JPH059978B2 - - Google Patents

Info

Publication number
JPH059978B2
JPH059978B2 JP63303751A JP30375188A JPH059978B2 JP H059978 B2 JPH059978 B2 JP H059978B2 JP 63303751 A JP63303751 A JP 63303751A JP 30375188 A JP30375188 A JP 30375188A JP H059978 B2 JPH059978 B2 JP H059978B2
Authority
JP
Japan
Prior art keywords
signal
circuit
quadrant
phase
phase shifter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63303751A
Other languages
English (en)
Other versions
JPH02149155A (ja
Inventor
Susumu Ootani
Yoshio Tanimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP30375188A priority Critical patent/JPH02149155A/ja
Publication of JPH02149155A publication Critical patent/JPH02149155A/ja
Publication of JPH059978B2 publication Critical patent/JPH059978B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は直交乗算回路を備えるデイジタル復調
回路に係り、特に直交乗算回路の広帯域化技術に
関する。
(従来の技術) デイジタル変調方式の1つであるPSK(位相シ
フトキーイング)方式は、例えばFDMA(周波数
分割多元接続)−SCPC(Single Channel Per
Carrier)システムにおいて採用されているが、
そのPSK信号として例えば4−PSK信号は第4
図に示すようになつている。即ち、4−PSK信
号は、基準搬送波をデイジタル信号で2相位相変
調したPチヤネルの信号と、基準搬送波と直交関
係にある直交搬送波をデイジタル信号で2相位相
変調したQチヤネルの信号とを合成したものであ
る。つまり、第4図において、4−PSK信号は
互いに直交するP軸とQ軸に対し45゜傾斜した信
号ベクトルで示され、この信号ベクトルのQ軸へ
の投影点E,同FがQチヤネルの信号を与える。
このようなPSK信号の復調方式には、遅延検
波方式等もあるが、第5図a,bに概略示するよ
うな方式が知られている。第5図aに示す同期検
波方式は、PSK信号を一方の入力とする2つの
乗算回路61,同62において、その一方の乗算
回路61では他の入力に基準搬送波の再生搬送波
信号を与えて前記Pチヤネルの復調信号を得、他
方の乗算回路では他方の入力に再生搬送波信号の
位相をπ/2移相器63でπ/2宛移相した信号
を与えて前記Qチヤネルの復調信号を得る方式で
ある。また、第5図bに示す方式は、いわゆる準
同期検波方式と呼ばれるもので、前記再生搬送波
信号の代わりに発振器66の出力信号を用いる点
が異なる。即ち、発振器66の出力信号はPSK
信号の搬送波と同期関係になくそれに近いもので
あるから、2つの乗算回路64,同65から準同
期直交復調信号(P′,Q′)が得られ、後段の位相
同期回路67にて位相同期処理が行われ本来の直
交復調信号(P,Q)が得られる。
ここに、2つの乗算回路(直交乗算回路)の他
方の入力信号の周波数の位相差が正しくπ/2で
あれば、例えばQ軸上のアイパターンは第7図a
に示す如くアイが最も開いたものとなり、2値の
信号(E,F)が符号間干渉なく正しく復調され
る。逆に、位相差がπ/2かれずれて例えばQ軸
が第6図にQ′軸として示すように第−象限
側に傾くと、この傾いたQ′軸に投影される信号
点はA,B,C,Dの4つとなり、このときのア
イパターンは第7図bに示す如くアイの開きが小
さくなる。これは符号間干渉が生じ正しく復調さ
れないことを示すものである。
ところで、例えばFDMA−SCPCシステムで
は、複数の回線があり、それぞれ異なる搬送波で
ある。そして、通信は常に特定の回線を使用する
とは限らずシステム内の任意の回線が選択使用さ
れる。従つて、復調回路では、同期検波方式で再
生搬送波は使用回線の搬送波に応じたものとな
り、また準同期検波方式では発振器66としてシ
ンセサイザ等を用い使用回線の搬送波の周波数に
応じた周波数を発生できるようにしている。
要するに、この種の復調回路では、任意の回線
で正しく復調動作をすることを要するから、前記
直交性は当該システムとして使用可能な全周波数
帯域において確保されていることが本来的に要求
される。
