JPH0623402B2 - 金属鉄粒子粉末又は鉄を主成分とする合金磁性粒子粉末の製造法 - Google Patents

金属鉄粒子粉末又は鉄を主成分とする合金磁性粒子粉末の製造法

Info

Publication number
JPH0623402B2
JPH0623402B2 JP61301024A JP30102486A JPH0623402B2 JP H0623402 B2 JPH0623402 B2 JP H0623402B2 JP 61301024 A JP61301024 A JP 61301024A JP 30102486 A JP30102486 A JP 30102486A JP H0623402 B2 JPH0623402 B2 JP H0623402B2
Authority
JP
Japan
Prior art keywords
particles
iron
particle powder
carboxylic acid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61301024A
Other languages
English (en)
Other versions
JPS63153201A (ja
Inventor
啓男 三島
章 向坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP61301024A priority Critical patent/JPH0623402B2/ja
Publication of JPS63153201A publication Critical patent/JPS63153201A/ja
Publication of JPH0623402B2 publication Critical patent/JPH0623402B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属鉄粒子粉末又は鉄を主成分とする合金磁
性粒子粉末の製造法に関するものであり、特に酸化鉄粒
子又は鉄以外の金属を含有した酸化鉄粒子を加熱還元し
て得られる金属鉄粒子又は鉄を主成分とする合金粒子の
表面にカルボン酸の保護被膜と酸化被膜とを形成させる
ことにより、樹脂吸着性の高い分散性に優れた金属鉄粒
子又は鉄を主成分とする合金粒子を生成し、且つ該金属
鉄粒子又は鉄を主成分とする合金粒子を無溶媒の状態で
空気中に安定して取り出すことを可能とした技術を提供
するものである。
〔従来の技術〕
周知の通り、磁気記録方式は録音、録画だけでなく、コ
ンピュータなどの情報処理装置にもデータ記録として大
幅に用いられており、その性能を飛躍的に高めることが
強く要望されている。その具体的動向としては、近年、
ビデオ用、オーディオ用の磁気記録再生機器が益々長時
間化、小型軽量化しており、データ記録においても益々
高密度記録化、大容量化が進んでいる。磁気記録再生機
器の中で昨今のVTR の普及は目覚ましく、小型軽量化並
びに長時間録画を目指したVTR の改良、開発が盛んに行
われており、それに伴って磁気記録媒体である磁気テー
プに対する高画像画質、高出力特性、殊に周波数特性の
向上及びノイズレベルの低下が要求され、ビデオ S/N比
の向上が益々要求されている。磁気記録媒体のこれらの
諸特性は磁気記録媒体に使用される磁性材料と密接な関
係を有するものであり、磁気テープの高画像画質特性、
高出力特性、殊に周波数特性の向上及びノイズレベルの
低下を計り、高S/N 比を得る為には、使用される磁性粒
子粉末の粒子サイズ、分散性、充填性などを改善するこ
とが重要であり、更には磁気テープの表面の平滑性の向
上、残留磁束密度(Br)の向上、高保磁力(Hc)化が重要で
ある。また、ノイズレベルを低下させて高S/N 比を得る
為には、単位体積当たりの平均粒子数を増やすことが重
要であり、従って使用される磁性粒子粉末の粒子サイズ
はできるだけ微細であり、しかもビークル中での分散性
が良く、塗膜中での高配向性及び高充填性を有する磁性
粒子粉末が有利であるとされている。また、粒子サイズ
の微細化に伴って塗膜中での粒子1ヶ当たりの樹脂量が
低下してくる為、塗膜の強度、耐久性が低下していく傾
向があり、樹脂が強固に粒子に接着するような樹脂吸着
性が高い磁性粒子粉末が有利であるとされている。磁性
粒子粉末の粒子サイズを表わす一般的な方法として、粒
子粉末の比表面積の値がしばしば用いられるが、磁気記
録媒体に起因するノイズレベルは、使用された磁性粒子
粉末の比表面積が大きくなる程減少する傾向にあること
も周知とされているところであり、比表面積の大きな磁
性粒子粉末が要求されている。
現在、一般的な磁性粒子粉末としては、針状ゲータイト
粒子又はこれを加熱脱水して得られるヘマタイト粒子又
はこれらに鉄以外の異種金属を含有させたものを出発原
料として、これらを還元性ガス雰囲気中で加熱還元して
得られる針状マグネタイト粒子粉末或いは更に酸化して
得られる針状マグヘマイト粒子粉末が用いられる。通常
これ等は一般には、保磁力Hcは 250〜400 Oe程度を有
し、飽和磁化σs は70〜85 emu/g程度の値を有するもの
である。また、上記針状マグネタイト粒子粉末或いは針
状マグヘマイト粒子粉末の表面層をCo含有酸化鉄に変成
したCo被着型酸化鉄粒子粉末も、オーディオ用、ビデオ
用、フロッピーディスク用等に用いられており、これ等
は保磁力Hcは 450〜900 Oe程度と高い値を有するが、飽
和磁化σs は70〜85 emu/g程度の値しか有さないもので
ある。しかしながら、前記した如く磁気記録媒体の残留
磁束密度(Br)の向上が重要な課題となっている現状にお
いて、上記した酸化鉄磁性粉末の飽和磁化σs の大きさ
