JPH0666509B2 - 分布帰還型半導体レ−ザ装置 - Google Patents

分布帰還型半導体レ−ザ装置

Info

Publication number
JPH0666509B2
JPH0666509B2 JP58234238A JP23423883A JPH0666509B2 JP H0666509 B2 JPH0666509 B2 JP H0666509B2 JP 58234238 A JP58234238 A JP 58234238A JP 23423883 A JP23423883 A JP 23423883A JP H0666509 B2 JPH0666509 B2 JP H0666509B2
Authority
JP
Japan
Prior art keywords
regions
semiconductor laser
laser device
distributed feedback
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58234238A
Other languages
English (en)
Other versions
JPS60126882A (ja
Inventor
直樹 茅根
伸二 辻
芳久 藤崎
泰利 柏田
元尚 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58234238A priority Critical patent/JPH0666509B2/ja
Priority to GB08431202A priority patent/GB2151402B/en
Priority to US06/681,820 priority patent/US4665528A/en
Priority to DE19843445725 priority patent/DE3445725A1/de
Publication of JPS60126882A publication Critical patent/JPS60126882A/ja
Priority to US06/759,136 priority patent/US4775980A/en
Publication of JPH0666509B2 publication Critical patent/JPH0666509B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1225Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers with a varying coupling constant along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/106Comprising an active region having a varying composition or cross-section in a specific direction varying thickness along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、単一縦モード発振する分布帰還型半導体レー
ザに係わる。
〔発明の背景〕
半導体レーザの縦モードを制御するために素子内部に回
折格子をつくりつけた分布帰還型(Distributed Feedba
ck:DFB)半導体レーザが研究されているが、従来の
DFBレーザでは、原理的に同一のしきい値利得を持つ
2本のモードが存在する。実際の発振においてはこのう
ちのいずれかのモードで発振することとなる。このため
素子作成のばらつきなどから、単一モード発振を再現性
良く得ることは難かしい。
〔発明の目的〕
本発明の目的は、安定して単一モードで発振するDFB
レーザを提供することにある。
〔発明の概要〕
DFBレーザにおいては、注入されたキヤリアが発光す
る活性層、およびこのキヤリアを活性層内に閉込めるた
めのクラツド層、また分布帰還を生じさせるための回折
格子が基本的な構成要素である。ところで従来のDFB
レーザでは、回折格子の周期によつて決まるブラツグ波
長に最も近い縦モードが最小しきい値利得を持つが、こ
の縦モードは、ブラツグ波長の両側に1本ずつ存在す
る。このため完全に単一モード化することが困難になつ
ている。これを防ぐためには、素子の光軸方向にブラツ
グ波長の異なる2つの領域を設け、一方の領域の最小利
得を持つ縦モード1本と、他方の領域の最小利得を持つ
