JPH07111957B2 - 半導体の製法 - Google Patents

半導体の製法

Info

Publication number
JPH07111957B2
JPH07111957B2 JP59061650A JP6165084A JPH07111957B2 JP H07111957 B2 JPH07111957 B2 JP H07111957B2 JP 59061650 A JP59061650 A JP 59061650A JP 6165084 A JP6165084 A JP 6165084A JP H07111957 B2 JPH07111957 B2 JP H07111957B2
Authority
JP
Japan
Prior art keywords
substrate
silane
electrodes
based gas
glow discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59061650A
Other languages
English (en)
Other versions
JPS60206018A (ja
Inventor
圭弘 浜川
英雄 山岸
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP59061650A priority Critical patent/JPH07111957B2/ja
Priority to US06/716,302 priority patent/US4634601A/en
Publication of JPS60206018A publication Critical patent/JPS60206018A/ja
Publication of JPH07111957B2 publication Critical patent/JPH07111957B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体の製造に関する。
〔従来技術〕
シラン(SiH4)のプラズマ分解法でえられるアモルフア
スシリコンに、ホスフイン(PH3)やジボラン(B2H6
をドープすることにより価電子制御ができることが、ダ
ブル・イー・スピアーらによつて1975年に発見された。
1976年、デイー・イー・カールソンらによつてアモルフ
アスシリコンを用いた太陽電池が試作されるにいたり、
アモルフアスシリコンは一躍脚光を集め、太陽電池材料
としての研究が活発に進められるようになつてきてい
る。
これまでの研究成果として、pinヘテロ接合型太陽電池
では、エイ・カタラノらが変換効率10.1%を発表(1982
年)して以来、変換効率が10%をこえるものがいくつか
報告され、高変換効率薄膜太陽電池として有望視される
にいたつている。
しかし、これら高変換効率を有する太陽電池を構成する
アモルフアスシリコン膜は、例外なく13.56MHz付近、あ
るいはそれ以上の周波数の電源を用いてグロー放電分解
することによつてえられたものであり、それ以下の周波
数電源によるグロー放電分解で、このような高変換効率
の太陽電池が製造されたという報告はなされていない。
その原因は、電極が基板およびサセプターと平行に設置
され、グロー放電が主に電極と基板あるいはサセプター
との間で行なわれる平行平板型電極を用いて、周波数の
低い条件で行なわれると、電界反転に要する時間が長く
なり、グロー放電分解によつて生じた各種イオンに与え
られるエネルギーが増加するため、基板上に堆積してい
る半導体膜へのイオンの衝突により膜質が低下し、良好
な性能を有する太陽電池がえられないためと考えられ
る。とくに電界反転に要する時間の長い約13.56MHz未満
の放電においては、イオンのもつ運動エネルギーが大き
くなるため、膜質の低下が著しくなる。
一方、このような約13,56MHz以上の周波数の電源を用い
て半導体膜を製造すると、 インピーダンスマツチングの必要があり、装置の複雑