では磁気記録媒体として塗布したときの飽和磁束密度(B
m)が 2000 Gauss 程度のものしか得られない。磁気記録
媒体の高密度化を達成する為には、大きな飽和磁化(σ
s)と高い保磁力(Hc)を有する磁性粒子粉末が要求され
ており、この理由からして大きな飽和磁化(σs)と高
い保磁力(Hc)を有する金属鉄粒子粉末又は鉄を主成分と
する合金磁性粒子粉末が注目を浴びており、実用に供さ
れている。
金属鉄粒子粉末又は鉄を主成分とする合金磁性粒子粉末
は、例えば純粋な金属鉄粒子粉末或いは鉄と V、Cr、M
n、Co、Ni、Cu、Zn、Mg、Al、Si、P 等の元素の一種又
は二種以上とからなる合金磁性粒子粉末が知らており、
その代表的な製法として次に説明する加熱還元法が採ら
れている。即ち、現在最も一般的に用いられている方法
は、針状ゲータイト粒子粉末又はこれを加熱脱水して得
られるヘマタイト粒子又はこれらに鉄以外の異種金属を
含有するもの及びそれらを還元あるいは還元、酸化処理
して得られる種々の酸化鉄粒子粉末を出発原料として、
H2ガス等の還元ガス雰囲気中で加熱還元して金属鉄粒子
粉末又は鉄を主成分とする合金磁性粒子粉末とする方法
である。このようにして得られた金属粒子粉末又は鉄を
主成分とする合金磁性粒子粉末の飽和磁化σs は 110〜
170 emu/g 程度、保磁力Hcは1000〜2000 Oe 程度のもの
であり、酸化鉄磁性粉末に比較して大きな飽和磁化と大
きな保磁力を有し、高密度記録材料に適したものであ
る。
しかしながらこのようにして得られた金属鉄粒子粉末又
は鉄を主成分とする合金磁性粒子粉末は1μm以下の大
きさを持つ微細な粒子粉末で、比表面積が大きく、且つ
表面の活性度が大きい為に、上記加熱還元終了後冷却し
てそのまま空気中に取り出すと、よく知られている通
り、空気中の酸素と反応し、酸化発熱して発火するため
に大幅な磁気特性の低下を来たし、目的とする大きな飽
和磁化と高い保磁力を有する磁性粉末を得ることができ
ない。
従って、従来から加熱還元して得られた金属鉄粒子又は
鉄を主成分とする合金粒子をその特性を損なわずに空気
中に取り出す場合には、加熱還元後、一旦冷却してその
まま空気中に取り出すことは前述した通りの理由からし
て難しく、この為還元後の該粒子はトルエンなどの有機
溶媒に浸漬させて取り出すという方法が一般的に用いら
れていい。しかしながら、有機溶媒に浸漬させている状
態の粒子を用いて磁性塗料を調製する場合、過などの
方法でできるだけ有機溶媒を除去した状態で該粒子を使
用したとしても、磁性塗料調製に必要な溶剤量以上の過
剰の有機溶媒が存在する場合が多く、溶剤と樹脂の混合
比率の調整ができなくなったり、また、溶剤の選択性が
制限される等の欠点を有している。従って、このような
状態で塗料化を行ったとしても磁性粒子のビークル中へ
の分散が困難であったり、塗料粘度が適正粘度からずれ
る為に分散、混合時に針状粒子の破壊が生ずるなど磁性
塗料の調製作業が煩雑になるという欠点が生じてくる。
その結果塗布膜に塗布した後の金属鉄粒子の充填性が上
がらない為に残留磁束密度(Br)が低下したり、配向性が
悪くなる等の塗膜特性の低下がみられ、更には密着性等
の塗膜物性が劣化する原因にもなっている。従って、金
属鉄粒子粉末に対して有機溶媒の含有量が非常に少ない
状態、好ましくは無溶媒の状態で、飽和磁化が大きく、
しかも空気中で安定に取り扱え、しかも塗料化し易く分
散性の優れた金属鉄粒子粉末又は鉄を主成分とする合金
磁性粒子粉末が要望されている。
現在、金属鉄粒子又は鉄を主成分とする合金磁性粒子を
その特性に損なわずに実質的に無溶媒の状態で空気中に
安定して取り出すための手段として各種の方法が提案さ
れている。その代表的な方法は、加熱還元して得られだ
金属鉄粒子又は鉄を主成分とする合金磁性粒子を非酸化
性雰囲気下でトルエンやアセトン等の有機溶媒中に浸漬
した後、該有機溶媒を蒸発させながら徐々に粒子表面層
のみを酸化させて空気中に取り出す方法である。
この方法では、金属鉄粒子又は鉄を主成分とする合金粒
子の扱う量如何によっては空気中に取り出す際に発火し
てしまうという欠点を有している。例えば少量を空気中
に取り出す場合には、概ね安定して取り出すことは可能
であるが、 1Kg以上、殊に工業的規模に於いて取り扱う
大量の場合には、有機溶媒を蒸発させながら徐々に粒子
表面層を酸化させていくと酸化反応により発生した熱量
が蓄熱し、有機溶媒の蒸発により奪われる、気化熱より
も大きくなり、金属粒子粉末内部に蓄熱が進行し、温度
上昇に伴って更に酸化反応が促進される為に空気中では
発火してしまうという問題点がある。仮に何らかの方法
で放熱を促進して発火を防いだとしても酸化が過度に進
行して、磁気特性、特に飽和磁化σs が低下するという
問題点がある。これ等の現象は金属鉄粒子又は鉄を主成
分とする合金粒子が微粒子になり比表面積が大きくなれ
ば成る程顕著に現れるのである。
また、特公昭56-27561号公報及び特開昭58-221202 号公
報には、種々のカルボン酸や安息香酸の誘導体を有機溶
媒に溶解して得た溶液中に、化学的に活性な金属粒子粉
末を浸漬させ、該金属粒子粉末の表面にカルボン酸を吸
着させて保護被膜を形成することにより安定して空気中
に取り出す方法が開示されている。
この方法では、金属粒子粉末の表面にカルボン酸を吸着
させて保護被膜を形成させた後、自然乾燥あるいは過
によって有機溶媒を蒸発、あるいは除去しており、該金
属粒子粉末の表面はただカルボン酸が付着されているだ
けの状態であり充分な酸化被膜は形成されておらず、安
定して大量に空気中に取り出すことは困難であり、前述
した従来技術と同様に発火してしまうという欠点を有し
ている。特に微粒子になり比表面積が大きくなれば成る
程大量に空気中に取り出すことが困難になる。のみなら