(発明が解決しようとする課題) しかしながら、前記直交性を全周波数帯域に渡
つて維持することは、いかにπ/2移相器等を厳
密に製作してもハードウエアの不完全性等を回避
できないので、極めて困難である。従つて、従来
では、比較的直交関係が保たれる狭い周波数範囲
でシステムを運用せざるを得ず、システムとして
使用可能な全周波数帯域を有効に利用できないと
いう問題がある。
なお、前記直交性のずれの問題は、直交乗算回
路を用いる限り、QAM(Quadrature Amplitude
Modulation)復調回路においても同様に生ずる
ことは明らかである。
本発明は、このような問題に鑑みなされたもの
で、その目的は、前記直交性のずれを自動的に零
にできるようにし、以て広い周波数範囲に渡つて
正しい復調動作をなし得るデイジタル復調回路を
提供することにある。
(課題を解決するための手段) 前記目的を達成するために、本発明のデイジタ
ル復調回路は次の如き構成を有する。
即ち、本発明のデイジタル復調回路は、一方の
入力が受信デイジタル被変調信号で他方の入力が
再生搬送波信号または搬送波周波数に準同期した
準同期搬送波信号のいずれかである第1の乗算回
路と;前記再生搬送波信号または前記準同期搬送
波信号の位相をπ/2宛移相するπ/2移相器
と;制御信号に基づき前記π/2移相器の出力信
号を位相調整して出力する可変移相器と;一方の
入力が前記受信デイジタル被変調信号で他方の入
力が前記可変位相器の出力信号である第2の乗算
回路と;前記再生搬送波信号を用いる場合には前
記第1および第2の乗算回路の出力たる2系列の
直交復調信号に基づいて、または前記準同期搬送
波信号を用いる場合には前記第1および第2の乗
算回路の後段における位相同期復調処理で形成さ
れる2系列の直交復調信号に基づいて信号位相平
面上の少なくとも第象限と第象限または第
象限と第象限のいずれか一方の組合わせに係る
象限を判定しその判定した組合わせ象限における
軸に投影される信号点に対応したロードクロツク
信号を発生する象限判定回路と;前記2系列の直
交復調信号の一方の信号列であつて前記象限判定
回路が判定対象とする組合わせ象限における前記
軸に対応した信号列を受けてその軸に投影される
各信号点の信号値をそれに対応した前記ロードク
ロツク信号に従つてそれぞれ格納しその格納した
信号値間の差値を求める誤差検出回路と;前記誤
差検出回路の出力を受けてろ波処理等をし前記制
御信号を形成出力する信号形成回路と;を備えて
いることを特徴とするものである。
(作用) 次に、前記の如く構成される本発明のデイジタ
ル復調回路の作用を説明する。
受信デイジタル被変調信号にはQAM信号と
PSK信号とがあるが、例えば4−PSK信号とす
れば、2系列の直交復調信号間に直交位相誤差が
ある場合には、その位相平面上の信号ベクトルは
前記第6図に示すようになる。
そこで、2系列の直交復調信号に基づいて例え
ば第象限と第象限を判定し、その判定した第
象限と第象限において直交位相誤差分傾斜し
たQ′軸に投影される信号点A,同Bそれぞれに
対応したロードクロツク信号を発生する(象限判
定回路)。
そして、2系列の直交復調信号のうちのQチヤ
ネルの信号中前記信号点A,同Bの各信号値をロ
ードクロツク信号に従つて格納し、その信号値の
差を求める(誤差検出回路)。ここで求められた
差値は信号点Aと同Bのレベル差であつて、これ
は取りも直さず直交位相誤差を与える。
従つて、誤差検出回路の出力たる差値が零とな
るよう可変移相器の位相量を制御すれば、2系列
の直交復調信号間の直交位相誤差は広い周波数範
囲に渡つて常に零となるようにすることができ
る。
斯くして、本発明によれば、直交乗算回路の広
帯域化を図ることができるので、従来維持困難で
あつた広帯域における直交性を容易にかつ確実に
確保することができる。このとき、従来において
は、特にπ/2移相器は相当に厳格な精度が要求
されていたが、本発明の適用によつてその要件を
緩和でき、従つて原価低減を図ることが可能とな
る。
(実施例) 以下、本発明の実施例を図面を参照して説明す
る。
第1図は、本発明の一実施例に係るデイジタル
復調回路を示す。第1図において、従来の同期検
波方式(第5図a)のデイジタル復調回路は、
(第1の)乗算回路1と、(第2の)乗算回路2
と、π/2移相器3と、搬送波・クロツク再生回
路4と、可変周波数発振回路5とで構成される
が、この構成において本第1実施例に係るデイジ
タル復調回路は、象限判定回路6と、誤差検出回
路7と、信号形成回路たるD/A変換回路8およ
び低域ろ波回路9と、可変位相器10とを設けた
ものである。
受信デイジタル被変調信号にはQAM信号や
PSK信号等があるが、本実施例では従来例に準
じてPSK信号とし、これは乗算回路1と同2の
一方の入力信号となつている。
乗算回路1の他方の入力信号およびπ/2移相
器3の入力信号たる再生搬送波信号は可変周波数
発振回路5から供給される。そして、π/2移相
器3の出力信号は可変移相器10にて後述するよ