化がさけられない 装置の自動化の障害となるメガヘルツ帯でのノイズト
ラブルが発生しやすい 大面積の半導体膜を形成する際に、電極内での電力分
布が無視できなくなる などの問題を含んでいる。
これらの問題は、電源の周波数を低下させることによ
り、防止あるいは著しく低源させることができると考え
られる。しかし、電源の周波数を低下させると、とくに
直流グロー放電では放電の開始が困難になり、内部電極
構造のばあいにはそれほど障害にならないが、ガラス管
や石英管などの外部に電極がある外部電極構造のばあい
には、高電圧を印加するか、トリガーなどを設置するな
どの工夫をしなければ、通常の条件での放電は困難であ
るといわれている。
〔発明の構成〕
本発明者らは前記のごとき実情に鑑み、低周波電源を用
いたばあいにも良好な性能を有する半導体膜を製造しう
る方法を見出すべく鋭意研究を重ねた結果、本発明を完
成した。
すなわち本発明は、シラン系ガスを電源周波数20KHz〜2
00KHzのグロー放電分解法で分解させて半導体を製造す
る際に、基板に対して実質的に垂直に設置され、しかも
アース電位から絶縁された複数個の対向する電極を用い
て、電極間のイオン行路外で導入されたシラン系ガスを
グロー放電分解させたのち、導入されたシラン系ガスと
接触するように設置された基板上に分解物を堆積させる
ことを特徴とする半導体の製法に関する。
〔発明の実施態様〕
本発明に用いるシラン系ガスとは、シラン、ジシラン、
その他の高次シランのうちのガス状のものあるいはこれ
らの混合物などがあげられ、これらのみを用いてもよ
く、これらを水素またはアルゴン、ヘリウム、チツ素な
どの不活性ガスで希釈して用いてもよく、またこれらに
P、B、N、Cなどの元素を含む化合物を含有させたも
のを用いてもよい。
本発明においては、前記シラン系ガスが装置に導入さ
れ、基板に対して実質的に垂直に設置され、しかもアー
ス電位から絶縁された複数個の電極の間を通過する間に
該電極によりグロー放電せしめられる。
シラン系ガスの導入量は、装置の大きさ、シラン系ガス
の組成、排気量、電源パワーなどにより異なるため、一
概にはきめられないが、通常、装置内圧が10-2〜10Torr
程度に維持されるように、1〜1000sccm程度導入され
る。
導入されたシラン系ガスは、通常2〜10個程度の複数個
の、電極間距離2〜50cm程度の電極間に印加された300
〜2000V程度の電圧下で、20KHz〜200KHz程度の周波数
で、電極間を通過する際にグロー放電分解される。
前記周波数が20KHz未満になると、分解時にイオン種が
急激に増加したり、放電開始が困難となると共に、第2
図および第3図の結果から明らかなように導電率の改善
がそれほどみられない。200KHzをこえるとと、インピー
ダンスマツチングの必要が生じたり、メガヘルツ帯での
ノイズトラブルが発生したり、製膜面積を大きくしたと
きに膜質が低下するなどの傾向が生ずる。
本発明においては、用いる複数個の電極はすべてアース
電位から絶縁されている。このことにより、従来の電極
のようにアースされているばあいと異なり、基板あるい
はサセプターと電極との間の放電がおこりにくく、電極
間の電界による放電が主となるため、イオンの基板への
衝突が著しく低減されることになる。
グロー放電分解されたシラン系ガスは、導入されたシラ
ン系ガスと接触するように、また前記電極と実質的に垂
直になるように設置された基板に向つて進み、該基板上
に分解物を堆積する。さらに基板は後述する第1図に示
すように、電極間で行き交うイオンの行路の外に設置さ
れており、イオンが直接衝突しないようになっている。
本明細書において実質的に垂直になるとは、装置の都合
上イオンのダメージが問題とならない程度に、基板に対
して電極の向きを垂直からずらすばあいをも含むことを
意味する概念である。
本発明に用いる基板にはとくに限定はなく、一般に半導
体の製造に用いられるものが使用されうるが、半導体層