ず更には金属粒子粉末の表面にカルボン酸を付着した場
合には、磁性塗料の調製の際に分散性を悪化させるとい
う弊害も有する。この事実は、例えば特開昭56-142802
号公報に安息香酸、イソ吉草酸、イソ酪酸等のカルボン
酸が付着している場合の弊害が記載されている。
更に別の方法として、加熱還元後の金属鉄粒子又は鉄を
主成分とする合金粒子を有機溶媒中に取り出すことな
く、酸素含有ガスを通気して徐々に粒子表面に酸化被膜
を形成させ、安定して空気中に取り出す方法が知られて
いる。
しかしながら、この方法はBET法による比表面積が40
m2/g以下の比較的大きい粒子サイズの金属鉄粒子又は鉄
を主成分とする合金粒子に対しては、大きな飽和磁化
(σs)値を有した状態で空気中に取り出すことが可能
であるが、微粒子になり比表面積が大きくなれば成る程
飽和磁化(σs)値の大きい状態のままで空気中に安定
して取り出すことは困難となり、安定になるまで酸化反
応が過度に進行する為、空気中に安定して取り出しても
飽和磁化(σs)が低下しているという問題点が存在す
る。
〔発明が解決しようとする問題点〕
上述したように、微細な金属鉄粒子又は鉄を主成分とす
る合金粒子(以下、特に限定する場合を除き「金属粒
子」と総称する。)を樹脂吸着性を高め分散性を向上さ
せ且つ、その特性を損なわずに無溶媒の状態で空気中に
安定して取り出すことが出来るという技術が現在最も要
求されているところであるが、前述の金属粒子を空気中
に安定して取り出すための公知手段によって空気中に取
り出した場合には、微粒子になればなる程発火したり、
仮に発火しないまでも酸化が進行して、磁気特性、特に
飽和磁化(σs)が劣化していることからして未だ充分
な安定化手段とは言い難い。
〔問題点を解決するための手段〕
本発明者は、磁気特性、特に飽和磁化(σs)が大き
く、且つ、樹脂吸着性の高い金属微粒子を得るべく、還
元後の金属微粒子を空気中に安定して取り出す技術につ
いて研究を重ねて来た。
本発明者は、加熱還元後の金属粒子を空気中に取り出す
に先立って、該金属粒子の表面に強固なカルボン酸の保
護被膜と酸化被膜とを形成させるという方法を採れば無
溶媒の状態で空気中に安定して取り出すことができ、大
きな飽和磁化の値を有し、しかも樹脂吸着性が高く塗料
化の際の分散性に問題を生じない金属粒子が得られるこ
とを見い出したのである。
本発明者は、還元後の金属粒子を空気中に安定して取り
出すのに先立って行う金属粒子表面への強固なカルボン
酸の保護被膜の形成、更には、酸化被膜の形成条件につ
いて詳細な検討を加えた結果、本発明を完成するに至っ
たのである。
即ち、本発明は、酸化鉄粒子又は鉄以外の金属を含有す
る酸化鉄粒子を還元性ガス中で加熱還元して金属鉄粒子
又は鉄を主成分とする合金粒子とした後、該金属鉄粒子
又は鉄を主成分とする合金粒子を、カルボン酸を有機溶
媒に溶解して得た溶液中に浸漬し、次いで非酸化性雰囲
気下で使用した前記カルボン酸の沸点以下或いは高温で
分解若しくは昇華するカルボン酸の場合はその融点以下
の温度範囲において有機溶媒を蒸発させた後、引続き、
非酸化性雰囲気下200 〜650 ℃の温度範囲で加熱処理し
た後、更に、50℃以上使用した前記カルボン酸の沸点以
下或いは高温で分解若しくは昇華するカルボン酸の場合
はその融点以下の温度範囲において酸素含有ガスを作用
させ、更に必要により冷却後、50℃以下の温度で酸素含
有ガスを作用させて前記粒子の表面を酸化することによ
り空気中で安定な金属鉄粒子又は鉄を主成分とする合金
粒子を得ることを特徴とする金属鉄粒子粉末又は鉄を主
成分とする合金磁性粒子粉末の製造法である。
〔作用〕
先ず、本発明に係る金属粒子は、空気中に取り出すのに
先立って該金属粒子表面に強固なカルボン酸の保護被膜
と酸化被膜とを形成させている為、無溶媒の状態でも空
気中の酸素と反応しにくい状態となっており、微粒子で
あって、しかも、飽和磁化が大きく、且つ樹脂吸着性が
高く塗料化の際の分散性が優れた金属粒子が得られる。
特に、比表面積が40m2/g程度以上の超微細な金属粒子
を、分散性を高めたまま無溶媒の状態で空気中に安定し
て取り出せるという優れた効果がある。樹脂の吸着性が
高く、且つ分散性の優れた金属粒子が得られる理由につ
いては未だ定かではないが、前述した特開昭56-142802
号公報に安息香酸、イソ吉草酸、イソ酪酸等のカルボン
酸が金属表面に付着した場合には、塗料分散性を悪化さ
せるという弊害を有するという記載を勘案すれば、本発
明の方法では、カルボン酸の金属粒子表面での結合状態
が異なっている為と考えている。しかも、有機溶媒を蒸
発させた後、非酸化性雰囲気下200 〜650 ℃の温度範囲
で加熱処理を行うことにより、カルボン酸が結合した金
属粒子表面の吸着活性が高くなって、樹脂と結合し易い
状態になっている為と推測している。
次に、本発明実施にあたっての諸条件について述べる。
加熱還元して得られた金属粒子を空気中に取り出すのに
先立って、該金属粒子の表面に強固なカルボン酸の保護
被膜を形成させる条件について説明する。そのために
は、カルボン酸を有機溶媒に溶解して得た溶液を調製
し、該溶液中に金属粒子を浸漬させた後、非酸化性雰囲
気下で溶液中の有機溶媒を蒸発させて金属粒子の表面に
強固なカルボン酸の保護被膜を形成させる。ここでカル
ボン酸の添加方法としては、予めカルボン酸を有機溶媒
に溶解させた溶液を調製し、該溶液中に金属粒子を浸漬
させる方法、また有機溶媒に浸漬した金属粒子に、有機
溶媒に溶解したカルボン酸を添加する方法でもよく、更
にまた、有機溶媒に金属粒子を浸漬した後、非酸化性雰
囲気で加熱保持した状態で、予めカルボン酸を溶解した
有機溶媒を添加する方法が更に有効である。本発明に於
