JPH0682315A - サーミスタ式温度センサ - Google Patents

サーミスタ式温度センサ

Info

Publication number
JPH0682315A
JPH0682315A JP4257343A JP25734392A JPH0682315A JP H0682315 A JPH0682315 A JP H0682315A JP 4257343 A JP4257343 A JP 4257343A JP 25734392 A JP25734392 A JP 25734392A JP H0682315 A JPH0682315 A JP H0682315A
Authority
JP
Japan
Prior art keywords
thermistor
temperature sensor
mounting
internal electrodes
type temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4257343A
Other languages
English (en)
Other versions
JP3203803B2 (ja
Inventor
Kaoru Kuzuoka
馨 葛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP25734392A priority Critical patent/JP3203803B2/ja
Priority to US08/112,150 priority patent/US5410291A/en
Priority to DE4329312A priority patent/DE4329312C2/de
Publication of JPH0682315A publication Critical patent/JPH0682315A/ja
Priority to US08/392,340 priority patent/US5610571A/en
Application granted granted Critical
Publication of JP3203803B2 publication Critical patent/JP3203803B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/223Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor characterised by the shape of the resistive element

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Thermistors And Varistors (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

(57)【要約】 【目的】 小型,高精度で応答性に優れた,ワイドレン
ジの高温用サーミスタ式温度センサを提供すること。 【構成】 サーミスタ式温度センサ10は絶縁性セラミ
ックス製の実装シート201,202及びカバーシート
301,302と,リード部材311,312とを有す
る。実装シート201,202の取付面211,212
には複数のサーミスタ素子111,112及び内部電極
401,402が取付けられている。内部電極401,
402は,サーミスタ素子111,112とリード部材
311,312とを接続する。カバーシート301,3
02は上記実装シートの取付面211,212上に熱圧
着される。サーミスタ素子には,3本以上の内部電極を
設けることが好ましい。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は高温用のワイドレンジの
サーミスタ式温度センサに関する。
【0002】
【従来技術】信頼性が高く,精度の良い高温の温度セン
サーのニーズは年々増加している。高温領域で使用され
るサーミスタ式の温度センサは,図10に示すように,
電極線491,492の付いたサーミスタ素子111
を,金属の保護管51に収納した構造を有するものが多
い(特開昭49−63995号公報参照)。そして,リ
ード端子511から,その抵抗値を測定して温度を算出
する。また,サーミスタ素子111は一般に絶縁性セラ
ミックス512中に埋設されている。
【0003】なお,上記の例のように,1個のサーミス
タ素子を用いたものでは,その測定温度幅は200℃以
下である。上記測定温度幅を広げるためには,サーミス
タ素子を複数収納する必要があり,それに伴って全体が
大型化する。他の構造の高温サーミスタとして,酸化セ
ラミック層の中にサーミスタを埋設し,一体化したもの
も知られている(特開昭63−78503号公報参
照)。また,抵抗値が調整できるよう感温部を露出した
厚膜タイプのサーミスタも知られている(特開昭55−
85001号公報参照)。
【0004】
【解決しようとする課題】前記のように,サーミスタ式
温度センサの測定温度幅を広げてワイドレンジ化するた
めには,サーミスタ素子を複数収納する必要がある。し
かしながら,金属保護管等にサーミスタ素子を収納する
