JPH0445207A - 球状ニッケル微粒の製造方法 - Google Patents
球状ニッケル微粒の製造方法Info
- Publication number
- JPH0445207A JPH0445207A JP2151645A JP15164590A JPH0445207A JP H0445207 A JPH0445207 A JP H0445207A JP 2151645 A JP2151645 A JP 2151645A JP 15164590 A JP15164590 A JP 15164590A JP H0445207 A JPH0445207 A JP H0445207A
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- powder
- reaction
- fine powder
- spherical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000010419 fine particle Substances 0.000 title 1
- 239000000843 powder Substances 0.000 claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 claims abstract description 31
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims abstract description 5
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims abstract description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 26
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 6
- 239000000945 filler Substances 0.000 abstract description 6
- 238000000034 method Methods 0.000 description 20
- 239000007789 gas Substances 0.000 description 12
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910001507 metal halide Inorganic materials 0.000 description 4
- 150000005309 metal halides Chemical class 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910001111 Fine metal Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004581 coalescence Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- RJTANRZEWTUVMA-UHFFFAOYSA-N boron;n-methylmethanamine Chemical compound [B].CNC RJTANRZEWTUVMA-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/28—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from gaseous metal compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Conductive Materials (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Powder Metallurgy (AREA)
- Ceramic Capacitors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、電子部品等に用いられる導電ペーストフィラ
ーに通した球状ニッケル微粉を製造する方法に関する。
ーに通した球状ニッケル微粉を製造する方法に関する。
〈従来の技術〉
粒度分布が狭く、平均粒径が0.1〜数μmの範囲にあ
り、粒子が球状の金属微粉は、ペースト性状が良好でか
つ電子回路の導体形成に用いたとき、導体部の微細パタ
ーン化あるいは薄層化が可能であることから、このよう
な粉末が要望されている。
り、粒子が球状の金属微粉は、ペースト性状が良好でか
つ電子回路の導体形成に用いたとき、導体部の微細パタ
ーン化あるいは薄層化が可能であることから、このよう
な粉末が要望されている。
金属超微粉、微粉の製造方法は種々あるが、工業的にも