いて用いられるカルボン酸としては、ラウリン酸、ミリ
スチン酸のような直鎖型カルボン酸、安息香酸やフタル
酸のような芳香族カルボン酸、更には高分子構造を持つ
ポリカルボン酸等が挙げられ、これ等のカルボン酸は単
独又は二種以上の混合物として使用できる。尚、カルボ
ン酸の使用量は金属粒子粉末に対して0.01〜5.0 wt%が
好ましく、0.01wt%以下ではその効果が顕著に現れな
い。5.0 wt%以上であれば飽和磁化の高い状態で金属粒
子を空気中に安定に取り出すことが出来るが、カルボン
酸の2分子吸着により塗料中で粒子同志が再凝集を起こ
すことがあり好ましくない。また有機溶媒としては、ト
ルエン、アセトン、メチルエチルケトン、メチルイソブ
チルエチルケトン、シクロヘキサノン、THF 等が使用で
きる。
本発明において有機溶媒を蒸発させる為には、不活性ガ
ス気流中等の非酸化性雰囲気下で使用したカルボン酸の
沸点以下或いは高温で分解若しくは昇華するカルボン酸
の場合はその融点以下の温度範囲で行わなければならな
い。尚、カルボン酸として二種以上の混合物を使用した
場合にはそれぞれの沸点或いは融点の内高い方の温度を
有するカルボン酸の沸点或いは融点以下の温度で有機溶
媒を蒸発させればよい。これは、有機溶媒を蒸発させる
と同時にカルボン酸を有効且つ効率的に金属粒子の表面
に強固に反応結合させる為に必要な条件である。
また、有機溶媒を蒸発させる為の下限の温度は特に限定
するものではないが、低温で行えば、有機溶媒を蒸発さ
せるのに長時間を要する為、実用的には50℃以上の温度
で蒸発させることが好ましい。
また使用したカルボン酸の沸点或いは高温で分解若しく
は昇華するカルボン酸の場合はその融点以上で有機溶媒
を蒸発させた場合には、カルボン酸が金属粒子の表面と
反応して結合する前に飛散してしまうことがあり、吸着
量の制御が困難になるので好ましくない。
次に、有機溶媒を蒸発させた後の加熱処理は、非酸化性
雰囲気下200 〜650 ℃の温度範囲が好ましい。この温度
範囲で行えば、カルボン酸が強固に結合した金属粒子表
面の吸着活性が高くなり、樹脂と結合し易い状態になる
為に金属粒子の樹脂吸着性を向上させることができる。
650 ℃以上の温度で加熱処理をした場合、金属粒子表面
に結合しているカルボン酸の変質が顕著となり樹脂吸着
性の低下が見られる為好ましくない。また、200 ℃以下
の場合大きな効果が見られない。
次に、カルボン酸の保護被膜で形成された金属粒子の表
面を酸化させて酸化被膜を形成させる条件について説明
する。条件としては処理温度が最も重要である。処理温
度は50℃以上使用したカルボン酸の沸点以下或いは高温
で分解若しくは昇華するカルボン酸の場合はその融点以
下の温度範囲でないければならない。一般には、空気等
の酸素含有ガスと不活性ガスの混合ガスを通気すると酸
化反応の発熱により更に温度が上昇するので、初期設定
温度T1で処理を開始した時、更に高温のT2になったら酸
素含有ガスを停止させればよい。50℃以下の場合、緻密
な酸化被膜の形成に長時間を要し、しかも金属粒子粉末
を空気中に取り出したときの飽和磁化の値が低くなる。
また、カルボン酸の沸点以上の温度で酸化処理を施した
時には、酸化反応が過剰に進行して飽和磁化の値が低く
なる為好ましくない。尚、通気する酸素含有ガス量及び
不活性ガス量は、処理される金属粒子粉末の量及び処理
温度によって適当に定めればよい。
続いて、金属粒子粉末を空気中に取り出す方法として
は、表面酸化処理を施した後、室温まで冷却した後、前
記混合ガスの内、不活性ガス流量を次第に零にして、最
終的には酸素含有ガスのみを通気してから空気中に取り
出す方法が最も好ましいが、酸素含有ガスと不活性ガス
との混合ガスを通気しながら取り出しても良い。
次に、金属粒子の表面を緻密な酸化被膜を形成させる第
1段目の酸化処理に続いて更に必要に応じて行うカルボ
ン酸の保護被膜と緻密な酸化被膜で形成された金属粒子
表面を徐酸化する第2段目の酸化処理条件について説明
する。前記に於いて詳細に説明した通り、カルボン酸の
強固な保護被膜と緻密な酸化被膜とを形成した場合、空
気中に安定に取り出すことは可能であるが、より比表面
積の大きい微粒子粉末あるいは、合金粒子に含まれる鉄
以外の異種金属の種類によっては、上記、不活性ガス流
量を次第に零にする際に、再び発熱を生じることがあ
り、そのような場合には発熱してから50℃に到達したら
酸素含有ガスの通気を止めて不活性ガスのみを通気する
方法で発熱がなくなるまで酸素含有ガスと不活性ガスの
混合ガスを通気する方法を併用することがより好まし
い。
本発明において、出発原料として用いられる酸化鉄粒子
は、α-FeOOH或いはそれを加熱脱水して得られるα-Fe2
O3、加熱脱水後 500〜850 ℃の高温で封孔処理を施した
α-Fe2O3、或いはそれらを還元、酸化して得られる Fe3
O4またはγ-Fe2O3でも使用できる。更に形状保持の為、
上記各酸化鉄粒子を他の元素例えばSi、Co、Ni、Mg、A
l、Cu、P 等の化合物或いは有機化合物で被覆して得ら
れる酸化鉄粒子を使用してもよい。尚、対象となる金属
粒子は、その製法等に限定されるものではなく、金属粒
子を生成する技術として一般的に知られている製法によ
り得られる全てのものが使用し得る。更に、金属粒子の
組成についても、金属鉄或いは鉄と V、Cr、Mn、Co、N
i、Cu、Zn、Mg、Al、P 、Si等の元素の一種又は二種以
上との合金等の鉄を主成分とした合金のいずれも対象と
することができる。また金属粒子の形状も、用途に応
じ、針状、立方状、粒状等種々のものが存在するが、そ
のいずれも対象とすることができる。
〔実施例〕
次に、実施例並びに比較例により本発明を説明する。
尚、実施例及び比較例における比表面積はいずれもB.E.