縦モード1本を重ね合わせるようにする。これにより重
ね合わせた縦モードが他のどのモードよりもしきい値利
得が小さいので、安定な単一モード発振が得られる。
更に詳しく本発明を説明する。
分布帰還型レーザの縦モードは前述した通り第1図(a)
の如く、ブラツグ波長(λb)を中心にλ11,λ12
…,λ21,λ22……等のモードを有している。通常の分
布帰還型レーザでは各モード中しきい値利得の小さいλ
11,λ21のいずれかが発振することとなる。
ブラツグ波長(λb)は回折格子の周期をΛとすると λb=2neffΛ と表わされる。
ここでneffは有効屈折率で、 (但し、R0=2π/λ、λ:発振波長、β:伝播定
数) と表わされる。
これらの定数に関しては光導波路或いは半導体レーザに
関する基礎理論の文献に説明されている。
たとえば“HETEROSTRUCTURE LASERS”H.C.Casey,M.B.Pa
nish,ACADEMIC PRESS等を参酌すれば良い。
ところで、この状態ではλ11とλ21のモードは同一のし
きい値利得なので安定な単一モード発振は実現出来な
い。
そこで、たとえばブラツグ波長(λb)の異なる2つの
領域I(λbI),II(λbII)を光軸方向に縦列に接続
し、且I領域とII領域の各々の最小しきい値利得のモー
ドλbA1とλbB1とが重なるように設定する。第1図(b)
及び(c)にこの状態を示す。このように設定されると領
域Iと領域IIの各モードの合成したモードのうち単一の
モードだけが最小しきい値利得を有することとなる。こ
の状態を第1図(d)に例示する。従つて、必ずこのモー
ドで発振することとなり、完全単一モード化が可能とな
る。
なお、ブラツグ波長(たとえばλbA)と隣接するモード
(たとえばλbA1)との間隔は λbA 2/neff・L L:共振器長 で表わされる。
ブラツグ波長を領域によつて異ならしめるには前述のλ
b=2neffΛの関係より明らかな如く、原理的にneffを変
化させるか、Λを変化させるかの2つの方法がある。
更、neffを変化させるには導波路を構成している積層体
の厚さや組成等を変化させることで実現することができ
る。たとえば活性層自身の厚みを変化させる方法、光ガ
イド層やクラツド層の厚みを変化せしめる方法等であ
る。より具体的な構造は実施例によつて説明する。
又、これまでの説明では共振器内の回折格子の分割は2
つの領域として説明したが、更に多数領域に分割しても
勿論良い。
〔発明の実施例〕
以下、本発明を実施例を用いて説明する。
第2図はDFBレーザの光の進行方向に平行な面での断
面図である。第2図に示す如く、n型InP基板1上に
n型InP層(バツフア層で厚さは約2μmとなす)
2、In0.582Go0.418As0.898P0.102層(活性層、厚み
0.1μm)3、p型In0.717Ga0.283As0.613P0.387
(光ガイド層、厚み〜0.1μm)4を順次周知の液相
成長法で成長させる。p型InGaAsP光ガイド層4の表面
にフオトレジスト層を形成し、干渉露光法によつて所望
の周期的凹凸のパターンを露光する。この場合、第2図
に図示した如く、領域Iと領域IIでの周期を異ならしめ
る。この例では領域Iの周期は2300Å、領域IIでは2315
Åとなした。次いで、前述のフオトレジストをマスクと
し、HBrとHNOとHOの混液より成る食刻液に
よつてp型InGaAsP層4の表面を選択食刻し、周期的凹
凸を形成する。凹部の深さは〜300Åである。この周
期的凹凸を形成後、再びp型InPクラツド層(厚さ〜
1.0μm)5、p型In0.814Ga0.186As0.405P0.595
6(コンタクト層、厚さ〜0.5μm)を順次成長す
る。n型InP基板側にAu−Snより成るn側電極
9、p型InGaAsP側にCr−Auより成るp側電極10
を形成して後、必要に応じて素子に分離する。共振器長
は300μmとなした。
第3図は本発明の他の実施例である。第1図の例と同じ
く、光ガイド層4まで成長し、この後、選択食刻によ
り、領域Iの部分のみ光ガイド層を薄くする。次に全領
域とも同一の周期の凸凹を形成する。領域IとIIでは、
光ガイド層の厚みが異なるので有効屈折率が異なり、従
つてブラツグ波長も異なる。このことから、光ガイド層
の厚みを違えることは、等価的に有効屈折率(neff)を
変えることに等しい。一例として、凸凹の周期を2300Å
とし、領域Iの光ガイド層の厚みを0.1μm、領域II
の光ガイド層の厚みを0.15μmとした。この素子で
も第4図に示すように、波長1.55μmの完全単一モ
ード発振が得られた。