の堆積が180〜300℃程度の基板上に行なわれるため、耐
熱性を有することが好ましい。
グロー放電分解物が基板上に堆積されたシラン系ガス
は、そののち装置外に排気される。
つぎに本発明の方法を図面にもとづき説明する。
第1図は、本発明に用いる反応装置の一例である容量結
合高周波グロー放電分解装置(10)を説明するための説
明図である。
第1図において、(1)は、たとえばステンレス製のご
とき反応炉であり、反応炉(1)にはシラン系ガスを導
入するための導入口(8)が設けられている。
導入口(8)から供給されたシラン系ガスは、ガス流路
を規定するための、たとえばガラス製または石英製など
の反応管(2)にそつて、反応管(2)のきれた位置に
設置されているサセプター(6)によりシラン系ガスの
流れと接触するように載置された基板(7)に向つて流
れる。
反応管(2)には、シラン系ガスの流れ方向と平行にな
るように、すなわちサセプター(6)により設置された
基板(7)と実質的に垂直になるように、RF電極
(3)、(4)が設置されている。RF電極(3)、
(4)はアース電位から絶縁されており、該電極間をシ
ラン系ガスが通過するとき、該シラン系ガスがグロー放
電分解せしめられる。
第1図には反応管(2)の内側、すなわち内部電極構造
になるように電極(3)、(4)が設けられているが、
反応管(2)の外側、すなわち外部電極構造になるよう
に設けてもよい。
グロー放電分解せしめられたシラン系ガスは基板(7)
と接触し、分解物が基板(7)上に堆積される。分解物
の堆積にあたり、基板(7)は、基板(7)をはさんで
反応管(2)と反対側に設置されたヒーター(5)によ
り加熱され、適正な温度で半導体膜が堆積される。
前記分解物の基板(7)との接触は、基板全体にわたつ
て均一であり、かつ堆積効率がよくなるようにすること
が好ましい。この目的を達成するため、基板(7)を載
置するためのサセプター(6)は、反応管(2)とヒー
ター(5)とが対面する部分、すなわち基板(7)が載
置される付近にシラン系ガスを通過させうるように孔が
設けられていたり、電極とサセプターとの距離をイオン
の衝突が問題とならない程度に適当に近づけることによ
り、基板(7)付近をシラン系ガスが通過するように
し、その他の部分は、反応炉(1)の反応管(2)側と
ヒーター(5)側とを隔離するようにすることが好まし
い。もちろんサセプター(6)は単に基板(7)を設置
するだけの働きをするものであつてもよい。
基板(7)と接触せしめられ、分解物が堆積せしめられ
たシラン系ガスは、反応炉(1)のヒーター側に設けら
れた排気口(9)から排気される。
このようにして太陽電池などに用いられるアモルフアス
タイプ、マイクロスタイリンタイプなどの半導体が製造
される。
第1図に示したような装置を用いて本発明の方法により
半導体を製造すると、グロー放電分解は2枚の電極の間
でおこり、発生したイオンは主として電極間を往復運動
し、基板との望ましくない衝突はほとんどなくなり、良
質な半導体膜を製造が可能になる。
つぎに本発明の方法を実施例にもとづき説明する。
実施例1 第1図に示すようなグラー放電分解装置であつて、電極
(3)、(4)の面積がそれぞれ20.0cm2、電極間距離
7.5cm、電極のサセプターに近い端部とサセプター間距
離が2cmである装置を用い、所定の電源周波数で対向電
極に電圧600Vを印加し、シランのグロー放電を行なつ
た。
あらかじめ、2cm×2cmのコーニング7059ガラスをサセプ
ターに固定し、反応炉内の内部圧力のターボ分子ポンプ
で10-6Torrまで減圧したのち、ヒーターで225℃に加熱
した。そののち気体導入口から、あらかじめ水素で希釈
した10モル%のシラン(SiH4)ガスを60sccmの流量で反
応炉内に導入するとともに、反応炉内の圧力を1.0Torr
に調整しながら排気口から排気した。反応炉内のガスが
定常状態になつた時点で、電極間に所定の周波数て正弦
電圧を印加し、グロー放電分解を行なつた。形成される