T.法により測定し、磁気特性は粉体、塗布膜ともV.S.M.
で外部磁場 10K Oe の下で測定した値である。
また、樹脂吸着量は、塩化ビニル−酢酸ビニル共重合体
を主体とする樹脂10gをMEK52g、シクロヘキサノン
30g、トルエン52gの混合溶剤に溶解した樹脂液と金属
粒子粉末50gをスチールボール300 gを媒体としてペイ
ントコンディショナーで180 分間振とうし得られた塗料
を遠心分離して磁性粒子相と樹脂相を分離し、該樹脂液
中の樹脂濃度と、磁性粒子を混合する前の樹脂液の樹脂
濃度の差から磁性粒子に吸着した樹脂量を求めた。
塗布膜の表面光沢は、日本電色工業(株)社製の入射角60
゜のグロスメーターで測定した値であり、標準板光沢を
89.0%とした時の値を%表示で示したものである。
実施例1 出発原料として、平均長軸が0.20μm、軸比(長軸/短
軸)が20:1のニッケル、マグネシウム、アルミニウム、
及び珪素を Ni/Fe=1.0 at%、 Mg/Fe=0.5 at%、Al/F
e =1.0 at%、Si/Fe =0.2 at%、の割合で含有した針
状α-FeOOH粒子10Kgを空気中 550℃で加熱処理し、Ni、
Mg、Al、及びSiを含有した針状α-Fe2O3粒子粉末を得
た。次いで該α-Fe2O3粒子粉末 2.9Kgを流動層加熱還元
炉に投入し、水素ガスを 100/minの割合で通気し 410
℃の温度で11時間加熱還元して合金粒子粉末2.0 Kgを生
成した。
次いで、得られた合金粒子粉末を容積約40の回転レト
ルト容器に空気に触れないように窒素ガスを通気しなが
ら投入した後、トルエンを10投入して駆動回転させな
がら合金粒子をトルエンに浸漬させた。
続いて、ミリスチン酸20.0g(合金粒子粉末に対して 1.0
wt%に相当する。)をトルエン中に溶解した溶液を回転
レトルト容器内に注入し、次いで窒素ガスを10/minの
割合で通気しながら110 ℃の温度で約5時間費やしてト
ルエンを蒸発、回収しながら合金粒子粉末とミリスチン
酸を反応せしめた。最終的に排気窒素ガス中のトルエン
濃度は2000ppm 以下であった。
次いで、窒素ガスを5/minの割合で通気しながら温度
350 ℃で30分間加熱処理を行った。
続いて、温度を70℃まで冷却した後温度(T1)を70℃に保
持した状態で窒素ガスを10/minの割合で通気しながら
空気を 2.0/minの割合で通気し、発熱して温度(T2)が
105 ℃に到達したら空気の通気を遮断する方法で6.0 時
間保持した。この間、温度は100 ℃までしか上昇しなか
った。続いて窒素ガス、空気を導入したままの状態で室
温まで冷却させた後、徐々に窒素ガス流量を零にして発
熱の無い事を確認し、粒子表面にミリスチン酸被膜と酸
化被膜とを有する合金磁性粒子粉末を空気中に取り出し
た。
得られた合金磁性粒子粉末は、電子顕微鏡観察の結果、
平均長軸が0.12μm軸比が12:1で比表面積は63.4m2/gで
あり、磁気特性を測定した結果、保磁力Hc=1580 Oe 、
飽和磁化σs =133.6 emu/g 、σs/σr =0.506 であっ
た。この金属粒子粉末を用いて、前記した方法で測定し
た樹脂吸着量は金属粒子粉末1g当たり86.5mgであっ
た。
続いて、上記合金磁性粒子粉末一定量を、ステンレス製
ポットに計量し、所定量の分散剤とトルエンを添加し
て、スチールボールを媒体として、ペイントコンディシ
ョナーで40分間プレミクシングを行い、更に、トルエ
ン、メチルエチルケトン、メチルイソブチルケトンから
なる混合溶媒に溶解した塩ビ酢ビ共重合体樹脂、並びに
混合溶媒に溶解したポリウレタン樹脂を所定量添加して
2時間ミクシングを行って塗料を調製した。得られた磁
性塗料を磁場配向しながら塗布乾燥させて塗布膜を製造
した。
このようにして得られた塗布膜の保磁力Hcは1485Oe、残
留磁束密度は3200 Gauss、角型比 0.813、配向度 2.21
であり、表面光沢は75%であった。
実施例2〜7 出発原料のα-FeOOH粒子、加熱処理条件、還元条件、使
用する有機溶媒の種類、更にはカルボン酸の種類、添加
量、溶解に用いる有機溶媒及び添加温度、有機溶媒を蒸
発させる温度、有機溶媒を蒸発させた後の加熱処理条件
並びに表面酸化処理の温度T1、T2、空気通気量、窒素ガ
ス通気量及び処理時間を種々変えた以外は実施例1と同
様にして表面に強固なカルボン酸の保護被膜と酸化被膜
とを形成させた合金磁性粒子粉末を得た。得られた合金
磁性粒子粉末の主要製造条件を表1に、諸特性を表2に
示す。また、実施例1と同様の方法で塗料を調製し塗布
膜を作製した。塗布膜の諸特性を表2に示す。
実施例8 平均長軸が0.25μm、軸比11:1で、粒子表面に有機物焼
結防止剤としてポリパラビニルフェノールを1.5 wt%と
ステアリン酸を1.0 wt%被覆した針状α-FeOOH粒子3.0
Kgを流動層加熱還元炉に投入し、水素ガスを110 /min
の割合で通気しながら420 ℃で15時間加熱還元して金属
鉄粒子粉末1.85Kgを得た。
次いで、得られた金属鉄粒子粉末を実施例1と同様にし
て40の回転レトルト容器に投入し10のトルエンに浸
漬させた。続いて安息香酸14.8g(金属鉄粒子に対して
0.8 wt%に相当する。)を溶解したトルエン溶液を回転
レトルト容器内に注入し、次いで窒素ガスを10/minの
割合で通気しながら80℃の温度で約6時間費やしてトル
エンを蒸発回収させると同時に、金属鉄粒子表面と安息
香酸を反応させた。
次いで、窒素ガスを5/minの割合で通気しながら温度
400 ℃で40分間加熱処理を行った。
続いて温度を65℃まで冷却した後温度T1=65℃に保持し
た状態で窒素ガスを10/minの割合で通気しながら空気