うに移相制御されて乗算回路2の他方の入力信号
となる。乗算回路1,同2の出力信号たるPチヤ
ネルおよびQチヤネルの復調信号は搬送波・クロ
ツク再生回路4と象限判定回路6へ供給され、ま
たQチヤネル復調信号は誤差検出回路7へ供給さ
れる。
搬送波・クロツク再生回路4は、再生した搬送
波信号を可変周波数発振回路5へ出力し、また再
生したクロツク信号を象限判定回路6と誤差検出
回路7とへ出力する。なお、再生したデータ信号
は外部へ送出される。
可変周波数発振回路5は、前記再生された搬送
波信号が入力する電圧制御発振回路51と、任意
の回線の使用搬送波の周波数と概略等しい周波数
の信号を発生するシンセサイザ52と、これら両
者の出力信号を乗算操作するミキサー53と、ミ
キサー53の出力信号にろ波処理を施し前記乗算
回路1およびπ/2移相器3に対する再生搬送波
信号を形成出力する帯域ろ波回路54とで構成さ
れる。つまり、この可変周波数発振回路5は、当
該無線通信システムが例えば前記FDMA−SCPC
方式のものである場合、回線は周波数分割して割
り当てられるが、システムとして割り当てられた
全回線の搬送波の周波数の信号をそれぞれ出力で
きるのであり、出力信号周波数はシンセサイザ5
2によつて定められ、入力搬送波周波数との位相
周期は電圧制御発振回路51にて行われる。
象限判定回路6と誤差検出回路7は例えば第2
図に示すうに構成される。図中上段が象限判定回
路、図中下段が誤差検出回路にそれぞれ対応して
いる。第2図において、Pチヤネル復調信号は極
性判定回路220へ、Qチヤネル復調信号は極性
判定回路221とA/D変換回路222へそれぞ
れ与えられる。
極性判定回路220と同221は、再生クロツ
ク信号に基づいて復調信号をサンプリングし、そ
の信号極性の正負を判定する。ここで、極性判定
回路220は、Pチヤネル復調信号の極性が負の
とき“1”を、正のとき“0”をそれぞれ出力す
るものとし、また極性判定回路221は、Qチヤ
ネル復調信号の極性が正のとき“1”を、負のと
き“0”をそれぞれ出力するものとする。
極性判定回路220の出力は、論理積回路22
4の一方の入力へ与えられるとともに、インバー
タ223を介して論理積回路225の一方の入力
へ与えられる。また、極性判定回路221の出力
は、論理積回路224と同225の他方の入力へ
与えられる。そして、論理積回路224の出力は
論理積回路226の一方の入力へ、論理積回路2
25の出力は論理積回路227の一方の入力へそ
れぞれ与えられる。論理積回路226と同227
は、他方の入力にインバータ228を介して再生
クロツク信号が与えられ、対応するシフトレジス
タ229,同230に対しロードクロツク信号を
出力する。
要するに、極性判定回路220の出力が“1”
で、極性判定回路221の出力が“1”のとき、
つまり、受信信号ベクトルが第象限にあると
き、論理積回路224の出力が“1”となり、そ
の象限が判定され、ロードクロツク信号がシフト
レジスタ229に対し出力される。また、極定判
定回路220の出力が“0”で、極性判定回路2
21の出力が“1”のとき、つまり、受信信号ベ
クトルが第象限にあるとき、論理積回路225
の出力が“1”となり、その象限が判定され、ロ
ードクロツク信号がシフトレジスタ230に対し
出力される。
換言すれば、象限判定回路6では、第象限と
第象限に在る受信信号ベクトルを判定し、両象
限における基準軸(第6図に示すQ軸または
Q′軸)上の信号点に対応したロードクロツク信
号を発生しているのである。
次に、A/D変換回路222は、Qチヤネル復
調信号を再生クロツク信号に従つてKビツトのデ
イジタル信号へ変換し、それを前記シフトレジス
タ229,同230へ与える。その結果、シフト
レジスタ229は論理積回路226が出力するロ
ードクロツク信号に従つて、またシフトレジスタ
230は論理積回路227が出力するロードクロ
ツク信号に従つて入力デイジタル信号を取り込む
ことになる。
ここに、論理積回路226が出力するロードク
ロツク信号は第象限ある受信信号ベクトルにつ
いてのQ軸またQ′軸上の信号点(EまたはA)
に対するものであり、また論理積回路227が出
力するロードクロツク信号は第象限にある受信
信号ベクトルについてのQ軸またはQ′軸上の信
号点(EまたはB)に対するものである。つま
り、基準軸がQ軸であるときは、両シフトレジス
タに取り込まれる信号値は共にEであるが(第4
図参照)、基準軸がQ′軸であるときは、シフトレ
ジスタ229には信号値Aが取り込まれ、シフト
レジスタ230には信号値Bが取り込まれること
になる。
そして、次段の減算回路231では、両シフト
レジスタの出力値間の差を求めるのであるが、両
シフトレジスタの出力値が共にEであれば差は零
である。つまり、基準軸はQ軸であつて直交位相
誤差はない。一方、シフトレジスタ229の出力
値がAで、シフトレジスタ230の出力値がBの
ときは、両者の差値(A−B)が存在する。つま
り、基準軸はQ′軸であつて直交位相誤差がある。