従来のサーミスタ式温度センサ(図10)においては,
それによってその全体形状が大きくなるという問題があ
る。また,そのために,熱容量が大きくなり,内部の温
度分布が不均一となる。そして,サーミスタ式温度セン
サの応答性が著しく悪化し,測定温度の精度が低下する
という問題がある。
【0005】また,無理に小型化を図れば,材料の薄肉
化により高温での耐久性が大幅に低下するという問題が
ある。また,上記構造のサーミスタ式温度センサではサ
ーミスタ素子が埋設されており,その抵抗値を調整する
ことができない。そのため,個々のセンサ間の抵抗値の
バラツキが大きいという問題がある。
【0006】なお,前記の感温部露出構造の厚膜サーミ
スタは,抵抗値の調整は容易である。しかし,感温部が
露出しているため耐環境性に欠けるという欠点がある。
本発明は,上記従来の問題点に鑑み,小型で強度に優
れ,高精度で応答性の良いワイドレンジの高温用サーミ
スタ式温度センサを提供しようとするものである。
【0007】
【課題の解決手段】本発明は,絶縁性セラミックス中に
複数のサーミスタ素子を密閉・内蔵したサーミスタ式温
度センサであって,該サーミスタ式温度センサは,絶縁
性セラミックス製の実装シートと,絶縁性セラミックス
製のカバーシートと,リード部材とを有しており,上記
実装シート上にはサーミスタ素子が取付けられていると
共に,該サーミスタ素子と上記リード部材との間を接続
する内部電極が取付けられており,上記実装シートの取
付面上には上記カバーシートが熱圧着されていることを
特徴とするサーミスタ式温度センサにある。
【0008】実装シートには,サーミスタ素子と内部電
極が設けられている。該内部電極は,センサの外部と接
続するためのリード部材と上記サーミスタ素子との間を
接続するよう構成されている。また,カバーシートは,
上記実装シートの取付面を被うように熱圧着される。こ
こで取付面とは,サーミスタ素子又は内部電極が取付け
られている面である。
【0009】サーミスタ素子には,ペースト状のもの,
ドクターブレード法によって製造されたシート状のも
の,薄膜状のもの等がある。また,サーミスタ素子は,
複数個取付けられている。複数個のサーミスタ素子は,
1枚の実装シートに取付けても良いし,複数の実装シー
トに取付けても良い。
【0010】内部電極はサーミスタ素子とリード部材と
の間を接続する導電性の部材であり1個のサーミスタ素
子につき,最低2本必要である。なおサーミスタ素子に
は,3本以上の内部電極を設けると共に,該内部電極と
リード部材との間の接続及び遮断を可能とすることが好
ましい。その理由は以下に述べる通りである。
【0011】まず,内部電極とリード部材との間の接続
・遮断を介して内部電極間の接続・遮断が可能となる。
そして,内部電極間の接続の態様により両リード部材間
の抵抗値を種々に変更することができる。即ち,内部電
極が2本の場合は,内部電極間の抵抗値は1種類に限定
され,選択の余地がない。しかし,多数の内部電極を設
ければ,それぞれの電極間の抵抗値を異なったものにす
ることができるから選択できる抵抗値の種類は増加す
る。そればかりではなく,次に述べるように内部電極の
間の接続の態様により抵抗値を種々に変化させることが
できるから,抵抗値の選択の幅は大幅に増大する。それ
故,3本以上の多くの内部電極を設けることにより,リ
ード部材間の抵抗値を種々に選択し調整することが可能
となる。
【0012】例えば,最も単純な例として,3本の電極
A,B,Cを設けた場合を考える。A−B間の抵抗RAB
,B−C間の抵抗RBC ,C−A間の抵抗RCAは,それぞ
れ異なった値にすることができる。また,A−B間を短
絡した場合のCとの間の抵抗RC は,A−C間の抵抗R
CAとB−C間の抵抗RBCとの並列回路となるからRC
(RCA・RBC)/(RCA+RBC)となる。同様にB−C
間を短絡した場合のAとの間の抵抗RA は(RAB
CA)/(RAB+RCA)となる。同様にA−C間を短絡
した場合のBとの間の抵抗RB は(RAB・RBC)/(R
BC+RAB)となる。
【0013】このように,内部電極を1本増やして3本
にしただけで,抵抗値の選択の自由度は大幅に増加し,
リード部材間の抵抗値は選択調整可能となる。また,こ
のような抵抗値の選択性,調整可能性は内部電極の数を
増加させるほど増大する。このように抵抗値の調整を可
能とすることにより,サーミスタ式温度センサ間の抵抗
値のバラツキを少なくし,精度を向上することができ
る。
【0014】
【作用及び効果】本発明に係るサーミスタ式温度センサ
は,図10に示した従来例のような金属性の保護管を有
していない。そして,サーミスタ素子は,シート状の絶
縁性セラミックスに挾持されており,更にこれらを積み
重ねた構造とすることができる。従って,複数のサーミ
スタ素子であっても,シートを積み重ねて全体の形状を
小型化することができる。特に,サーミスタ素子をシー
ト状に形成すれば小型化の効果は大である。それ故,複
数のサーミスタ素子を用いた広い温度帯域のサーミスタ
式温度センサを,小型形状に製造することができる。
【0015】また,小型であるばかりでなく,サーミス
タ素子は絶縁性セラミックスシートに被われただけの構
造であるから,熱的な応答が速く,センサとして応答性