アモルフアスシリコン膜厚を5000〜7000Åになるように
放電時間を調整し、放電終了後室温まで降温したのち、
Alを蒸着させて、幅1.5cmのコブラナ型電極を形成し
た。このときのアモルフアスシリコン膜成長速度は0.6
〜1.1Å/秒であつた。
このようにしてえられたアモルフアスシリコン膜の暗時
および光(100mW/cm2のAM−1光線)照射時の導電率を
測定した。その結果を第2図に示す。
なお本実施例で用いた電源では周波数可変出力計が入手
できなかつたため、正確な電源出力は不明であつた。
比較例1 実施例1で用いた反応炉内の2枚の電極をとりのぞき、
かわりに直径7.0cmの円形の電極を基板に対して平行に
なるように設置した。サセプターと電極との距離は5.0c
mで電極は電源の端子に接続した。電源の一方の端子と
サセプターは接地し、電極とサセプターの間で放電がお
こるようにした。
このようにして設置した平行基板型の電極を用いて、前
述と同じ条件で、所定の周波数でグロー放電分解を行な
い、アモルフアスシリコン膜をえた。アモルフアスシリ
コン膜成長速度は1.8〜3.1Å/秒であつた。
第3図に実施例1と同様にして測定した暗所導電率およ
び光照射時の導電率を示す。
比較例2 比較例1と同一の装置を用いて同様にして13.56MHz高周
波電源によるグロー放電分解を行なつた。高周波出力を
10Wから40Wまで変化させた。
えられたアモルフアスシリコン膜を用いて、実施例1と
同様にして測定した光照射時の導電率を第4図に示す。
第2図〜第4図に示す光照射時における導電率の結果か
ら、つぎのことがわかる。
すなわち、最も一般的に行なわれている13.56MHzの周波
数で平行平板電極を用いる方法では、第4図に示すよう
に、10〜40W(0.26〜1.04W/cm2)で9.8×10-5〜6.0×10
-4(Ωcm)-1の光照射時導電率を示すアモルフアスシリ
コン膜がえられたのに対して、低周波でえられたアモル
フアスシリコン膜の光導電率は、第3図に示すように、
3.0×10-5〜1.7×10-4(Ωcm)-1にしかすぎない。
一方、本発明の方法では、第2図に示すように、3.0×1
0-4(Ωcm)-1以上の光導電率を有するアモルフアスシ
リコン膜がえられていることわかる。
このように本発明によると、13.56MHzの高周波電源を用
いて作製したのと同程度あるいはそれ以上の性能を有す
る半導体膜を、低周波電源を用いても製造することがで
きる。
なお上記実施例においては、10モル%の水素希釈シラン
ガスのみを用いたが、ドーピング膜を堆積させるため、
ボロンなどの周期表III族の元素を含むジボランなどの
ガスや、リンなどの周期表V液の元素を含むホスフイン
などのガスを混入するばあいに対しても、本発明の方法
が適用可能であることはいうまでもない。また炭化水
素、アンモニアなどのガスを併用して、シリコンカーバ
イトなどの他元素を含むシリコン化合物半導体を製造す
ることもできる。
【図面の簡単な説明】
第1図は本発明の方法に用いる装置の一例を示す概略側
面図、第2図は第1図に示した装置を用い、低周波電源
によりグロー放電を行なつてえた半導体膜の暗時および
光照射時の導電率と周波数との関係を示すグラフ、第3
図は平行平板型電極を用い、低周波グロー放電を行なつ
てえた半導体膜の暗時および光照射時の導電率と周波数
との関係を示すグラフ、第4図は第3図に用いた装置と
同じ装置を用いて13.56MHzの高周波グロー放電を行なつ
てえた半導体膜の光照射時の導電率と高周波出力(RFパ
ワー)との関係を示すグラフである。 (図面の主要符号) (3)、(4):電極 (7):基板
───────────────────────────────────────────────────── フロントページの続き (72)発明者 太和田 善久 兵庫県神戸市北区大池見山台14―39 (56)参考文献 特開 昭58−143589(JP,A) 実開 昭58−11240(JP,U)

