 (ru) 2005-09-27

Family

ID=8172816

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002128144/04A RU2261242C2 (ru) 2000-03-22 2001-03-22 Способ получения 1,3-диола

Country Status (13)

Country Link
US (1) US6548716B1 (ru)
EP (1) EP1265833B1 (ru)
JP (1) JP2003528065A (ru)
KR (1) KR100733678B1 (ru)
CN (1) CN1252012C (ru)
AT (1) ATE267155T1 (ru)
AU (1) AU2001244217A1 (ru)
BR (1) BR0109435A (ru)
CA (1) CA2404122A1 (ru)
DE (1) DE60103381T2 (ru)
MX (1) MXPA02009162A (ru)
RU (1) RU2261242C2 (ru)
WO (1) WO2001070658A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762332B2 (en) * 2000-03-22 2004-07-13 Shell Oil Company Process for preparing an alcohol from an olefin
US8017818B2 (en) * 2007-03-08 2011-09-13 Virent Energy Systems, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
WO2009137691A2 (en) * 2008-05-09 2009-11-12 The Scripps Research Institute 1,3-diol synthesis via controlled, radical-mediated c-h functionalization
US20180297920A1 (en) * 2015-10-20 2018-10-18 Shell Oil Company Process for the production of glycols
CN108017510B (zh) * 2016-11-03 2021-02-02 万华化学集团股份有限公司 一种羟基特戊醛的制备方法,及其在新戊二醇制备方面的应用

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096688A (en) * 1989-06-13 1992-03-17 Amoco Corporation Catalytic process for producing higher alcohols from synthesis gas
ES2059998T3 (es) 1990-10-04 1994-11-16 Shell Int Research Procedimiento para la preparacion de beta-hidroxi aldehidos.
DE4132663C2 (de) 1991-10-01 1993-10-14 Degussa Verfahren zum Herstellen von 1,3-Propandiol durch Hydrieren von Hydroxypropionaldehyd
US5436356A (en) 1993-02-09 1995-07-25 Shell Oil Company Carbonylation process
US5770776A (en) 1994-09-30 1998-06-23 Shell Oil Company Process for preparing 1,3-propanediol
US5576471A (en) 1994-09-30 1996-11-19 Shell Oil Company Cobalt-catalyzed process for preparing 1,3-propanediol using a lipophilic dihydroxyarene promoter
US5463144A (en) 1994-09-30 1995-10-31 Shell Oil Company Process for preparing 1,3-propanediol
US5463145A (en) 1994-09-30 1995-10-31 Shell Oil Company Process for preparing 1,3-propanediol
US5545767A (en) 1994-09-30 1996-08-13 Shell Oil Company Process for preparing 1,3-propanediol
US5563302A (en) 1994-09-30 1996-10-08 Shell Oil Company Cobalt-catalyzed process for preparing 1,3-propanediol using a lipophilic phosphine oxide promoter
US5585528A (en) 1994-09-30 1996-12-17 Shell Oil Company Cobalt-catalyzed process for preparing 1,3-propanediol using a lipophilic tertiary amine promoter
US5463146A (en) 1994-09-30 1995-10-31 Shell Oil Company Process for preparing 1,3-propanediol
US5545765A (en) 1994-09-30 1996-08-13 Shell Oil Company Cobalt-catalyzed process for preparing 1,3-propanediol using a lipophilic quaternary arsonium salt promoter
US5684214A (en) 1994-09-30 1997-11-04 Shell Oil Company Process for preparing 1,3-propanediol
US5545766A (en) 1994-09-30 1996-08-13 Shell Oil Company Cobalt-catalyzed process for preparing 1,3-propanediol using a lipophilic bidentate phosphine promotor
US5527973A (en) 1994-12-16 1996-06-18 Kelsey; Donald R. Purification of 1,3-propanediol
US6103927A (en) 1996-04-16 2000-08-15 Shell Oil Company Process for the carbonylation of ethylenically unsaturated compounds
US5786524A (en) 1996-05-30 1998-07-28 Shell Oil Company Process for preparation of 1,3-propanediol via hydrogenation of 3-hydroxypropanal
US5841003A (en) 1996-07-23 1998-11-24 Shell Oil Company Process for preparing alkanediols
US5723389A (en) 1996-10-15 1998-03-03 Shell Oil Company Process for preparing alkanediols
WO1998057913A1 (en) 1997-06-18 1998-12-23 E.I. Du Pont De Nemours And Company Process for the production of 1,3-propanediol by hydrogenating 3 -hydroxypropionaldehyde
US5986145A (en) 1997-08-22 1999-11-16 Shell Oil Company Purification of 3-hydroxy-propanal
US5945570A (en) 1998-10-29 1999-08-31 Arhancet; Juan Pedro Catalyst and process for preparing 1,3-propanediol

Also Published As

Publication number Publication date
US6548716B1 (en) 2003-04-15
CN1424993A (zh) 2003-06-18
BR0109435A (pt) 2002-12-10
JP2003528065A (ja) 2003-09-24
DE60103381T2 (de) 2005-04-14
AU2001244217A1 (en) 2001-10-03
CN1252012C (zh) 2006-04-19
RU2002128144A (ru) 2004-02-27
CA2404122A1 (en) 2001-09-27
KR20020084219A (ko) 2002-11-04
EP1265833A1 (en) 2002-12-18
EP1265833B1 (en) 2004-05-19
ATE267155T1 (de) 2004-06-15
KR100733678B1 (ko) 2007-06-28
WO2001070658A1 (en) 2001-09-27
MXPA02009162A (es) 2003-05-23
DE60103381D1 (de) 2004-06-24

Similar Documents

Publication Publication Date Title
US7232934B2 (en) Hydrogenation of oxo aldehydes to oxo alcohols in the presence of a nickel-molybdenum catalyst
KR920001303B1 (ko) 개선된 알데하이드 수소화 방법
EP0539002A2 (en) Aldol condensation using solid basic catalyst of MgO and Al2O3 having a high surface area
JP2002226414A (ja) 3−ヒドロキシエステル化合物から1,3−アルカンジオールを製造する方法
EP1051378B1 (en) Process for the preparation of neopentyl glycol
JP2009533468A (ja) アルデヒドに水素添加するための方法
CA2072534C (en) Manufacture of neopentyl glycol (iii)
RU2261242C2 (ru) Способ получения 1,3-диола
KR100659913B1 (ko) 알콜의제조방법
KR100457416B1 (ko) 3-히드록시에스터 화합물로부터 1,3-알칸디올을 제조하는방법
US6762332B2 (en) Process for preparing an alcohol from an olefin
KR100453296B1 (ko) 3-하이드록시에스터 화합물로부터 1,3-알칸디올을제조하는 방법
EP0075952A1 (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
US5801292A (en) Aldehyde process
US4661643A (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
KR20040047957A (ko) 폴리올 함유 반응 혼합물 중 포름산 암모늄의 분해 방법
EP0118258B1 (en) Catalytic process for the preparation of ethylene glycol
US4649225A (en) Hydrogenolysis of polyalkylene glycols to produce monoethylene glycol monoalkyl ethers, monoethylene glycol and ethanol
KR920003916B1 (ko) 알데하이드 수소화 촉매 조성물
EP0076461A1 (en) Hydrogenolysis of polyalkylene glycols to produce monoethylene glycol monoalkyl ethers, monoethylene glycol and ethanol
JPH0475780B2 (ru)
MXPA98010399A (en) Procedure for preparing alcohol

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20081209