実施されている方法として、ます液相還元析出法が挙げ
られる。この方法は金属イオンを含む溶液中に還元剤を
加え、撹拌することで液相中に金属粉を還元析出さゼる
もので、これによってパラジウム、銀、銅等の微粉が製
造されており、例えば銅粉では、銅イオンをホルマリン
(特公昭55−76003号公報)、水素化ホウ素ナト
リウムまたはジメチルアミンボラン(特公昭58−22
4103号公報)等の還元剤で還元析出する方法などが
あり、銀粉では、ホルマリン(特公昭54−12127
0号公報)等による還元法がある。
実施されている方法として、ます液相還元析出法が挙げ
られる。この方法は金属イオンを含む溶液中に還元剤を
加え、撹拌することで液相中に金属粉を還元析出さゼる
もので、これによってパラジウム、銀、銅等の微粉が製
造されており、例えば銅粉では、銅イオンをホルマリン
(特公昭55−76003号公報)、水素化ホウ素ナト
リウムまたはジメチルアミンボラン(特公昭58−22
4103号公報)等の還元剤で還元析出する方法などが
あり、銀粉では、ホルマリン(特公昭54−12127
0号公報)等による還元法がある。
これらの方法では、ペーストフィラーとして適した粉を
製造することができるが、PIIiP]整、沈澱生成、
還元等、複雑な処理を要し、また、パンチ方式のため、
製造コストが高いという問題点がある。
製造することができるが、PIIiP]整、沈澱生成、
還元等、複雑な処理を要し、また、パンチ方式のため、
製造コストが高いという問題点がある。
また、酸化物を固体状で還元する方法もあるが、一般に
粒度が大きく上記の特性をもつ粉末は得られない。
粒度が大きく上記の特性をもつ粉末は得られない。
≧1−
一方、ニッケル、鉄微粉の製造方法とし・では、カルボ
ニル法があるが、この方法でも、一般に粒度が太き(、
導体部の微細パターン化あるいは薄層化の要望を満足さ
せることが困難である。
ニル法があるが、この方法でも、一般に粒度が太き(、
導体部の微細パターン化あるいは薄層化の要望を満足さ
せることが困難である。
最近では、ガス中蒸発法や水素アークプラズマを用いた
溶融金属反応法等があるが、これらは最大0.1μm程
度の超微粉製造法であり、粉末が微細すぎてペースト化
しにくいという欠点がある。
溶融金属反応法等があるが、これらは最大0.1μm程
度の超微粉製造法であり、粉末が微細すぎてペースト化
しにくいという欠点がある。
このように上述した従来の方法では、導電ペーストフィ
ラーとして優れた性能を持ち、電子部品の導体部の微細
パターン化、薄層化が可能な球状で粒径の揃った、平均
粒径が0.1〜数μmの範囲の金属微粉・超微粉を、安
価に、製造することができない、という問題があった。
ラーとして優れた性能を持ち、電子部品の導体部の微細
パターン化、薄層化が可能な球状で粒径の揃った、平均
粒径が0.1〜数μmの範囲の金属微粉・超微粉を、安
価に、製造することができない、という問題があった。
そこで、特開昭62−63604号公報および特開昭6
2188709号公報に示されている気相化学反応法が
開発された。この方法においては、金属ハロゲン化物を
気化させ、これをそれ自身の蒸気圧によるかまたは不活
性ガスをキャリアとして反応部に送り、反応部において
金属ハロゲン化物蒸気と還元性ガス(水素等)を接触・
混合させると、ただちに、ガス中に金属粉末が還元・析
出し、その後ガスとともに出口から放出される。従って
原料である金属ハロゲン化物を連続的に供給し、生成粉
末は連続的に回収することができる。
2188709号公報に示されている気相化学反応法が
開発された。この方法においては、金属ハロゲン化物を
気化させ、これをそれ自身の蒸気圧によるかまたは不活
性ガスをキャリアとして反応部に送り、反応部において
金属ハロゲン化物蒸気と還元性ガス(水素等)を接触・
混合させると、ただちに、ガス中に金属粉末が還元・析
出し、その後ガスとともに出口から放出される。従って
原料である金属ハロゲン化物を連続的に供給し、生成粉
末は連続的に回収することができる。
しかしながら、特開昭62−63604号公報における
銅粉や、特開昭62−188709号公報における銀粉
の場合と異なり、ニッケル粉の場合には立方体や八面体
などの晶癖を有する粒子が生成し、ペーストフィラーと
した時の充填性等に問題があった。
銅粉や、特開昭62−188709号公報における銀粉
の場合と異なり、ニッケル粉の場合には立方体や八面体
などの晶癖を有する粒子が生成し、ペーストフィラーと
した時の充填性等に問題があった。
〈発明が解決しようとする課題〉
本発明の目的は、平均粒径が0.1〜数μmの範囲にあ
る球状ニッケル微粉の容易な製造方法を提案することで
ある。
る球状ニッケル微粉の容易な製造方法を提案することで
ある。
〈課程を解決するための手段〉
すなわち、本発明は、塩化ニッケル蒸気と水素との化学
反応によりニッケル微粉を製造する方法において、10
04°C(1277K)以上の温度で反応させることを
特徴とする球状ニッケル微粉の製造方法である。