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】シラン系ガスを電源周波数20KHz〜200KHz
    のグロー放電分解法で分解させて半導体を製造する際
    に、基板に対して実質的に垂直に設置され、しかもアー
    ス電位から絶縁された複数個の対向する電極を用いて、
    導入されたシラン系ガスをグロー放電分解したのち、電
    極間のイオン行路外で導入されたシラン系ガスと接触す
    るように設置された基板上に分解物を堆積させることを
    特徴とする半導体の製法。
JP59061650A 1984-03-28 1984-03-28 半導体の製法 Expired - Lifetime JPH07111957B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59061650A JPH07111957B2 (ja) 1984-03-28 1984-03-28 半導体の製法
US06/716,302 US4634601A (en) 1984-03-28 1985-03-26 Method for production of semiconductor by glow discharge decomposition of silane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59061650A JPH07111957B2 (ja) 1984-03-28 1984-03-28 半導体の製法

Publications (2)

Publication Number Publication Date
JPS60206018A JPS60206018A (ja) 1985-10-17
JPH07111957B2 true JPH07111957B2 (ja) 1995-11-29

Family

ID=13177309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59061650A Expired - Lifetime JPH07111957B2 (ja) 1984-03-28 1984-03-28 半導体の製法

Country Status (2)

Country Link
US (1) US4634601A (ja)
JP (1) JPH07111957B2 (ja)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2175016B (en) * 1985-05-11 1990-01-24 Barr & Stroud Ltd Optical coating
JPS62271418A (ja) * 1986-05-20 1987-11-25 Matsushita Electric Ind Co Ltd 非晶質シリコン半導体素子の製造方法
JP2695155B2 (ja) * 1986-06-30 1997-12-24 三井東圧化学株式会社 膜形成方法
US4792460A (en) * 1986-07-15 1988-12-20 Electric Power Research Institute, Inc. Method for production of polysilanes and polygermanes, and deposition of hydrogenated amorphous silicon, alloys thereof, or hydrogenated amorphous germanium
US4842892A (en) * 1987-09-29 1989-06-27 Xerox Corporation Method for depositing an n+ amorphous silicon layer onto contaminated substrate
FR2641000A1 (ja) * 1988-12-22 1990-06-29 Centre Nat Rech Scient
JPH0653151A (ja) * 1992-06-03 1994-02-25 Showa Shell Sekiyu Kk アモルファスシリコン薄膜およびそれを応用した太陽電池
US6635583B2 (en) 1998-10-01 2003-10-21 Applied Materials, Inc. Silicon carbide deposition for use as a low-dielectric constant anti-reflective coating
US6974766B1 (en) * 1998-10-01 2005-12-13 Applied Materials, Inc. In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application
US6821571B2 (en) 1999-06-18 2004-11-23 Applied Materials Inc. Plasma treatment to enhance adhesion and to minimize oxidation of carbon-containing layers
US6423384B1 (en) 1999-06-25 2002-07-23 Applied Materials, Inc. HDP-CVD deposition of low dielectric constant amorphous carbon film
US6521546B1 (en) 2000-06-14 2003-02-18 Applied Materials, Inc. Method of making a fluoro-organosilicate layer
US6559052B2 (en) 2000-07-07 2003-05-06 Applied Materials, Inc. Deposition of amorphous silicon films by high density plasma HDP-CVD at low temperatures
US6875674B2 (en) 2000-07-10 2005-04-05 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device with fluorine concentration
US6794311B2 (en) 2000-07-14 2004-09-21 Applied Materials Inc. Method and apparatus for treating low k dielectric layers to reduce diffusion
US6764958B1 (en) 2000-07-28 2004-07-20 Applied Materials Inc. Method of depositing dielectric films
US6573196B1 (en) 2000-08-12 2003-06-03 Applied Materials Inc. Method of depositing organosilicate layers
CH694949A5 (de) * 2000-09-22 2005-09-30 Tetra Laval Holdings & Finance Verfahren und Vorrichtung zur Behandlung von Oberflaechen mit Hilfe eines Glimmentladungs-Plasmas.
US6531398B1 (en) 2000-10-30 2003-03-11 Applied Materials, Inc. Method of depositing organosillicate layers