に優れている。また,サーミスタ素子が露出した構造で
はないから強度や耐環境性も備えている。また,前記の
ように内部電極を多数設ければ,サーミスタ素子の抵抗
値を調整して精度のよい,バラツキの少ないサーミスタ
式温度センサを得ることができる。上記のように,本発
明によれば小型で強度に優れ,高精度で応答性の良いワ
イドレンジの高温用サーミスタ式温度センサを提供する
ことができる。
【0016】
【実施例】 実施例1 本発明の実施例につき,図1〜図4を用いて説明する。
本例は,図1,図4に示すように,絶縁性セラミックス
の実装シート201,202及びカバーシート301,
302中に複数のサーミスタ素子111,112を密閉
・内蔵したサーミスタ式温度センサ10である。該サー
ミスタ式温度センサ10は,図1に示すように,絶縁性
セラミックス製の実装シート201,202と絶縁性セ
ラミックス製のカバーシート301,302と,リード
線からなるリード部材311,312を有している。ま
た,実装シート201,202上には,サーミスタ素子
111,112が取付けられていると共に該サーミスタ
素子111,112と上記リード部材311,312と
の間を接続する各一対の内部電極401,402が取付
けられている。また,実装シート201,201の取付
面211,212上には,上記カバーシート302,3
01が熱圧着されている。
【0017】以下にそれぞれを詳説する。本例のサーミ
スタ式温度センサ10の検温部は,図1に示すように,
2個のサーミスタ素子111,112を有している。そ
れぞれのサーミスタ素子111,112は測定温度領域
を異にしている。低温領域のサーミスタ素子111は,
図2の抵抗温度曲線101に示すように,500℃〜7
00℃がその測定領域である。
【0018】一方,高温領域のサーミスタ素子112
は,図2の抵抗温度曲線102に示すように,700℃
〜900℃がその測定領域である。なお,図2におい
て,破線の曲線109はサーミスタ素子が1個の従来の
サーミスタ式温度センサにおける例である。また,それ
ぞれの,サーミスタ素子111,112は,外部回路と
のマッチングによって,100Ω〜50KΩの間に選定
される。
【0019】各サーミスタ素子111,112は,ペー
スト状のものから実装シート201,202上に印刷し
て形成されたものである。低温用サーミスタ素子111
のペーストは,Mn1.5 Cr1.5 4 を30(重量比,
以下同じ)%,YCrO3 を70%の比率で混合し,そ
こへ有機バインダ例えばエチルセルロース3%及びテル
ピネオール7%を加えて混練して製造されたものであ
る。また,高温用サーミスタ素子112のペーストは,
Mn1.5 Cr1.5 4 を50%,YCrO3 を50%の
比率で混合し,上記と同じ有機バインダによって混練し
て製造されたものである。
【0020】サーミスタ素子111,112は,それぞ
れ実装シート201,202の取付面211,212上
に印刷されている。実装シート201,202及びカバ
ーシート301,302は,アルミナやジルコニア等の
高耐熱性の絶縁性セラミックスのシートである。
【0021】次に,実装シート201,202及びカバ
ーシート301,302の製法の1例を次に示す。ま
ず,Al2 3 95%に焼結助剤,例えばMgO,Si
2 ,カオリン等1種以上を5%添加する。そして,有
機バインダ,溶剤,可塑剤,及び分散剤を加えて,混合
し,スラリーを作製する。その後,このスラリーからド
クターブレード法により,厚さ300μmのアルミナシ
ートを作製する。そして,上記アルミナシートを5×5
0mmに切断する。
【0022】次に,実装シート201,202上には,
予め設計したパターンにより,Ptペーストを膜厚20
μmに印刷し,内部電極401,402を形成する。そ
して,実装シート201,202には,前記のようにサ
ーミスタ素子111,112を印刷する。サーミスタ素
子111,112の厚さは100〜200μmであり,
上記内部電極401,402の一端を被っている。ま
た,内部電極401,402の他端は,接続部材451
を介して,Ptのリード線からなるリード部材311,
312と接続されている。
【0023】そして,サーミスタ素子111,112,
内部電極401,402,及び接続部材451を埋設す
るように実装シート201,202の取付面211,2
12にカバーシート301,302を熱圧着する。本例
における熱圧着は,圧着プレス機により,90℃,9.
8MPa,で3分間行った。その後,該熱圧着品を電気
炉により1550℃で1時間焼成した。
【0024】リード部材311,312の一端は,上記
のように内部電極401,402と接続されるが,他端
は,カバーシート301,302,及び実装シート20
1,201の外部に引き出されている。更に,サーミス
タ式温度センサ10は,図4に示すように,ネジ部52
1等を有する取付部材52と一体化される。
【0025】次に本例の作用効果について述べる。本例
のサーミスタ式温度センサ10は,前記のように測定領
域の異なる2つのサーミスタ素子211,212からな
る(図2参照)。従って,その温度測定領域は500°
〜900℃となり,従来例に比べて,約2倍の測定スパ