反応によりニッケル微粉を製造する方法において、10
04°C(1277K)以上の温度で反応させることを
特徴とする球状ニッケル微粉の製造方法である。
く作用〉
気相化学反応法は、粒径の揃った0、1〜数μmの粉末
を製造することができる方法であり、また、反応条件が
比較的簡単で、連続生成もできるため、製造コストが安
価である、という特徴をもっている。
を製造することができる方法であり、また、反応条件が
比較的簡単で、連続生成もできるため、製造コストが安
価である、という特徴をもっている。
気相化学反応においては、粒子の成長は次のように考え
られている(粉体工学会誌Vo1.21.759767
(1984) ) 、金属ハロゲン化物蒸気と還元ガ
スとが接触した瞬間に金属原子またはクラスターの千ツ
マ−が生成し、モノマーの衝突凝集によって超微粒子が
生成される。さらに、衝突・合体によって粒子成長が起
こる。
られている(粉体工学会誌Vo1.21.759767
(1984) ) 、金属ハロゲン化物蒸気と還元ガ
スとが接触した瞬間に金属原子またはクラスターの千ツ
マ−が生成し、モノマーの衝突凝集によって超微粒子が
生成される。さらに、衝突・合体によって粒子成長が起
こる。
超微粒子は一般に球状であるが、ニッケルの場合は多面
体であることが多い、特に粒子が比較的粗い領域になる
と表面エネルギーの割合も減少し、晶癖を有する粉にな
ることが多くなる。特にニッケルでは粒径が0.1μm
程度より大きくなると立方体、八面体等の明瞭な晶癖粒
子になり易かった。
体であることが多い、特に粒子が比較的粗い領域になる
と表面エネルギーの割合も減少し、晶癖を有する粉にな
ることが多くなる。特にニッケルでは粒径が0.1μm
程度より大きくなると立方体、八面体等の明瞭な晶癖粒
子になり易かった。
そこで本発明者は、ニッケル微粉の反応生成を詳細に調
べた結果、反応・粉末生成温度を絶対温度において絶対
温度でニッケル融点(1726K)の0.74倍以上、
すなわち1004°C以上の温度にすれば球状粉が得ら
れることを見出し、本発明に至ったものである。これは
、温度が高いほど粒子の成長に異方性がなくなるためと
解釈され、その温度はニッケルの融点に支配されている
と考えられる。
べた結果、反応・粉末生成温度を絶対温度において絶対
温度でニッケル融点(1726K)の0.74倍以上、
すなわち1004°C以上の温度にすれば球状粉が得ら
れることを見出し、本発明に至ったものである。これは
、温度が高いほど粒子の成長に異方性がなくなるためと
解釈され、その温度はニッケルの融点に支配されている
と考えられる。
反応を例えば電気炉で加熱した反応管で起こさせる場合
、この反応は発熱反応であるので、その電気炉設定温度
は上記指定温度よりも低くても発熱反応が補える温度範
囲であれば、球状化の目的を達成することができる。す
なわち、気相化学反応法では、反応による金属の千ツマ
−の形成、衝突・合体による粒子成長が起こる温度を制
御することが重要である。
、この反応は発熱反応であるので、その電気炉設定温度
は上記指定温度よりも低くても発熱反応が補える温度範
囲であれば、球状化の目的を達成することができる。す
なわち、気相化学反応法では、反応による金属の千ツマ
−の形成、衝突・合体による粒子成長が起こる温度を制
御することが重要である。
反応の上限の温度は特に規定しないが、ニッケルの融点
以下が好ましい、これは、融点以上では、性成粒子が液
滴で存在するため異常に巨大に成長した粒子が発生する
ことがあり、粒度分布が広がり、また、反応器の壁への
付着が増大するからである。
以下が好ましい、これは、融点以上では、性成粒子が液
滴で存在するため異常に巨大に成長した粒子が発生する
ことがあり、粒度分布が広がり、また、反応器の壁への
付着が増大するからである。
以下実施例により本発明をさらに詳細に説明する。
〈実施例〉
実施例1
第1図に示したような反応器1を用い、蒸発部2の石英
ボート3に原料の塩化ニッケルを10g入れ、950”
Cで蒸発させ、2ffi/分のアルゴンガス4で105
0°C(絶対温度でニッケル融点の0.77倍)に設定
された反応部5へ輸送し、反応器中央ノズル6から1f
fi/分の割合で供給される水素7と接触・混合させ反
応をおこさせた0反応部の温度を石英管で保護された熱
電対8によって測定したところ1090°C(同0.7
9倍)まで上昇した0発生したニッケル粉はガスと共に
冷却部9を通過した後、円筒濾紙で回収した。この生成
粉の比表面積は3.5nf/gであり、電子顕微鏡観察
によれば、平均粒径0.2μmの球状粉であった。
ボート3に原料の塩化ニッケルを10g入れ、950”
Cで蒸発させ、2ffi/分のアルゴンガス4で105
0°C(絶対温度でニッケル融点の0.77倍)に設定
された反応部5へ輸送し、反応器中央ノズル6から1f
fi/分の割合で供給される水素7と接触・混合させ反
応をおこさせた0反応部の温度を石英管で保護された熱
電対8によって測定したところ1090°C(同0.7