US6500773B1 (en) 2000-11-27 2002-12-31 Applied Materials, Inc. Method of depositing organosilicate layers
US6537733B2 (en) * 2001-02-23 2003-03-25 Applied Materials, Inc. Method of depositing low dielectric constant silicon carbide layers
US6472333B2 (en) 2001-03-28 2002-10-29 Applied Materials, Inc. Silicon carbide cap layers for low dielectric constant silicon oxide layers
US6777171B2 (en) 2001-04-20 2004-08-17 Applied Materials, Inc. Fluorine-containing layers for damascene structures
JP2002371357A (ja) * 2001-06-14 2002-12-26 Canon Inc シリコン系薄膜の形成方法、シリコン系薄膜及び半導体素子並びにシリコン系薄膜の形成装置
US6759327B2 (en) 2001-10-09 2004-07-06 Applied Materials Inc. Method of depositing low k barrier layers
US6656837B2 (en) * 2001-10-11 2003-12-02 Applied Materials, Inc. Method of eliminating photoresist poisoning in damascene applications
US6890850B2 (en) * 2001-12-14 2005-05-10 Applied Materials, Inc. Method of depositing dielectric materials in damascene applications
US7091137B2 (en) * 2001-12-14 2006-08-15 Applied Materials Bi-layer approach for a hermetic low dielectric constant layer for barrier applications
US6838393B2 (en) 2001-12-14 2005-01-04 Applied Materials, Inc. Method for producing semiconductor including forming a layer containing at least silicon carbide and forming a second layer containing at least silicon oxygen carbide
US20030194496A1 (en) * 2002-04-11 2003-10-16 Applied Materials, Inc. Methods for depositing dielectric material
US7008484B2 (en) * 2002-05-06 2006-03-07 Applied Materials Inc. Method and apparatus for deposition of low dielectric constant materials
JP2005536042A (ja) * 2002-08-08 2005-11-24 トリコン テクノロジーズ リミティド シャワーヘッドの改良
US7749563B2 (en) * 2002-10-07 2010-07-06 Applied Materials, Inc. Two-layer film for next generation damascene barrier application with good oxidation resistance
US7270713B2 (en) * 2003-01-07 2007-09-18 Applied Materials, Inc. Tunable gas distribution plate assembly
US6790788B2 (en) * 2003-01-13 2004-09-14 Applied Materials Inc. Method of improving stability in low k barrier layers
US6942753B2 (en) 2003-04-16 2005-09-13 Applied Materials, Inc. Gas distribution plate assembly for large area plasma enhanced chemical vapor deposition
US7147713B2 (en) * 2003-04-30 2006-12-12 Cree, Inc. Phase controlled sublimation
US7247513B2 (en) * 2003-05-08 2007-07-24 Caracal, Inc. Dissociation of silicon clusters in a gas phase during chemical vapor deposition homo-epitaxial growth of silicon carbide
US7030041B2 (en) * 2004-03-15 2006-04-18 Applied Materials Inc. Adhesion improvement for low k dielectrics
US7229911B2 (en) * 2004-04-19 2007-06-12 Applied Materials, Inc. Adhesion improvement for low k dielectrics to conductive materials
US20050233555A1 (en) * 2004-04-19 2005-10-20 Nagarajan Rajagopalan Adhesion improvement for low k dielectrics to conductive materials
US20050277302A1 (en) * 2004-05-28 2005-12-15 Nguyen Son V Advanced low dielectric constant barrier layers
US7229041B2 (en) * 2004-06-30 2007-06-12 Ohio Central Steel Company Lifting lid crusher
US7288205B2 (en) * 2004-07-09 2007-10-30 Applied Materials, Inc. Hermetic low dielectric constant layer for barrier applications
US20060021703A1 (en) * 2004-07-29 2006-02-02 Applied Materials, Inc. Dual gas faceplate for a showerhead in a semiconductor wafer processing system
KR100862842B1 (ko) 2007-08-08 2008-10-09 주식회사 동부하이텍 Milo 공정 챔버 시스템
US10811232B2 (en) * 2017-08-08 2020-10-20 Applied Materials, Inc. Multi-plate faceplate for a processing chamber