なお、第3図において第2図と同一符号は同一部位を示
している。
第5図〜第11図も更に別な実施例を示す半導体レーザ
装置の断面図である。いずれも第1図と同様レーザ光の
進行方向に平行な面での断面図である。又、同一符号は
同一部位を示している。
第5図は周期的凹凸7,8を活性層に対し基板1側に設
けた例である。半導体層11が光ガイド層であり、たと
えばn型In0.717Ga0.283As0.613P0.387層を用いれば良
い。他の層の組成は第1図の例と同様で良い。なお、n
型InGaAsP層11の厚さは0.1μmとなした。
第6図はやはり周期的凹凸7,8を基板側に設け、且光
ガイド層11の厚さを領域IおよびIIで変えたものであ
る。この例では周期的凹凸7,8の周期は同一で2300Å
である。光ガイド層11はたとえば前述のn型In0.717G
a0.283As0.613P0.387層を用い、領域Iおよび領域IIで
の厚さは各々0.2μm,0.1μmとなした。
第7図は周期的凹凸の異なる領域を3つの領域としたも
ので、この例では左右の領域IとIIIにおける光ガイド
層4の厚みが同一、領域IIのそれが厚い層となつてい
る。又各領域I,II,IIIでの周期的凹凸の周期は同一
とした。
又、第8図の例は光ガイド層の厚い領域15と薄い領域
14の交互に多数個設けた例である。他の構成は第1図
或いは第7図の例と同様で良い。
これまでの例で分割された各領域の有効屈折率(neff
を異ならしめるに回折格子の周期的凹凸の周期を異なら
しめる方法、或いは光ガイド層の厚さを異ならしめる方
法を用いる例を示した。この両方法は適宜組み合わせて
用いることも勿論可能である。
第9図は光共振器内の分割された領域のブラツグ波長
(λb)を異ならしめるに当つて、回折格子の周期的凹
凸7の周期は同一、光ガイド層11の厚さも一定とする
が、一方のクラツド層12の厚さを周期的に異ならせた
例である。
第10図は活性層の厚さを異ならせた例である。たとえ
ば0.1μm,0.15μmとして領域I,領域IIを構
成する。更に活性層の厚さは一定とし、その組成を変化
せしめて同様の目的を達することも出来る。
第11図は光ガイド層14,15の組成を変化せしめた
例である。たとえば光ガイド層14をバンド・ギヤツプ
波長1.3μm、同15を波長1.25μmとなる様組
成を選択すれば良い。
これまでの例はInP−InGaAsP系の半導体レーザであるが
GaAs−GaAlAs系のレーザ等化合物半導体レーザにおいて
広く本発明を実施出来ることはいうまでもない。
第12図はGaAs−GaAlAs系の例である。基本的構造は第
7図と同様である。
n型GaAs基板21上にn型Ga0.6Al0.4Asクラツド層(厚
さ2.0μm)、アンドープGa0.95Al0.05As活性層(厚
さ0.1μm)、p型Ga0.6Al0.4Asブロツク層(厚さ
0.05μm)、p型Ga0.8Al0.2As光ガイド層、p型Ga
0.6Al0.4Asクラツド層(厚さ1.0μm)、p型GaAsキ
ヤツプ層(厚さ0.5μm)が配置されている。この例
では共振器がI,II,IIIの領域に分割され、各々の領
域の厚さは0.1μm、0.2μm、0.1μmとなさ
れている。周期的凹凸のピツチは2370Å、高さは500
Åである。
なお、電極29はCr−Au、電極28はAuGeNi−Auの
積層で構成される。
〔発明の効果〕
本発明によれば、素子ばらつきによらず、再現性良く単
一縦モード発振が実現できる。
【図面の簡単な説明】
第1図は本発明の原理を説明するための図、第2図は本
発明によるDFBレーザの側断面図、第3図は本発明の
他の実施例のDFBレーザの側断面図、第4図は本発明
による素子の発振スペクトルを示す図、第5図〜第12
図は本発明の他の実施例を示す側断面図である。 1……半導体基板、2……クラツド層、3……活性層、
4……光ガイド層、5……クラツド層、6……キヤツプ
層、9,10……電極。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 柏田 泰利 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 平尾 元尚 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭57−170582(JP,A) 特開 昭59−18692(JP,A) 鈴木明、多田邦雄「不均一な軸方向実効 屈折率分布を有するDFBレーザの解析」 電子通信学会技術研究報告、信学技報Vo l.77,No.215,(社)電子通信学会、 第19頁〜第26頁