この差値が取りも直さず直交位相誤差の大きさを
与え、また差値がプラスのときはQ′軸は第象
限側に傾斜し、マイナスのときは第象限側に傾
斜していると判断することができる。
従つて、この減算回路231の出力値は直交位
相誤差を与えるから、その誤差電圧(デイジタル
値)をD/A変換回路8にてアナログ化し、低域
ろ波回路9にて雑音およびパターンジツタ等を抑
圧したアナログ制御電圧を可変移相器10へ与
え、誤差検出信号が零となるようにπ/2移相器
3の出力信号周波数の位相を制御して乗算回路2
の他方の入力へ与えれば、乗算回路1と同2間の
直交性を極めて広い周波数範囲に渡つて保持でき
ることになる。
次に、第3図は本発明の他の実施例に係るデイ
ジタル復調回路を示す。第3図において、従来の
準同期検波方式(第5図b)のデイジタル復調回
路は、(第1の)乗算回路31と、(第2の)乗算
回路32と、π/2移相器33と、シンセサイザ
34と、A/D変換回路35と、同36と、デイ
ジタル回路たる複素乗算回路37と、デイジタル
回路たる搬送波・クロツク再生回路38と、デイ
ジタル回路の動作クロツクを発生するクロツク発
生回路39とで構成されるが、この構成において
本第2実施例に係るデイジタル復調回路は、前述
した第1実施例と同様に、象限判定回路6と、誤
差検出回路7と、信号形成回路たるD/A変換回
路8および低域ろ波回路9と、可変位相器10と
を設けたものである。
本発明に係る部分は、前述したので、以下従来
回路部分の動作概要を説明する。
シンセサイザ34は、前記シンセサイザ52と
同様に、希望信号の周波数と概略等しい周波数の
搬送波信号を発生する。これは乗算回路31の他
方の入力信号となるとともに、π/2移相器3
3、可変移相器10を介して乗算回路32の他方
の入力信号となる。
つまり、乗算回路31と同32からなる直交乗
算回路では、入力されたPSK信号内の希望信号
の角周波数ωcに略等しい角周波数ω′cの搬送波信
号を発生するシンセサイザ34によつて希望信号
を準同期直交復調する。この準同期直交復調信号
(P′,Q′)はA/D変換回路35,36にてkビ
ツト(k=6〜16)のデイジタル信号列へ変換さ
れる。そして、このデイジタル信号列は複素乗算
回路37おび搬送波・クロツク再生回路38にお
ける位相同期処理に付され、複素乗算回路37か
ら同期復調された直交復調信号(P,Q)が得ら
れる。
PチヤネルとQチヤネルの復調信号は象限判定
回路6へ与えられ、Qチヤネルの復調信号は誤差
検出回路7へ与えられる。また、搬送波・クロツ
ク再生回路38で再生されたクロツク信号はA/
D変換回路35,36へ与えられると共に、象限
判定回路6と誤差検出回路7へ与えられる。従つ
て、本発明に係る部分は前述したように所要の動
作をなし得ることになる。なお、Qチヤネル復調
信号はデイジタル信号であるから、誤差検出回路
7では第2図に示したA/D変換回路222は不
要となる。
ここに、本実施例では、Q軸に対する位相誤差
を零にするようにしたが、P軸に対する位相誤差
を対象としてもよい。この場合には、象限判定回
路は第象限と第象限を判定するようにし、誤
差検出回路はPチヤネルの復調信号から誤差検出
を行えば良い。
また、可変移相器10は、アナログ制御型を用
いたので、D/A変換回路8を設けたが、デイジ
タル制御型を用いれば不要とすることができる。
一方、現実のシステムで、雑音やパターンジツタ
は不可避であるから、低域ろ波回路9は制御性を
確保する意味で必要である。
(発明の効果) 以上説明したように、本発明のデイジタル復調
回路によれば、直交位相誤差を検出し、それが零
となるように直交乗算回路を制御するようにした
ので、直交乗算回路の広帯域化を図ることがで
き、従来維持困難であつた広帯域における直交性
を容易にかつ確実に確保することができる効果が
ある。このとき、従来においては、特にπ/2移
相器は相当に厳格な精度が要求されていたが、本
発明の適用によつてその要件を緩和でき、従つて
原価低減を図ることが可能となる効果もある。
【図面の簡単な説明】
第1図は本発明の一実施例に係るデイジタル復
調回路の構成ブロツク図、第2図は象限判定回路
および誤差検出回路の一例を示す構成ブロツク
図、第3図は本発明の他の実施例に係るデイジタ
ル復調回路の構成ブロツク図、第4図はPSK信
号の位相平面上の信号ベクトル図、第5図は従来
のデイジタル復調回路の概略構成ブロツク図、第
6図は直交位相誤差がある場合の直交復調信号の
位相平面上の信号ベクトル図、第7図は直交位相
誤差がない場合(同図a)と直交位相誤差がある
場合(同図b)のアイパターンを示す図である。 1,2,31,32……乗算回路、3,33…
…π/2移相器、4,38……搬送波・クロツク
再生回路、5……可変周波数発振回路、6……象
限判定回路、7……誤差検出回路、8……D/A
変換回路、9……低域ろ波回路、10……可変移
相器、34…シンセサイザ、35,36……A/
D変換回路、37……複素乗算回路、39……ク
ロツク発生回路。