ン400℃を有している。一方,本例は,図4に示すよ
うに,金属の保護管を有していない。また,サーミスタ
素子111,112はペースト状のものから製作した厚
膜タイプであり,絶縁性セラミックス製のシート20
1,202,301,302と板状に一体化されて構造
上の無駄がなく,外気の熱伝達が良好である。また,各
シーシ201,202,301,302は,厚さ方向に
積み重ねてあるから,枚数が増えても形状が大きくなら
ない。従って小型であると共に,サーミスタ素子への雰
囲気温度の伝達性に優れている。それ故,サーミスタ素
子の応答が高速である。
【0026】図3は,図10に示すような金属保護管に
サーミスタ素子を2個収納した従来形と,本例のサーミ
スタ式温度センサの応答特性を比較した図である。それ
ぞれを1000℃の零囲気に置いた場合,従来例は図3
に示すような応答曲線108を示し,600℃の計測値
に達するまで40秒弱の時間を要していた。本例の応答
曲線103によれば,これが10秒強となり,3倍以上
に応答性が改善されている。
【0027】また,サーミスタ素子111,112は絶
縁性セラミックスのシート201,202,301,3
02に全体が被われ保護されているから,外力に対し充
分な強度を有すると共に,悪環境にも耐え信頼性が高
い。上記のように,本例によれば,小型で強度にすぐ
れ,応答性のよいワイドレンジの高温用サーミスタ素子
を提供することができる。なお,本例ではサーミスタ素
子はペースト状のものを印刷して製作したが,ドクター
ブレード法によって製作したシート状のサーミスタ素子
を所望の大きさに切断して用いてもよい。
【0028】実施例2 本例は,図5に示すように実施例1において,実装シー
ト203とカバーシート303とを,それぞれ1枚で構
成すると共に,4つの内部電極403〜406とリード
部材313〜316との接続方法を変更したものであ
る。本例は,1枚の実装シート203の取付面213に
2個のサーミスタ素子113,114及び4個の内部電
極403〜406を印刷してある。内部電極403〜4
06の一端にはランド413〜416が形成されてい
る。上記ランド413〜416の位置には,実装シート
203又はカバーシート303上にスルーホール423
〜426が形成されている。
【0029】上記スルーホール423〜426には,P
tペーストなどの導電性物質が充填されている。また,
スルーホール423〜426におけるランド413〜4
16の反対側の面には,端子板433〜436が形成さ
れている。そして,上記端子板433〜436には,リ
ード部材313〜316が半田付け等により接続され
る。
【0030】本例は,実装シート203及びカバーシー
ト303が1枚であるから,実施例1に比べてよりコン
パクトである。また,リード部材313〜316と内部
電極403〜406との接続は,シート203,303
の外側面に設けた端子板433〜436にリード部材3
13〜316を接続することによって行われる。従って
実施例1のようにリード部材をカバーシートと実装シー
トの間に熱圧着によって挾持する必要がない。それ故,
サーミスタ素子のシールがより確実である。また,リー
ド部材との接続が容易である。その他は,実施例1と同
様である。
【0031】実施例3 本例は,図6に示すように,実施例1において3個のサ
ーミスタ素子115〜117を設けたものである。本例
では絶縁性セラミックス製の3枚の実装シート204〜
206と1枚のカバーシート304を有している。実装
シート204〜206には,それぞれ測定レンジの異な
る3個のサーミスタ素子115〜117が印刷され,ま
たそれぞれ1対の内部電極407が印刷されている。ま
た,実装シート204〜206の取付面214〜216
は他の実装シート205,206の非取付面225,2
26またはカバーシート304によって被われている。
【0032】本例では,3個のサーミスタ素子115〜
117を有するから温度測定範囲をより広くすることが
できる。また,実装シート205,206の非取付面2
25,226で他の実装シート204,205の取付面
215,216を被うようにしたので,カバーシート3
04の枚数が1枚でよい。従って,実施例1と同じ4枚
の絶縁性セラミックスシートによって,3個のサーミス
タ素子を収納することができ,相対的に省スペースを実
現することができる。その他については,実施例1と同
様である。
【0033】実施例4 本例は,図7に示すように,実施例1において,上部実
装シート207に4本の内部電極440〜443を設け
ると共に,該内部電極410〜413の一部をカバーシ
ート305から露出させたものである。上部実装シート
207のサーミスタ素子112には,4本の内部電極4
40〜443が接続されている。そして,第1内部電極
440は端子板453を介して第1リード部材317に
接続されている。一方第2〜第4内部電極441〜44
3は,端子板452を介して第2リード部材318に接
続されている。
【0034】また,上部カバーシート305の横幅W2
は他の実装シート201,207及び下部カバーシート
302の横幅W1 より若干短くなっている(W1
2 )。それ故,上部カバーシート305の左端305