9倍)まで上昇した0発生したニッケル粉はガスと共に
冷却部9を通過した後、円筒濾紙で回収した。この生成
粉の比表面積は3.5nf/gであり、電子顕微鏡観察
によれば、平均粒径0.2μmの球状粉であった。
第2図は本実施例により得られたニッケル粉の電子顕微
鏡写真を示す、ニッケル粉の形状が完全な球に近い球状
であることがわかる。
鏡写真を示す、ニッケル粉の形状が完全な球に近い球状
であることがわかる。
実施例2
実施例1において反応温度を1000℃(絶対温度でニ
ッケル融点の0.74倍)とした以外は同じ条件でニッ
ケル粉を製造した。熱電対8によって測定したところ1
045°C(同0.76倍)まで上昇した0発生したニ
ッケル粉の比表面積は3.7n(/gであり、電子顕微
鏡観察によれば、平均粒径0.18μmの球状粉であっ
た。
ッケル融点の0.74倍)とした以外は同じ条件でニッ
ケル粉を製造した。熱電対8によって測定したところ1
045°C(同0.76倍)まで上昇した0発生したニ
ッケル粉の比表面積は3.7n(/gであり、電子顕微
鏡観察によれば、平均粒径0.18μmの球状粉であっ
た。
比較例1
実施例1において反応温度を950°C(絶対温度でニ
ッケル融点の0.71倍)とした以外は同じ条件でニッ
ケル粉を製造した。熱電対8によって測定したところ9
95°C(同0.73倍)まで上昇した0発生したニッ
ケル粉の比表面積は3.6%/gであり、電子顕微鏡観
察によれば、平均粒径0.2μmの立方体、八面体等の
晶癖を有する粉末であった。
ッケル融点の0.71倍)とした以外は同じ条件でニッ
ケル粉を製造した。熱電対8によって測定したところ9
95°C(同0.73倍)まで上昇した0発生したニッ
ケル粉の比表面積は3.6%/gであり、電子顕微鏡観
察によれば、平均粒径0.2μmの立方体、八面体等の
晶癖を有する粉末であった。
〈発明の効果〉
本発明によれば、導電ペーストフィラーとして優れた性
能を持ち、電子部品の導体部の微細パターン化、薄層化
が可能な球状で粒径の揃っ・た、平均粒径が0.1〜数
μmの範囲のニッケル微粉を、安価に、製造することが
できる。
能を持ち、電子部品の導体部の微細パターン化、薄層化
が可能な球状で粒径の揃っ・た、平均粒径が0.1〜数
μmの範囲のニッケル微粉を、安価に、製造することが
できる。
第1図は本発明の実施に好適に用いることのできる反応
器の概略図、第2図は本発明方法により製造したニッケ
ル微粉の粒子構造を示す顕微鏡写真である。 l・・反応器、 3・・・石英ポート、 5・・・反応部、 7・・水素ガス、 9・・・冷却部。 2・・・7発部、 4・・・アルゴンガス、 6・・・ノズル、 8・・・熱電対、
器の概略図、第2図は本発明方法により製造したニッケ
ル微粉の粒子構造を示す顕微鏡写真である。 l・・反応器、 3・・・石英ポート、 5・・・反応部、 7・・水素ガス、 9・・・冷却部。 2・・・7発部、 4・・・アルゴンガス、 6・・・ノズル、 8・・・熱電対、
Claims (1)
- 塩化ニッケル蒸気と水素との化学反応によりニッケル微
粉を製造する方法において、1004℃(1277K)
以上の温度で反応させることを特徴とする球状ニッケル
微粉の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2151645A JPH0445207A (ja) | 1990-06-12 | 1990-06-12 | 球状ニッケル微粒の製造方法 |
DE69126170T DE69126170T2 (de) | 1990-06-12 | 1991-06-12 | Ultrafeines sphärisches Nickelpulver sowie Verfahren zu seiner Herstellung |
KR1019910009836A KR940009339B1 (ko) | 1990-06-12 | 1991-06-12 | 구 형상의 니켈 초미분말 및 그 제조방법 |
EP91305280A EP0461866B1 (en) | 1990-06-12 | 1991-06-12 | Nickel powder comprising ultra-fine spherical particles and method of producing the same |
CA002044454A CA2044454C (en) | 1990-06-12 | 1991-06-12 | Ultrafine spherical nickel powder and method of manufacturing the same |