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】キャリアを注入するための電極と、注入さ
    れたキャリアにより発光するための活性領域と、この活
    性領域からの光を帰還するための周期の異なる複数の領
    域からなる回折格子を有する光共振器構造とを有し、上
    記複数の領域は光軸方向に縦列に配置されており、かつ
    上記光共振器構造は上記各領域の最小利得を持つ縦モー
    ド1本がそれぞれ重ね合わされるように構成されたこと
    を特徴とする分布帰還型半導体レーザ装置。
  2. 【請求項2】キャリアを注入するための電極と、注入さ
    れたキャリアにより発光するための活性領域と、この活
    性領域からの光を帰還するための周期の異なる第1及び
    第2の領域からなる回折格子を有する光共振器構造とを
    有し、上記第1及び第2の領域は光軸方向に縦列に配置
    されており、かつ上記光共振器構造は上記第1及び第2
    の領域の最小利得を持つ縦モード1本がそれぞれ重ね合
    わされるように構成されたことを特徴とする分布帰還型
    半導体レーザ装置。
  3. 【請求項3】特許請求の範囲第2項に記載の分布帰還型
    半導体レーザ装置において、上記第1及び第2の領域は
    上記回折格子の周期が異なることによりブラッグ波長が
    異なることを特徴とする分布帰還型半導体レーザ装置。
  4. 【請求項4】特許請求の範囲第2項に記載の分布帰還型
    半導体レーザ装置において、上記第1及び第2の領域は
    上記回折格子と上記活性領域との距離が異なることによ
    りブラッグ波長が異なることを特徴とする分布帰還型半
    導体レーザ装置。
  5. 【請求項5】特許請求の範囲第2項に記載の分布帰還型
    半導体レーザ装置において、上記第1及び第2の領域は
    上記共振器構造内に屈折率の分布を形成することにより
    ブラッグ波長が異なることを特徴とする分布帰還型半導
    体レーザ装置。
JP58234238A 1983-12-14 1983-12-14 分布帰還型半導体レ−ザ装置 Expired - Lifetime JPH0666509B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58234238A JPH0666509B2 (ja) 1983-12-14 1983-12-14 分布帰還型半導体レ−ザ装置
GB08431202A GB2151402B (en) 1983-12-14 1984-12-11 Distributed-feedback semiconductor laser device
US06/681,820 US4665528A (en) 1983-12-14 1984-12-14 Distributed-feedback semiconductor laser device
DE19843445725 DE3445725A1 (de) 1983-12-14 1984-12-14 Halbleiter-laservorrichtung
US06/759,136 US4775980A (en) 1983-12-14 1985-07-26 Distributed-feedback semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58234238A JPH0666509B2 (ja) 1983-12-14 1983-12-14 分布帰還型半導体レ−ザ装置