を1.0 /minの割合で通気し、発熱して温度が100 ℃
(T2=100℃)に到達したら空気の通気を遮断する方法
で、6.0 時間保持した。この間温度は90℃までしか上昇
しなかった。続いて窒素ガス、空気を導入したままの状
態で室温まで冷却した後徐々に窒素ガス流量を零とし、
発熱の無い事を確認して、粒子表面に安息香酸被膜と酸
化被膜とを有する金属鉄粒子粉末を空気中に取り出し
た。
得られた金属鉄粒子粉末の諸特性を表2に示す。
次いで、該金属鉄粒子粉末を用いて、実施例1と同様に
して塗料を調製し、塗布膜を作製した。得られた塗布膜
の特性を表2に示す。
実施例9 出発原料として平均長軸が0.23μm軸比が25:1のアルミ
ニウム及びニッケルを Al/Fe=2.0 at%、Ni/Fe=5.0 a
t%の割合で含有したα-FeOOH粒子を3.0 Kg流動層加熱
還元炉に投入し、水素ガスを 110/minの割合で通気
し、400 ℃の温度で14時間加熱還元して合金粒子粉末1.
88Kgを生成した。
続いて、得られた合金粒子粉末を実施例1と同様にして
40の回転レトルトに投入した後、トルエンを9投入
して駆動回転させながら合金粒子粉末をトルエンに浸漬
させた。続いて、不活性ガス雰囲気中で80℃まで温度を
上昇した後、あらかじめフタル酸1.88g(合金粒子粉末に
対して0.1 wt%に相当する。)ラウリン酸9.40g(合金粒
子粉末に対して0.5 wt%に相当する。)とを溶解したMEK
溶液を、80℃に保持した前記合金粒子に不活性ガス雰囲
気中で添加し回転混合した。次いで、窒素ガスを5/m
inの割合で通気しながら130 ℃の温度で10時間費やして
トルエンを蒸発回収しながら、合金粒子粉末とフタル
酸、ラウリン酸とを反応せしめた。
次いで、窒素ガスを10/minの割合で通気しながら温
度500 ℃で40分間加熱処理を行った。
続いて温度を70℃まで冷却して温度(T1)を70℃とし、90
℃(T2=90℃)まで発熱による温度上昇があったら空気の
通気を遮断するようにして、空気通気量 1.0/min、窒
素ガス通気量10/minの混合ガスを通気して、4時間処
理した。このとき温度は80℃までしか上昇しなかった。
続いて空気及び窒素ガスを通気したままで室温まで冷却
し徐々に窒素ガス流量を零にしたところしばらくして発
熱があったので窒素ガス流量を8/minとし、空気流量
を5/minとして更に表面酸化処理を行った。90分酸化
処理した後、発熱がなくしかも温度が室温にまで下がっ
ていることを確認し、表面にフタル酸とラウリン酸被膜
とを有する合金磁性粒子粉末を空気中に取り出した。得
られた合金磁性粒子粉末は、電子顕微鏡観察の結果平均
長軸0.14μm、軸比が12:1で比表面積は62.8m2/gであっ
た。また磁気特性は、保磁力Hc=1530Oe、σs =136.0
emu/g 、σr/σs =0.503 であり、樹脂吸着量は金属粒
子粉末1g当り92.5mgであった。
また実施例1と同様な方法で塗料を調製し、塗布膜を作
製した結果、塗布膜特性は、保磁力Hc=1445 Oe 、残留
磁束密度Br=3150 Gauss、角型比Br/Bm =0.805 配向度
2.10であり、表面光沢は80%であった。
実施例10〜13 出発原料のα-FeOOH粒子、加熱処理条件、還元条件、使
用する有機溶媒の種類、更には、カルボン酸の種類、添
加量、溶解に用いる有機溶媒及び添加温度、有機溶媒を
蒸発させる温度、有機溶媒を蒸発させた後の加熱処理条
件並びに表面酸化処理温度T1、T2空気通気量、窒素ガス
通気量及び処理時間、並びに50℃以下の表面酸化処理の
空気通気量、処理時間を種々変えた以外は実施例9と同
様にして表面にカルボン酸の保護被膜と酸化被膜を形成
させた合金磁性粒子粉末を得た。得られた合金磁性粒子
粉末の主要製造条件を表1に、諸特性を表2に示す。ま
た、実施例1と同様の方法で塗料を調製し塗布膜を作製
した。塗布膜の諸特性を表2に示す。
比較例1 実施例1と同様にして得た合金粒子粉末2.0 Kgを実施例
1と同様にして回転レトルト内に投入しトルエン中に浸
漬処理をした後、回転駆動しながら窒素ガスを5/min
の割合で通気しながら100 ℃の温度で8時間費やしてト
ルエンを蒸発させた。
続いて室温まで冷却した後空気流量0.5 /minと窒素ガ
ス10/minの混合ガスを通気し、50℃以上になったら空
気の通気を遮断する方法で発熱しなくなるまで表面酸化
処理を行ったところ発熱がなくなるまで21時間を要し
た。次いで、N2ガスを通気しながら空気中に取り出し
た。得られた合金粒子粉末は比表面積54.3m2/gであり、
磁気測定の結果、保磁力Hc=1470 Oe 飽和磁化σs =10
9.5emu/g σs/σr =0.489 であり、空気中に取り出す
ことはできたが飽和磁化σs が低いものであった。ま
た、樹脂吸着量は金属粒子粉末1g当り20.5mgと低い値
であった。
比較例2 実施例6と同様にして得られた合金粒子粉末2.01Kgを不
活性ガス雰囲気中で回転レトルト内に投入し、次いでト
ルエンを10注入して、回転駆動させながらトルエンに
浸漬した。続いて、ステアリン酸40.2g(合金粒子に対し
て2.0 wt%に相当する)を溶解したMEK を添加し、35℃
の温度に保ちながら窒素ガスを15/minの割合で通気し
て16時間費やしてトルエンを蒸発させた。次いで室温ま
で冷却した後、空気流量 0.5/minと窒素ガス10/min
の混合ガスを通気し、50℃になったら空気の通気を遮断
する方法で発熱しなくなるまで表面酸化処理を行ったと
ころ、発熱しなくなるまで21時間を要した。
続いてN2ガスを通気しながら空気中に取り出した。得ら
れた合金粒子粉末は比表面積50.4m2/gであり、磁気測定