US08/537,477 US5853451A (en) | 1990-06-12 | 1995-10-02 | Ultrafine spherical nickel powder for use as an electrode of laminated ceramic capacitors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2151645A JPH0445207A (ja) | 1990-06-12 | 1990-06-12 | 球状ニッケル微粒の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0445207A true JPH0445207A (ja) | 1992-02-14 |
Family
ID=15523092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2151645A Pending JPH0445207A (ja) | 1990-06-12 | 1990-06-12 | 球状ニッケル微粒の製造方法 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0461866B1 (ja) |
JP (1) | JPH0445207A (ja) |
KR (1) | KR940009339B1 (ja) |
CA (1) | CA2044454C (ja) |
DE (1) | DE69126170T2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000003823A1 (fr) * | 1998-07-15 | 2000-01-27 | Toho Titanium Co., Ltd. | Poudre de metal |
WO2000006326A1 (fr) * | 1998-07-27 | 2000-02-10 | Toho Titanium Co., Ltd. | Nickel metallique en poudre |
KR100453554B1 (ko) * | 2002-03-27 | 2004-10-20 | 한국지질자원연구원 | 기상 환원반응에 의한 코발트 초미분체 제조방법 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3640511B2 (ja) | 1997-09-05 | 2005-04-20 | Jfeミネラル株式会社 | ニッケル超微粉 |
JPH11189802A (ja) * | 1997-12-25 | 1999-07-13 | Kawatetsu Mining Co Ltd | ニッケル超微粉 |
JPH11189801A (ja) | 1997-12-25 | 1999-07-13 | Kawatetsu Mining Co Ltd | ニッケル超微粉 |
JP3807873B2 (ja) * | 1999-06-08 | 2006-08-09 | 東邦チタニウム株式会社 | Ni超微粉の製造方法 |
JP3492672B1 (ja) * | 2002-05-29 | 2004-02-03 | 東邦チタニウム株式会社 | 金属粉末の製造方法及び製造装置 |
US7799112B2 (en) * | 2003-11-05 | 2010-09-21 | Ishihara Chemical Co., Ltd. | Production method of pure metal/alloy super-micro powder |
KR102564634B1 (ko) * | 2021-11-10 | 2023-08-08 | 한국생산기술연구원 | 무기분말의 제조장치 및 제조방법 |
KR102572729B1 (ko) * | 2021-11-10 | 2023-08-31 | 한국생산기술연구원 | 무기분말의 제조장치 및 제조방법 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB552120A (en) * | 1941-08-14 | 1943-03-24 | Telephone Mfg Co Ltd | Improvements in and relating to the production of metal or alloy powders |
JPS597765B2 (ja) * | 1980-09-13 | 1984-02-21 | 昭宣 吉澤 | 微粉末金属の製造方法 |
JPH0623405B2 (ja) * | 1985-09-17 | 1994-03-30 | 川崎製鉄株式会社 | 球状銅微粉の製造方法 |
JPS62192507A (ja) * | 1986-02-20 | 1987-08-24 | Akinobu Yoshizawa | 金属微粉の製造法 |
-
1990
- 1990-06-12 JP JP2151645A patent/JPH0445207A/ja active Pending
-
1991
- 1991-06-12 EP EP91305280A patent/EP0461866B1/en not_active Expired - Lifetime
- 1991-06-12 KR KR1019910009836A patent/KR940009339B1/ko not_active IP Right Cessation
- 1991-06-12 CA CA002044454A patent/CA2044454C/en not_active Expired - Lifetime
- 1991-06-12 DE DE69126170T patent/DE69126170T2/de not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000003823A1 (fr) * | 1998-07-15 | 2000-01-27 | Toho Titanium Co., Ltd. | Poudre de metal |
WO2000006326A1 (fr) * | 1998-07-27 | 2000-02-10 | Toho Titanium Co., Ltd. | Nickel metallique en poudre |
US6391084B1 (en) | 1998-07-27 | 2002-05-21 | Toho Titanium Co., Ltd. | Metal nickel powder |
KR100453554B1 (ko) * | 2002-03-27 | 2004-10-20 | 한국지질자원연구원 | 기상 환원반응에 의한 코발트 초미분체 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
EP0461866A2 (en) | 1991-12-18 |
EP0461866B1 (en) | 1997-05-21 |
KR940009339B1 (ko) | 1994-10-07 |
DE69126170D1 (de) | 1997-06-26 |
CA2044454A1 (en) | 1991-12-13 |
KR920000417A (ko) | 1992-01-29 |
DE69126170T2 (de) | 1998-01-08 |
CA2044454C (en) | 1997-05-06 |
EP0461866A3 (en) | 1992-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6156094A (en) | Method for producing metal powder | |
EP0735001B1 (en) | Ultrafine particles and production method thereof | |
KR100486604B1 (ko) | 습식환원법에 의한 극미세 구리분말의 제조방법 | |
US5616165A (en) | Method for making gold powders by aerosol decomposition | |
JP2554213B2 (ja) | 球状ニッケル超微粉の製造方法 | |
JPH0445207A (ja) | 球状ニッケル微粒の製造方法 | |
EP1018386B1 (en) | Method for producing nickel powder | |
US5853451A (en) | Ultrafine spherical nickel powder for use as an electrode of laminated ceramic capacitors | |
JPH0623405B2 (ja) | 球状銅微粉の製造方法 | |
KR20040047100A (ko) | 습식환원법에 의한 극미세 은분말의 제조방법 | |
KR101239386B1 (ko) | 수열합성법을 이용한 니켈 분말 직접 제조 방법 | |
CN111515408B (zh) | NiTi合金粉及其制备方法和应用 | |
JPH1180816A (ja) | 導電ペースト用ニッケル粉末とその製造方法 | |
JP4505633B2 (ja) | hcp構造のニッケル粉の製法 | |
JPS62188709A (ja) | 球状銀微粉末の製造方法 | |
JP2005154834A (ja) | ルテニウム超微粉末およびその製造方法 | |
JPH06340906A (ja) | 球状銀微粒子の製造方法 | |
KR101325961B1 (ko) | 슬러리 환원법을 이용한 코발트 분말 제조 방법 및 그 방법으로 제조된 코발트 분말 | |
JPH0257623A (ja) | 銅微粉の製造方法 | |
JP2002363618A (ja) | 銅超微粒子とその製造方法 | |
JP2000119709A (ja) | 金属粉の製造方法 | |
TWI412603B (zh) | 多孔性粉末及其製法 | |
CN116143083A (zh) | 一种氮化硼纳米管的浮动催化式制备方法 | |
JPS6256505A (ja) | 金属超微粒子の製造方法 | |
JP2000096110A (ja) | 金属粉の製造方法 |