Publications (2)

Publication Number Publication Date
JPS60126882A JPS60126882A (ja) 1985-07-06
JPH0666509B2 true JPH0666509B2 (ja) 1994-08-24

Family

ID=16967845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58234238A Expired - Lifetime JPH0666509B2 (ja) 1983-12-14 1983-12-14 分布帰還型半導体レ−ザ装置

Country Status (4)

Country Link
US (1) US4665528A (ja)
JP (1) JPH0666509B2 (ja)
DE (1) DE3445725A1 (ja)
GB (1) GB2151402B (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147685A (ja) * 1984-08-15 1986-03-08 Kokusai Denshin Denwa Co Ltd <Kdd> 分布帰還形半導体レ−ザ
JPS61222189A (ja) * 1985-03-15 1986-10-02 Sharp Corp 半導体レ−ザ
DE3686785T2 (de) * 1985-06-10 1993-04-29 Nippon Electric Co Halbleiterlaservorrichtung mit verteilter rueckkopplung.
JPH0712102B2 (ja) * 1985-06-14 1995-02-08 株式会社日立製作所 半導体レ−ザ装置
JPS62144378A (ja) * 1985-12-18 1987-06-27 Sony Corp 分布帰還覆半導体レ−ザ−
JPS62259489A (ja) * 1986-05-06 1987-11-11 Hitachi Ltd 半導体レ−ザ装置及び光増幅装置
US4740987A (en) * 1986-06-30 1988-04-26 American Telephone And Telegraph Company, At&T Bell Laboratories Distributed-feedback laser having enhanced mode selectivity
EP0254568B1 (en) * 1986-07-25 1993-10-13 Mitsubishi Denki Kabushiki Kaisha A semiconductor laser device
GB2197531B (en) * 1986-11-08 1991-02-06 Stc Plc Distributed feedback laser
JPS63122188A (ja) * 1986-11-12 1988-05-26 Hitachi Ltd 光半導体装置
JP2700312B2 (ja) * 1987-01-07 1998-01-21 シャープ株式会社 分布帰還型半導体レーザ装置
US4745617A (en) * 1987-03-27 1988-05-17 Hughes Aircraft Company Ideal distributed Bragg reflectors and resonators
JPS63244694A (ja) * 1987-03-30 1988-10-12 Sony Corp 分布帰還形半導体レ−ザ
JP2768940B2 (ja) * 1987-07-08 1998-06-25 三菱電機株式会社 単一波長発振半導体レーザ装置
GB2209408B (en) * 1987-09-04 1991-08-21 Plessey Co Plc Optical waveguide device having surface relief diffraction grating
US4904045A (en) * 1988-03-25 1990-02-27 American Telephone And Telegraph Company Grating coupler with monolithically integrated quantum well index modulator
DE3817326A1 (de) * 1988-05-20 1989-11-30 Siemens Ag Verfahren zur herstellung von gitterstrukturen mit um eine halbe gitterperiode gegeneinander versetzten abschnitten
US5147825A (en) * 1988-08-26 1992-09-15 Bell Telephone Laboratories, Inc. Photonic-integrated-circuit fabrication process
FR2639773B1 (fr) * 1988-11-25 1994-05-13 Alcatel Nv Laser a semi-conducteur accordable
US4905253A (en) * 1989-01-27 1990-02-27 American Telephone And Telegraph Company Distributed Bragg reflector laser for frequency modulated communication systems
US4908833A (en) * 1989-01-27 1990-03-13 American Telephone And Telegraph Company Distributed feedback laser for frequency modulated communication systems
DE69018336T2 (de) * 1989-08-18 1995-12-14 Mitsubishi Electric Corp Verfahren zur Herstellung eines Beugungsgitters.
DE3934865A1 (de) * 1989-10-19 1991-04-25 Siemens Ag Hochfrequent modulierbarer halbleiterlaser
NL9000164A (nl) * 1990-01-23 1991-08-16 Imec Inter Uni Micro Electr Laseropbouw met gedistribueerde terugkoppeling en werkwijze ter vervaardiging daarvan.
US5091916A (en) * 1990-09-28 1992-02-25 At&T Bell Laboratories Distributed reflector laser having improved side mode suppression
JPH0567848A (ja) * 1991-09-05 1993-03-19 Fujitsu Ltd 光半導体装置の製造方法
JP2986604B2 (ja) * 1992-01-13 1999-12-06 キヤノン株式会社 半導体光フィルタ、その選択波長の制御方法及びそれを用いた光通信システム
JP3194503B2 (ja) * 1992-06-04 2001-07-30 キヤノン株式会社 化合物半導体装置及びその製造方法
DE4334525A1 (de) * 1993-10-09 1995-04-13 Deutsche Bundespost Telekom Optoelektronisches Bauelement mit verteilter Rückkopplung und variierbarem Kopplungskoeffizienten
JP2000137126A (ja) * 1998-10-30 2000-05-16 Toshiba Corp 光機能素子
US6501777B1 (en) * 1999-01-29 2002-12-31 Nec Corporation Distributed feedback semiconductor laser emitting device having asymmetrical diffraction gratings
DE10132231C2 (de) * 2001-06-29 2003-08-14 Infineon Technologies Ag Verfahren zur in-situ Herstellung von DFB-Lasern
GB2379084B (en) * 2001-08-24 2006-03-29 Marconi Caswell Ltd Surface emitting laser
EP1703603B1 (en) * 2005-03-17 2015-03-18 Fujitsu Limited Tunable laser
JP5870693B2 (ja) * 2011-12-28 2016-03-01 富士通株式会社 半導体レーザ装置及び半導体レーザ装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970959A (en) * 1973-04-30 1976-07-20 The Regents Of The University Of California Two dimensional distributed feedback devices and lasers
US4178604A (en) * 1973-10-05 1979-12-11 Hitachi, Ltd. Semiconductor laser device
US4096446A (en) * 1976-02-02 1978-06-20 Bell Telephone Laboratories, Incorporated Distributed feedback devices with perturbations deviating from uniformity for removing mode degeneracy
NL7900668A (nl) * 1978-11-08 1980-05-12 Philips Nv Inrichting voor het opwekken of versterken van coheren- te electromagnetische straling, en werkwijze voor het vervaardigen van de inrichting.
JPS58197788A (ja) * 1982-05-13 1983-11-17 Nippon Telegr & Teleph Corp <Ntt> 分布帰還形半導体レ−ザ装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鈴木明、多田邦雄「不均一な軸方向実効屈折率分布を有するDFBレーザの解析」電子通信学会技術研究報告、信学技報Vol.77,No.215,(社)電子通信学会、第19頁〜第26頁

Also Published As

Publication number Publication date
US4665528A (en) 1987-05-12
GB2151402A (en) 1985-07-17
JPS60126882A (ja) 1985-07-06
DE3445725A1 (de) 1985-07-04
DE3445725C2 (ja) 1991-07-18
GB8431202D0 (en) 1985-01-23
GB2151402B (en) 1987-11-18

Similar Documents

Publication Publication Date Title
JPH0666509B2 (ja) 分布帰還型半導体レ−ザ装置
JPH0817263B2 (ja) 干渉計半導体レーザ
JPH0632332B2 (ja) 半導体レ−ザ装置
JPS61160987A (ja) 集積型半導体光素子とその製造方法
US4775980A (en) Distributed-feedback semiconductor laser device
JPS6147685A (ja) 分布帰還形半導体レ−ザ
US4400813A (en) Crenelated-ridge waveguide laser
US4773077A (en) Internal reflection interferometric semiconductor laser apparatus
JPS6328520B2 (ja)
US5027368A (en) Semiconductor laser device
JP2606838B2 (ja) 分布帰還型半導体レーザ
JPS60152086A (ja) 半導体レ−ザ装置
JP2852663B2 (ja) 半導体レーザ装置およびその製造方法
JPH0449274B2 (ja)
JPS60178685A (ja) 単一軸モ−ド半導体レ−ザ装置
JPS62217689A (ja) 半導体発光装置
JPS5911690A (ja) 半導体レ−ザ装置
JPH09307179A (ja) 位相シフト型分布帰還半導体レーザ
JPS61279191A (ja) 半導体レ−ザ
JPH051992B2 (ja)
JPH0467355B2 (ja)
JPS60126881A (ja) 半導体レ−ザ装置
JPS63181493A (ja) 半導体レ−ザアレイ装置
JPH04372185A (ja) 半導体レーザ
JPS6317588A (ja) 半導体レ−ザ装置