Claims (1)

    【特許請求の範囲】
  1. 1 一方の入力が受信デイジタル被変調信号で他
    方の入力が再生搬送波信号または搬送波周波数に
    準同期した準同期搬送波信号のいずれかである第
    1の乗算回路と;前記再生搬送波信号または前記
    準同期搬送波信号の位相をπ/2宛移相するπ/
    2移相器と;制御信号に基づき前記π/2移相器
    の出力信号を位相調整して出力する可変移相器
    と;一方の入力が前記受信デイジタル被変調信号
    で他方の入力が前記可変位相器の出力信号である
    第2の乗算回路と;前記再生搬送波信号を用いる
    場合には前記第1および第2の乗算回路の出力た
    る2系列の直交復調信号に基づいて、または前記
    準同期搬送波信号を用いる場合には前記第1およ
    び第2の乗算回路の後段における位相同期復調処
    理で形成される2系列の直交復調信号に基づいて
    信号位相平面上の少なくとも第象限と第象限
    または第象限と第象限のいずれか一方の組合
    わせに係る象限を判定しその判定した組合わせ象
    限における軸に投影される信号点に対応したロー
    ドクロツク信号を発生する象限判定回路と;前記
    2系列の直交復調信号の一方の信号列であつて前
    記象限判定回路が判定対象とする組合わせ象限に
    おける前記軸に対応した信号列を受けてその軸に
    投影される各信号点の信号値をそれに対応した前
    記ロードクロツク信号に従つてそれぞれ格納しそ
    の格納した信号値間の差値を求める誤差検出回路
    と;前記誤差検出回路の出力を受けてろ波処理等
    をし前記制御信号を形成出力する信号形成回路
    と;を備えていることを特徴とするデイジタル復
    調回路。
JP30375188A 1988-11-30 1988-11-30 ディジタル復調回路 Granted JPH02149155A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30375188A JPH02149155A (ja) 1988-11-30 1988-11-30 ディジタル復調回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30375188A JPH02149155A (ja) 1988-11-30 1988-11-30 ディジタル復調回路

Publications (2)

Publication Number Publication Date
JPH02149155A JPH02149155A (ja) 1990-06-07
JPH059978B2 true JPH059978B2 (ja) 1993-02-08

Family

ID=17924835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30375188A Granted JPH02149155A (ja) 1988-11-30 1988-11-30 ディジタル復調回路

Country Status (1)

Country Link
JP (1) JPH02149155A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2853728B2 (ja) * 1994-04-25 1999-02-03 日本電気株式会社 ディジタル復調回路
JP3660068B2 (ja) * 1996-09-12 2005-06-15 株式会社ルネサステクノロジ 位相比較器
GB2348345B (en) 1999-01-25 2004-04-14 Nec Corp Demodulator and demodulation method for demodulating quadrature modulation signals
JP2007221203A (ja) * 2006-02-14 2007-08-30 Oki Electric Ind Co Ltd 復調システム
JP6116807B2 (ja) * 2012-03-07 2017-04-19 古河電気工業株式会社 レーダ装置およびレーダ装置の調整方法
JP6466533B2 (ja) * 2017-08-10 2019-02-06 京セラ株式会社 検体センサおよび検体センシング方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206950A (ja) * 1986-03-06 1987-09-11 Toshiba Corp 同期位相検波回路

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206950A (ja) * 1986-03-06 1987-09-11 Toshiba Corp 同期位相検波回路

Also Published As

Publication number Publication date
JPH02149155A (ja) 1990-06-07

Similar Documents

Publication Publication Date Title
JPS5914939B2 (ja) 搬送波再生装置
JPH0218769B2 (ja)
JPS5925500B2 (ja) 搬送波再生回路
JP2000022772A (ja) 搬送波再生回路並びに搬送波再生方法
JPS5820181B2 (ja) タソウイソウドウキフクチヨウソウチ
US4942592A (en) Synchronous receiver for minimum shift keying transmission
JPH059978B2 (ja)
JPH09275425A (ja) 位相変調信号復調方法およびその方法を実施するための装置
JPH02146844A (ja) 直交位相誤差検出回路
JPS58114654A (ja) 基準搬送波再生回路
JPH06152676A (ja) 準同期検波復調回路
US4145663A (en) Digital synchronous detectors using time division for extracting carrier wave and demodulated signals
JP2853728B2 (ja) ディジタル復調回路
JP3369291B2 (ja) 位相誤差検出回路およびクロック再生回路
JP2553643B2 (ja) キャリア同期装置
JP3613344B2 (ja) 準同期検波復調回路
JPS6173459A (ja) Dpsk信号の遅延検波回路装置
JPH0479183B2 (ja)
JP4573276B2 (ja) 搬送波再生装置及び復調装置
JPS62118660A (ja) 搬送波再生回路
JPH1075275A (ja) コスタスループ搬送波再生回路
EP0434689B1 (en) Synchronous receiver for minimum shift keying transmission
JPH06205067A (ja) 準同期検波復調回路
JPH10224415A (ja) 変調器及び変調方法、復調器及び復調方法
JPH02203645A (ja) 準同期型復調器