1と上部実装シート207の左端2071とを一致させ
て接着した場合,内部電極440〜443の右方(リー
ド部材317,318との接続部側)は,露出する。
【0035】すなわち,カバーシート302,305と
実装シート201,207とを熱圧着したとき,上部実
装シート207の内部電極440〜443とリード部材
317,318との接続部は露出する。従って,その
後,レーザー光を用いて,内部電極440〜443と端
子板452との間を任意に切断することができる。
【0036】ここで,第1内部電極440と各第2〜第
4内部電極441〜443との間の抵抗値をR1 (44
0−441間),R2 (440−442間),R3 (4
40−443間)とする。第2〜第4内部電極441〜
443がすべて端子板452(リード部材318)に接
続されている場合は,リード部材317,318の間は
上記R1 〜R3 の並列回路が形成される。もし,第4内
部電極443を切断すれば(図7),リード部材31
7,318の間はR1 とR2 の並列回路となり,合成抵
抗値Rは上昇する。また,第2〜第4内部電極441〜
443の1つだけを端子板452に接続すればR1 乃至
3 からなる単独回路が形成される。
【0037】このように第2〜第4内部電極441〜4
43を適宜切断して,リード部材317,318の間の
抵抗値Rを調整することができる。すなわち,第2〜第
4内部電極441〜443に調整電極の機能を付与する
ことができる。このようにして,リード部材317,3
18間の抵抗値を調整して,各サーミスタ式温度センサ
間の抵抗値のばらつきを少なく,均一化して測定精度を
向上することができる。その他については,実施例1と
同様である。
【0038】実施例5 本例は,実施例4において,図8に示すように上部実装
シート208に設けた内部電極440,444〜448
の数を6本にすると共に,第2〜第6内部電極444〜
448を端子板452に任意に接続できるようにしたも
のである。すなわち,本例では,調整電極の機能を有す
る第2〜第6内部電極444〜448が合計5本で構成
される。
【0039】図8に示すように,第1内部電極440は
端子板453を介して第1リード部材317に接続され
ている。また,第2〜第6内部電極444〜448は,
第2リード部材318に接続された端子板452と任意
に接続できるよう構成されている。すなわち,第2〜第
6内部電極444〜448と端子板452との接続は,
図8に示すようにPtペースト461を印刷することに
よって接続することができる。
【0040】第1内部電極440と第2〜第6内部電極
444〜448の間の抵抗をR1 〜R5 とすれば,その
接続の態様によって,第1リード部材317と第2リー
ド部材318間の抵抗を様々に調整することができる。
なお,図8において,破線表示部はカバーシートで被わ
れる部分を示すものである。その他は実施例4と同様で
ある。
【0041】実施例6 本例は,図9に示すように,実施例1において,両方の
実装シート207,208に,実施例4と同様に調整電
極である第2〜第4内部電極441〜443を設けた例
である(下部実装シート208は図示せず)。上下のカ
バーシート305,306の横幅W2 は上下の実装シー
ト207,209の横幅W1 より短くなっている。ま
た,上下のカバーシート305,306は上端と下端に
配置されている。そして,上部実装シート207の取付
面217は上向きとなっており,下部実装シート209
の取付面219は下向きとなっている。
【0042】実装シート207,209の取付面には,
実施例4と同様に4本の内部電極440〜443が印刷
されている。そして,第2〜第4内部電極441〜44
3と,端子板452との間の接続を変更して,リード部
材317,318間の抵抗値を調整することができる。
本例では,低温用及び高温用の両方のサーミスタ素子1
11,112の抵抗値を調整することができる。従って
本例によれば測定温度領域の全域に渡って,ばらつきの
少ない高精度のサーミスタ素子10を提供することがで
きる。その他は,実施例1と同様である。
【図面の簡単な説明】
【図1】実施例1のサーミスタ式温度センサの検温部の
分解斜視図。
【図2】実施例1のサーミスタ式温度センサの抵抗−温
度特性図。
【図3】実施例1のサーミスタ式温度センサの応答特性
図。
【図4】実施例1のサーミスタ式温度センサの斜視図。
【図5】実施例2のサーミスタ式温度センサの検温部の
分解斜視図。
【図6】実施例3のサーミスタ式温度センサの検温部の
説明図。
【図7】実施例4のサーミスタ式温度センサの検温部の
分解斜視図。
【図8】実施例5のサーミスタ式温度センサの検温部の
説明図。
【図9】実施例6のサーミスタ式温度センサの検温部の
分解斜視図。
【図10】従来のサーミスタ式温度センサの構造説明
図。
【符号の説明】
10...サーミスタ式温度センサ, 111〜117...サーミスタ素子, 201〜209...実装シート, 211〜217...取付面, 301〜306...カバーシート, 311〜318...リード部材, 401〜407...内部電極, 440〜448...内部電極, 433〜436,451,452...端子板, 52...取付部材,