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064521A (en) * 1975-07-28 1977-12-20 Rca Corporation Semiconductor device having a body of amorphous silicon
US4262631A (en) * 1979-10-01 1981-04-21 Kubacki Ronald M Thin film deposition apparatus using an RF glow discharge
JPS5842126B2 (ja) * 1980-10-31 1983-09-17 鐘淵化学工業株式会社 アモルファスシリコンの製造方法
JPS57186321A (en) * 1981-05-12 1982-11-16 Fuji Electric Corp Res & Dev Ltd Producing method for amorphous silicon film
US4460673A (en) * 1981-06-03 1984-07-17 Fuji Electric Company, Ltd. Method of producing amorphous silicon layer and its manufacturing apparatus
JPS5811240U (ja) * 1981-07-14 1983-01-25 株式会社島津製作所 プラズマcvd装置
JPS58143589A (ja) * 1982-02-19 1983-08-26 Kanegafuchi Chem Ind Co Ltd シリコン系半導体
JPS58164221A (ja) * 1982-03-25 1983-09-29 Semiconductor Energy Lab Co Ltd 半導体装置作製方法
JPS59128281A (ja) * 1982-12-29 1984-07-24 信越化学工業株式会社 炭化けい素被覆物の製造方法
US4492736A (en) * 1983-09-29 1985-01-08 Atlantic Richfield Company Process for forming microcrystalline silicon material and product

Also Published As

Publication number Publication date
JPS60206018A (ja) 1985-10-17
US4634601A (en) 1987-01-06

Similar Documents

Publication Publication Date Title
JPH07111957B2 (ja) 半導体の製法
US8389389B2 (en) Semiconductor layer manufacturing method, semiconductor layer manufacturing apparatus, and semiconductor device manufactured using such method and apparatus
EP0002383B1 (en) Method and apparatus for depositing semiconductor and other films
EP2009140B1 (en) Method for microcrystalline silicon film formation
JPS5842126B2 (ja) アモルファスシリコンの製造方法
EP0786795A2 (en) Method for manufacturing thin film, and deposition apparatus
JP4557400B2 (ja) 堆積膜形成方法
EP0342113A1 (en) Thin film formation apparatus
US6531654B2 (en) Semiconductor thin-film formation process, and amorphous silicon solar-cell device
JPS63197329A (ja) プラズマ・チャンバー内で、無定形水素化シリコンを基板へ付着させる方法
JP2590534B2 (ja) 薄膜形成方法
JP3144165B2 (ja) 薄膜生成装置
JP2626701B2 (ja) Mis型電界効果半導体装置
JP4841735B2 (ja) 成膜方法
JP2001274101A (ja) 棒状電極を有するプラズマ化学蒸着装置
JP4510242B2 (ja) 薄膜形成方法
JP3968649B2 (ja) 薄膜形成方法と装置
JPH0622203B2 (ja) アモルフアス半導体薄膜生成装置
JP2002246622A (ja) 結晶系シリコン薄膜光起電力素子、その製造方法、及びその評価方法
JP3615919B2 (ja) プラズマcvd装置
JPH0313737B2 (ja)
JP2000252216A (ja) プラズマcvd装置およびシリコン系薄膜光電変換装置の製造方法
JP3546095B2 (ja) プラズマcvd装置
JP3416546B2 (ja) 堆積膜形成方法および堆積膜形成装置
JP2515329B2 (ja) 薄膜形成方法

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term