の結果、保磁力Hc=1400 Oe 飽和磁化σs =111.5 emu/
g σs/σr =0.496 で、空気中に取り出せたが飽和磁化
σs が低いものであった。また、樹脂吸着量は金属粒子
粉末1g当り40.3mgであり、有機溶剤蒸発後の加熱処理
があるものに比べ低い値であった。
得られた合金粉末を用いて実施例1と同様にして塗料を
調製し塗布膜を作製した。磁気測定の結果保磁力Hc=13
15 Oe で残留磁束密度Br=2630 Gauss、角型比 Br/Bm=
0.694 、配向度1.43で表面光沢は6であった。
比較例3 実施例2と同様にして得られた合金粒子粉末2.0Kgを不
活性ガス雰囲気中で回転レトルト内に投入し、次いでト
ルエンを10注入して、回転駆動させながらトルエンに
浸漬した。続いて、安息香酸10g(合金粒子に対して0.5
wt%に相当する)を溶解したトルエンを添加し、充分回
転撹拌した後60℃に温度を保持しながら窒素ガスを5
/minの割合で通気しながら12時間費やしてトルエンを蒸
発させた。次いで室温まで冷却した後、そのまま空気中
に取り出したところ、空気中の酸素と反応して発火し赤
褐色に変化した。
比較例4 実施例5と同様にして得られた合金粒子粉末2.0Kgを不
活性ガス雰囲気中で回転レトルト内に投入し、次いでト
ルエンを10注入して、回転駆動させながらトルエンに
浸漬した。続いて、ミリスチン酸20g(合金粒子に対して
1.0 wt%に相当する)を溶解したトルエンを添加し、充
分回転撹拌した後、窒素ガスを10/minの割合で通気し
ながら120℃に加熱し、120 ℃に保持したまま約5時間
費やして、トルエンを蒸発させた。次いで、窒素ガスを
5/minの割合で通気しながら温度750 ℃で30分間加熱
処理をした。続いて、温度を80℃まで冷却した後、80℃
に保持したまま(T1=80℃)、酸化反応により110 ℃ま
で温度が上昇したら(T2=110℃)空気の通気を停止す
る方法で、空気を1.0 /min窒素ガスを15/minの割合
で混合ガスを通気して4.5 時間表面酸化処理を行った。
続いて空気及び窒素ガスを通気したままの状態で室温ま
で冷却させた後、5/minの空気と、8/minの窒素ガ
スの混合ガスを通気しながら50℃まで発熱したら空気を
遮断する方法で表面酸化処理を行った。40分間処理した
後発熱がなく、温度も室温に保持されていることを確認
して空気中に取り出した。得られた合金粒子粉末は比表
面積48.6m2/gであり、磁気測定の結果、保磁力Hc=1450
Oe 、飽和磁化σs =120.4 emu/g σr/σs =0.483 で
あり、比表面積がかなり低下していた。また、樹脂吸着
量は金属粒子粉末1g当り18.6mgと低い値となった。
〔効果〕 本発明における金属鉄粒子粉末又は鉄を主成分とする合
金磁性粒子粉末の製造法によれば、前出実施例に示した
通り、得られる金属粒子は、その粒子表面を強固なカル
ボン酸の保護被膜と緻密な酸化被膜とで形成されている
ため、空気中の酸素と急激に反応することなく無溶媒の
状態で空気中に安定して取り出すことができる。また、
得られる金属粒子は、比表面積の大きな粒子であり、し
かも大きな飽和磁化と高い保磁力を有しており現在最も
要求されている磁気記録媒体の高出力化、高密度化を達
成する為の磁性材料として好適なものである。
更に、本発明によって得られる金属粒子は、微粒子であ
りしかもその粒子表面にカルボン酸の保護被膜を反応に
より強固に結合させている為、塗料化の際にカルボン酸
が金属粒子表面から脱着するということがなく、しか
も、樹脂が強固に接着するような樹脂吸着性の高いもの
であり、従ってビークル中での分散性に優れ、且つ塗膜
中での高配向性及び高充填性を有し、且つ、塗膜の強
度、耐久性等の塗膜物性が向上した、高密度記録材料に
適したものである。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】酸化鉄粒子又は鉄以外の金属を含有する酸
    化鉄粒子を還元性ガス中で加熱還元して金属鉄粒子又は
    鉄を主成分とする合金粒子とした後、該金属鉄粒子又は
    鉄を主成分とする合金粒子を、カルボン酸を有機溶媒に
    溶解して得た溶液中に浸漬し、次いで非酸化性雰囲気下
    で使用した前記カルボン酸の沸点以下或いは高温で分解
    若しくは昇華するカルボン酸の場合はその融点以下の温
    度範囲において有機溶媒を蒸発させた後、引続き、非酸
    化性雰囲気下200 〜650 ℃の温度範囲で加熱処理した
    後、更に50℃以上使用した前記カルボン酸の沸点以下或
    いは高温で分解若しくは昇華するカルボン酸の場合はそ
    の融点以下の温度範囲において酸素含有ガスを作用させ
    て前記粒子の表面を酸化することにより空気中で安定な
    金属鉄粒子又は鉄を主成分とする合金粒子を得ることを
    特徴とする金属鉄粒子粉末又は鉄を主成分とする合金磁
    性粒子粉末の製造法。
  2. 【請求項2】酸化鉄粒子又は鉄以外の金属を含有する酸
    化鉄粒子を還元性ガス中で加熱還元して金属鉄粒子又は
    鉄を主成分とする合金粒子とした後、該金属鉄粒子又は
    鉄を主成分とする合金粒子を、カルボン酸を有機溶媒に
    溶解して得た溶液中に浸漬し、次いで非酸化性雰囲気下
    で使用した前記カルボン酸の沸点以下或いは高温で分解
    若しくは昇華するカルボン酸の場合はその融点以下の温
    度範囲において有機溶媒を蒸発させた後、引続き、非酸
    化性雰囲気下200 〜650 ℃の温度範囲で加熱処理した
    後、更に50℃以上使用した前記カルボン酸の沸点以下或