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 絶縁性セラミックス中に複数のサーミス
    タ素子を密閉・内蔵したサーミスタ式温度センサであっ
    て,該サーミスタ式温度センサは,絶縁性セラミックス
    製の実装シートと,絶縁性セラミックス製のカバーシー
    トと,リード部材とを有しており,上記実装シート上に
    はサーミスタ素子が取付けられていると共に,該サーミ
    スタ素子と上記リード部材との間を接続する内部電極が
    取付けられており,上記実装シートの取付面上には上記
    カバーシートが熱圧着されていることを特徴とするサー
    ミスタ式温度センサ。
  2. 【請求項2】 請求項1において,少なくとも1つのサ
    ーミスタ素子には3個以上の内部電極が取付けられてお
    り,かつ上記内部電極のうち1つ以上については,リー
    ド部材との間が断続可能に形成されていることを特徴と
    するサーミスタ式温度センサ。
JP25734392A 1992-09-01 1992-09-01 サーミスタ式温度センサ Expired - Lifetime JP3203803B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25734392A JP3203803B2 (ja) 1992-09-01 1992-09-01 サーミスタ式温度センサ
US08/112,150 US5410291A (en) 1992-09-01 1993-08-26 Thermistor type temperature sensor
DE4329312A DE4329312C2 (de) 1992-09-01 1993-08-31 Thermistor-Temperaturfühler
US08/392,340 US5610571A (en) 1992-09-01 1995-02-22 Thermistor type temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25734392A JP3203803B2 (ja) 1992-09-01 1992-09-01 サーミスタ式温度センサ

Publications (2)

Publication Number Publication Date
JPH0682315A true JPH0682315A (ja) 1994-03-22
JP3203803B2 JP3203803B2 (ja) 2001-08-27

Family

ID=17305056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25734392A Expired - Lifetime JP3203803B2 (ja) 1992-09-01 1992-09-01 サーミスタ式温度センサ

Country Status (3)

Country Link
US (2) US5410291A (ja)
JP (1) JP3203803B2 (ja)
DE (1) DE4329312C2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534082A (ja) * 2012-11-12 2015-11-26 エプコス アクチエンゲゼルシャフトEpcos Ag 温度プローブおよび温度プローブの製造方法
JP2016050786A (ja) * 2014-08-29 2016-04-11 三菱マテリアル株式会社 温度センサ
KR20160117812A (ko) * 2015-03-31 2016-10-11 인지컨트롤스 주식회사 온도센서 어셈블리
CN108351256A (zh) * 2015-11-02 2018-07-31 埃普科斯股份有限公司 传感器元件和用于制造传感器元件的方法
CN113728216A (zh) * 2019-05-31 2021-11-30 株式会社村田制作所 传感器装置以及具备该传感器装置的传感器系统和物品

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203803B2 (ja) * 1992-09-01 2001-08-27 株式会社デンソー サーミスタ式温度センサ
US5600296A (en) * 1993-10-14 1997-02-04 Nippondenso Co., Ltd. Thermistor having temperature detecting sections of substantially the same composition and dimensions for detecting subtantially identical temperature ranges
JP3175890B2 (ja) * 1993-12-27 2001-06-11 日本碍子株式会社 温度センサ
JPH08292108A (ja) * 1995-02-23 1996-11-05 Nippondenso Co Ltd サーミスタ式温度センサ
DE19540194C1 (de) * 1995-10-30 1997-02-20 Heraeus Sensor Gmbh Widerstandsthermometer aus einem Metall der Platingruppe
US5726624A (en) * 1996-07-01 1998-03-10 Honeywell Inc. Temperature sensor with internal rigid substrate
US5815064A (en) * 1997-02-04 1998-09-29 The United States Of America As Represented By The Secretary Of The Army Snow temperature and depth probe
US7059769B1 (en) * 1997-06-27 2006-06-13 Patrick Henry Potega Apparatus for enabling multiple modes of operation among a plurality of devices
US6152597A (en) * 1997-06-27 2000-11-28 Potega; Patrick H. Apparatus for monitoring temperature of a power source
DE29716885U1 (de) * 1997-09-20 1998-04-09 Temperaturmestechnik Geraberg Temperaturfühler zur Messung von Oberflächentemperaturen
EP0965826A4 (en) * 1998-01-08 2000-03-22 Matsushita Electric Ind Co Ltd TEMPERATURE SENSOR AND MANUFACTURING METHOD
GB2336914B (en) * 1998-05-02 2002-05-08 Marconi Gec Ltd Environmental stress screening
JP3485027B2 (ja) * 1998-07-24 2004-01-13 株式会社デンソー 温度センサおよびその製造方法
DE29907768U1 (de) * 1999-05-03 1999-11-25 Paul Ruester & Co U No Flexibler Oberflächentemperaturfühler
JP2001034187A (ja) * 1999-07-22 2001-02-09 Nec Corp 熱圧着装置および熱圧着方法
JP2002048655A (ja) * 2000-05-24 2002-02-15 Ngk Spark Plug Co Ltd 温度センサ及びその製造管理方法
DE10031124C2 (de) * 2000-06-30 2002-05-16 Heraeus Electro Nite Int Sensor zur Temperaturerfassung eines Fluids
US6692145B2 (en) * 2001-10-31 2004-02-17 Wisconsin Alumni Research Foundation Micromachined scanning thermal probe method and apparatus
US7073938B2 (en) * 2001-10-31 2006-07-11 The Regents Of The University Of Michigan Micromachined arrayed thermal probe apparatus, system for thermal scanning a sample in a contact mode and cantilevered reference probe for use therein
US7106167B2 (en) * 2002-06-28 2006-09-12 Heetronix Stable high temperature sensor system with tungsten on AlN
US6762671B2 (en) * 2002-10-25 2004-07-13 Delphi Technologies, Inc. Temperature sensor and method of making and using the same
JP3566276B1 (ja) * 2003-05-07 2004-09-15 株式会社日立製作所 血糖値測定装置
GB0313703D0 (en) * 2003-06-13 2003-07-16 Ceramaspeed Ltd Temperature sensor assembly for an electrical heating arrangement
DE10341433A1 (de) * 2003-09-09 2005-03-31 Braun Gmbh Beheizbarer Infrarot-Sensor und Infrarot-Thermometer mit einem derartigen Infrarot-Sensor
DE102006031344A1 (de) * 2006-07-06 2008-01-10 Epcos Ag Elektrisches Bauelement mit einem Sensorelement, Verfahren zur Verkapselung eines Sensorelements und Verfahren zur Herstellung einer Plattenanordnung
DE102008036837A1 (de) * 2008-08-07 2010-02-18 Epcos Ag Sensorvorrichtung und Verfahren zur Herstellung
EP2344026B1 (en) * 2008-08-28 2013-11-06 Koninklijke Philips N.V. A device, apparatus and method for obtaining physiological signals by way of a feeding tube
US8228160B2 (en) * 2008-11-14 2012-07-24 Epcos Ag Sensor element and process for assembling a sensor element
DE102009028850A1 (de) * 2009-08-24 2011-03-03 Endress + Hauser Flowtec Ag Herstellungsverfahren eines Sensors eines thermischen Durchflussmessgeräts
KR101133886B1 (ko) * 2009-12-08 2012-04-09 한국쎄미텍 주식회사 온도센서 조립체
FI124197B (fi) 2012-03-16 2014-04-30 Janesko Oy Mitta-anturi
US10580554B1 (en) * 2018-06-25 2020-03-03 Raymond Innovations, Llc Apparatus to provide a soft-start function to a high torque electric device
CN112513599A (zh) * 2018-08-10 2021-03-16 世美特株式会社 温度传感器及包括温度传感器的装置
US11394198B2 (en) 2019-02-26 2022-07-19 Raymond Innovations, Llc Soft starter for high-current electric devices
DE102020100636A1 (de) * 2020-01-14 2021-07-15 Schaeffler Technologies AG & Co. KG Bestimmung einer temperatur in einer elektrischen maschine

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1631836A (en) * 1922-09-26 1927-06-07 Union Switch & Signal Co Thermosensitive relay
AT150922B (de) * 1935-02-05 1937-10-11 Kremenezky Ag Joh Widerstandssatz.
DE1261252C2 (de) * 1965-11-10 1974-01-03 Danfoss As Elektronisches, bistabiles sperrschichtfreies Halbleiterschaltelement und Verfahren zu seiner Herstellung
US3749879A (en) * 1971-12-27 1973-07-31 Texas Instruments Inc Apparatus for providing controlled temperature ambient
JPS5250393B2 (ja) * 1972-10-27 1977-12-23
US3936789A (en) * 1974-06-03 1976-02-03 Texas Instruments Incorporated Spreading resistance thermistor
NL7504083A (nl) * 1975-04-07 1976-10-11 Philips Nv Zelfregelend verwarmingselement.
US4041440A (en) * 1976-05-13 1977-08-09 General Motors Corporation Method of adjusting resistance of a thick-film thermistor
US4332081A (en) * 1978-06-22 1982-06-01 North American Philips Corporation Temperature sensor
JPS5585001A (en) * 1978-12-22 1980-06-26 Hitachi Ltd Sandwich type thick film thermistor
DE3206903A1 (de) * 1982-02-26 1983-09-15 Bosch Gmbh Robert Gassensor, insbesondere fuer abgase von brennkraftmaschinen
US4722609A (en) * 1985-05-28 1988-02-02 The United States Of America As Represented By The Secretary Of The Navy High frequency response multilayer heat flux gauge configuration
US4766409A (en) * 1985-11-25 1988-08-23 Murata Manufacturing Co., Ltd. Thermistor having a positive temperature coefficient of resistance
JP2633838B2 (ja) * 1986-09-20 1997-07-23 株式会社村田製作所 高温サーミスタ
US4912450A (en) * 1986-09-20 1990-03-27 Murata Manufacturing Co., Ltd. Thermistor and method of producing the same
US4779458A (en) * 1986-12-29 1988-10-25 Mawardi Osman K Flow sensor
DE3709201A1 (de) * 1987-03-20 1988-09-29 Bosch Gmbh Robert Waermestrahlungssensor
JPS6410701A (en) * 1987-07-01 1989-01-13 Fujitsu Ltd Antenna system
JP2564845B2 (ja) * 1987-09-04 1996-12-18 株式会社村田製作所 白金温度センサ
JPH01110701A (ja) * 1987-10-23 1989-04-27 Murata Mfg Co Ltd 正の抵抗温度特性を有する半導体磁器
US4967176A (en) * 1988-07-15 1990-10-30 Raychem Corporation Assemblies of PTC circuit protection devices
DE3869773C5 (de) * 1988-07-15 2010-06-24 Dbk David + Baader Gmbh Radiator.
JPH0287032A (ja) * 1988-09-22 1990-03-27 Ngk Spark Plug Co Ltd 高温用サーミスタ
JPH0833327B2 (ja) * 1990-06-11 1996-03-29 株式会社村田製作所 温度センサ
DE4025715C1 (ja) * 1990-08-14 1992-04-02 Robert Bosch Gmbh, 7000 Stuttgart, De
JPH04150001A (ja) * 1990-10-12 1992-05-22 Murata Mfg Co Ltd サーミスタ素子
JPH0582303A (ja) * 1991-09-19 1993-04-02 Zexel Corp Ptcサーミスタ
JP3203803B2 (ja) * 1992-09-01 2001-08-27 株式会社デンソー サーミスタ式温度センサ
US5363084A (en) * 1993-02-26 1994-11-08 Lake Shore Cryotronics, Inc. Film resistors having trimmable electrodes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534082A (ja) * 2012-11-12 2015-11-26 エプコス アクチエンゲゼルシャフトEpcos Ag 温度プローブおよび温度プローブの製造方法
US9958335B2 (en) 2012-11-12 2018-05-01 Epcos Ag Temperature probe and method for producing a temperature probe
JP2016050786A (ja) * 2014-08-29 2016-04-11 三菱マテリアル株式会社 温度センサ
KR20160117812A (ko) * 2015-03-31 2016-10-11 인지컨트롤스 주식회사 온도센서 어셈블리
CN108351256A (zh) * 2015-11-02 2018-07-31 埃普科斯股份有限公司 传感器元件和用于制造传感器元件的方法
US10788377B2 (en) 2015-11-02 2020-09-29 Epcos Ag Sensor element and method for producing a sensor element
US10908030B2 (en) 2015-11-02 2021-02-02 Epcos Ag Sensor element and method for producing a sensor element
CN113728216A (zh) * 2019-05-31 2021-11-30 株式会社村田制作所 传感器装置以及具备该传感器装置的传感器系统和物品

Also Published As

Publication number Publication date
DE4329312A1 (de) 1994-03-31
US5410291A (en) 1995-04-25
US5610571A (en) 1997-03-11
DE4329312C2 (de) 2003-03-13
JP3203803B2 (ja) 2001-08-27

Similar Documents

Publication Publication Date Title
JPH0682315A (ja) サーミスタ式温度センサ
US4901051A (en) Platinum temperature sensor
US7441467B2 (en) Compression strain sensor
JP3048635B2 (ja) 温度センサーおよび温度センサの製造方法
KR960011154B1 (ko) SiC 박막더어미스터 및 그 제조방법
JP6585844B2 (ja) センサ素子およびセンサ素子を製造するための方法
US20170016773A1 (en) Wireless temperature sensor
JP4732804B2 (ja) ガスセンサ及びその製造方法
JPH0812123B2 (ja) 圧力センサ
US20160299011A1 (en) Temperature Probe and Method for Producing a Temperature Probe
JP2007093453A (ja) 表面実装型温度センサ
JP2014222812A (ja) 発振デバイス
US5600296A (en) Thermistor having temperature detecting sections of substantially the same composition and dimensions for detecting subtantially identical temperature ranges
US10247620B2 (en) Wiring board and temperature sensing element
JP5321327B2 (ja) 放熱型環境センサ
US6121615A (en) Infrared radiation sensitive device
JP4107235B2 (ja) 力学量センサ構造
EP3450945A1 (en) Sensor substrate and sensor apparatus
JPH04150001A (ja) サーミスタ素子
JPH07111206A (ja) サーミスタ式温度センサ
JP3024521B2 (ja) 抵抗温度ヒューズ
JP3058305B2 (ja) サーミスタ及びその製造方法
JP3686784B2 (ja) 半導体レーザ素子搭載用サブキャリアおよび半導体レーザモジュール
JP2021192062A (ja) 測温体
JPH0566537B2 (ja)