    いは高温で分解若しくは昇華するカルボン酸の場合はそ
    の融点以下の温度範囲において酸素含有ガスを作用さ
    せ、続いて冷却後、50℃以下の温度で酸素含有ガスを作
    用させて前記粒子の表面を酸化することにより空気中で
    安定な金属鉄粒子又は鉄を主成分とする合金粒子を得る
    ことを特徴とする金属鉄粒子粉末又は鉄を主成分とする
    合金磁性粒子粉末の製造法。
JP61301024A 1986-12-16 1986-12-16 金属鉄粒子粉末又は鉄を主成分とする合金磁性粒子粉末の製造法 Expired - Fee Related JPH0623402B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61301024A JPH0623402B2 (ja) 1986-12-16 1986-12-16 金属鉄粒子粉末又は鉄を主成分とする合金磁性粒子粉末の製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61301024A JPH0623402B2 (ja) 1986-12-16 1986-12-16 金属鉄粒子粉末又は鉄を主成分とする合金磁性粒子粉末の製造法

Publications (2)

Publication Number Publication Date
JPS63153201A JPS63153201A (ja) 1988-06-25
JPH0623402B2 true JPH0623402B2 (ja) 1994-03-30

Family

ID=17891926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61301024A Expired - Fee Related JPH0623402B2 (ja) 1986-12-16 1986-12-16 金属鉄粒子粉末又は鉄を主成分とする合金磁性粒子粉末の製造法

Country Status (1)

Country Link
JP (1) JPH0623402B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159592A (en) * 1997-11-28 2000-12-12 Toda Kogyo Corporation Magnetic recording medium
DE69815652T2 (de) * 1997-12-26 2004-05-19 Toda Kogyo Corp. Nadelförmige Hämatitteilchen und magnetischer Aufzeichnungsträger
KR102005614B1 (ko) * 2013-07-18 2019-07-30 소마아루 가부시끼가이샤 자성분체, 자성분체 조성물, 자성분체 조성물 성형체, 및 그 제조 방법
JP6525742B2 (ja) * 2015-06-02 2019-06-05 Dowaエレクトロニクス株式会社 磁性コンパウンドおよびアンテナ

Also Published As

Publication number Publication date
JPS63153201A (ja) 1988-06-25

Similar Documents

Publication Publication Date Title
JP2000277311A (ja) 窒化鉄系磁性粉末材料及びその製造方法並びに磁気記録媒体
JPH0544162B2 (ja)
US4318735A (en) Process for preparing magnetic particles with metallic region therein, and magnetic particles prepared by the process
JPH0623402B2 (ja) 金属鉄粒子粉末又は鉄を主成分とする合金磁性粒子粉末の製造法
JPH0643601B2 (ja) 金属鉄粒子粉末又は鉄を主成分とする合金磁性粒子粉末の製造法
JP3925640B2 (ja) 磁気記録用紡錘状合金磁性粒子粉末及びその製造法
JPS61196502A (ja) 磁性素材及びその製造方法
JP4305617B2 (ja) 鉄を主成分とする金属磁性粒子粉末及びその製造法並びに磁気記録媒体
JP4143714B2 (ja) 強磁性鉄合金粉末の製造法
JP2904225B2 (ja) 磁気記録用針状鉄合金磁性粒子粉末の製造法
JP3337046B2 (ja) コバルトと鉄とを主成分とする紡錘状金属磁性粒子粉末及びその製造法
JPH0143683B2 (ja)
JPS5919964B2 (ja) 強磁性金属粉末の製造方法
JPH01172501A (ja) 金属磁性粉末の製造法
JP4839459B2 (ja) 磁気記録媒体用の強磁性鉄合金粉末
JP3242102B2 (ja) 磁性粉末とその製造方法
JPH0581644A (ja) 磁気記録媒体
JP3049765B2 (ja) 磁性粉末の表面処理法
JPH0834145B2 (ja) 磁気記録用金属磁性粉末の製造方法
JPH03194905A (ja) 磁気記録用金属磁性粉末の製造方法
JPS61216306A (ja) 金属磁性粉末およびその製造方法
JPH03253505A (ja) 強磁性金属粉末の製造方法
JP2001192211A (ja) 鉄を主成分とする化合物粒子粉末の製造法
JP4625983B2 (ja) 磁気記録媒体用の強磁性鉄合金粉末
JPH02162703A (ja) 金属磁性粉末の製造方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees