JPH0415020B2 - - Google Patents

Info

Publication number
JPH0415020B2
JPH0415020B2 JP59147641A JP14764184A JPH0415020B2 JP H0415020 B2 JPH0415020 B2 JP H0415020B2 JP 59147641 A JP59147641 A JP 59147641A JP 14764184 A JP14764184 A JP 14764184A JP H0415020 B2 JPH0415020 B2 JP H0415020B2
Authority
JP
Japan
Prior art keywords
weight
catalyst
component
parts
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59147641A
Other languages
English (en)
Other versions
JPS6128456A (ja
Inventor
Shinichi Uchida
Yojiro Takahashi
Hisashi Yoshikawa
Yoji Akazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP14764184A priority Critical patent/JPS6128456A/ja
Priority to CA000481767A priority patent/CA1261860A/en
Priority to NZ212129A priority patent/NZ212129A/en
Priority to EP85106175A priority patent/EP0163231B1/en
Priority to DE8585106175T priority patent/DE3576074D1/de
Publication of JPS6128456A publication Critical patent/JPS6128456A/ja
Priority to US06/841,833 priority patent/US4665200A/en
Publication of JPH0415020B2 publication Critical patent/JPH0415020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はデユレンまたは炭酸数4以下のアルキ
ル基含有テトラアルキルベンゼンを空気または分
子状酸素含有ガスにより接触気相酸化してピロメ
リツト酸または無水ピロメリツト酸を製造する上
で好適な触媒を提供するものである。
従来の技術 ピロメリツト酸または無水ピロメリツト酸を製
造する方法にはデユレンを含むテトラアルキルベ
ンゼンの液相酸化、液相硝酸酸化、接触気相酸
化、ジシアノテレフタレートの加水分解等種々提
案されている。とりわけ接触気相酸化法は工業的
に種々の有利性を有しており最も有望なプロセス
の1つである。
然しながら当然プロセスに使用される触媒はこ
れまで数多く提案されているものの、収率及びそ
の使用条件において非常に不満足の結果を与え
る。とくに触媒の使用条件は原料ガス濃度を0.15
〜0.33容量%と非常に低くとり且つ反応ガスの空
間速度を非常に大きくとるという工業的使用にお
いて不利な面が目立つ、例えば特公昭49−20302
号、特公昭49−31972号、特公昭52−3931号公報
等の実施例に記載されている酸化条件としても、
デユレン/空気の割合が約10〜20g/NM3(0.15
〜0.33容量%)で原料ガス中のデユレンの濃度が
低く、原料ガスの空間速度も8000〜15000Hr-1
非常に高い。
本発明の解決しようとする問題点 上述の如く、被酸化物質が原料ガス中において
低濃度であり、しかも原料ガスの空間速度を高く
とるというプロセス条件下では、1つには、空気
または分子状酸素含有ガスの反応器から持ち去る
顕熱をそのような希薄なデユレンの酸化反応熱で
まかないきれないこと、したがつて酸化反応器が
自立しないため外部より加熱の必要のあること、
さらに1つには、高い空間速度は一見工業的に有
利なように見えるが酸化反応の工業的実施におい
ては触媒の充填層高として実質的に1メートル以
上、好ましくは1.5メートル以上が必要となるた
め、そのような高い空間速度の下では反応管内で
のガスの線速度が速くなり、結果的に触媒層の圧
力損失が異常に高くなるといつた不利益がある。
すなわち、ブロアーまたはコンプレツサーを駆
動するためのタービンまたはモーターへの蒸気量
または電気量の増大さらに加熱源エネルギーの増
大につながり高い空間速度かつ低濃度での接触酸
化は経済的とは云えないわけである。
従つて、本発明の目的は空間速度2000〜
6000Hr-1の比較的低い域でその分テトラアルキ
ルベンゼン/空気または分子状酸素含有ガスを従
来より高く20〜60g/HM3とした条件下で高い
収率で無水ピロメリツト酸およびまたはピロメリ
ツト酸を製造するための触媒を提供することであ
る。
問題点を解決するための手段 本発明者らは、これらの問題点を解決するため
に種々触媒の改良について検討を加えた結果、五
酸化バナジウム(V2O5)と二酸化錫(SnO2)と
の混合物に助触媒として五塩化ニオブ(Nb2O5)、
五酸化リン(P2O5)、カリウム、セシウム、ルビ
ジウムおよびタリウムよりなる群より選ばれた1
成分またはそれ以上の酸化物(MeO2)よりなる
触媒活性物質を不活性担体に担持せしめた触媒が
本発明の目的に沿うことを発見した。
さらに、SnO2の一部をTiO2におき替えても
V2O5/SnO2系触媒と同等あるいはそれ以上の本
発明目的に沿うことを見い出した。
また、上気のV2O5/SnO2系もしくはV2O5
SnO2/TiO2系触媒に適当量のSb2O3を添加する
ことにより、触媒がより低温度域で有効に作動す
ることも見い出した。
本発明によれば、バナジムウ成分がV2O5とし
て1〜20重量部、スズ成分またはスズ成分とチタ
ン成分がSnO2+TiO2として99〜80重量部、上気
成分の合計100重量部に対しリン成分がP2O5とし
て0.02〜10重量部、ニオブ成分がNb2O5として
0.01〜5重量部、カリウム、セシウム、ルビジウ
ムおよびタリウムよりなる群から選ばれた少なく
とも1種の成分が酸化物として0.1〜1.2重量部さ
らにアンチモン成分がSb2O5として0〜10重量部
含有されてなる触媒活性物質よりなり、スズ成分
として0.01〜1ミクロンの平均粒子径および5〜
100m2/gの比表面積を有するSnO2粉末を出発原
料として使用して調整された触媒活性物質を不活
性担体に担持せしめてなるデユレンまたはテトラ
アルキルベンゼンの接触気相酸化による無水ピロ
メリツト酸製造用触媒が提供される。
さらにつけ加えるならば本発明者らは、上気の
V2O5−SnO2またはV2O5−SnO2/TiO2系に上気
の助触媒を加えた多成分系触媒において、V2O5
とSnO2またはTiO2/SnO2の合計100重量部に対
して0.1〜10重量部、とくに0.5〜5重量部の
Sb2O3を添加せしめて得た触媒が添加しない触媒
にくらべて20〜30℃最適反応温度の低下すること
を見い出し、触媒寿命上有利な触媒を完成したも
のである。
触媒を構成する各元素は硝酸塩、炭酸塩、硫酸
塩、有機酸塩等加熱により分解し各々の酸化物に
変化する原料より準備される。しかしSnO2は、
硫酸塩、硝酸塩、炭酸塩等の錫塩を予め適当な温
度にて焼成して得られたSnO2粉末を出発原料と
するのが好ましい。とくに好まくは、硫酸第1錫
を600〜900℃で2〜10時間焼成して得られた平均
粒径がが0.01〜1ミクロン、比表面積が5〜100
m2/g、とくに8〜60m2/gのSnO2が触媒原料
として使用される。TiO2も予めチタン化合物を
加熱処理して得られたアナターゼ型のTiO2粉末
を出発原料とするのが好ましく、とくに好ましく
は、イルメナイトを硫酸で溶解し、これに加熱水
蒸気を導き沈殿させて得た含水酸チタンを600〜
900℃の温度にて2〜10時間焼成して得られた平
均粒径が実質的に0.4〜0.7ミクロン、比表面積が
5〜100m2/g、とくに10〜60m2/gの多孔性ア
ナターゼTiO2粉末が使用される。
担体としては通常の不活性担体であればいずれ
でも用いることが出来るが、好ましくは、見掛気
孔率5〜50%、比表面積5m2/g以下、とくに1
m2/g以下のアルミニウム含有量が10重量%以
下、とくに3重量%以下、SiC含有量が50重量%
以上、とくに80重量%以上の無機多孔性担体が使
用され、SiC純度98%程度の自焼結型多孔性担体
も好適に使用される。
担体の形状はとくに限定されず、球、リング、
円柱、円錐、サドル状で見掛け外径として平均3
〜15mm程度のものが適宜使用される。
触媒活性物質の担体への担持法は従来公知の方
法ですなわち、噴霧担持法、含浸担持法等で実施
されるが、好ましくは150〜250℃の温度に加熱せ
られた担体に触媒液または触媒スラリー液を噴霧
して触媒活性物質の担持が行なわれる。
触媒活性物質は担体の見掛体積100c.c.に対して
3〜50g、好ましくは5〜15g担持される。この
ようにして得られた担持体を空気流通下300〜650
℃、好ましくは400〜600℃の温度において1〜10
時間、好ましくは2〜6時間焼成して触媒が得ら
れる。
デユレンまたはテトラアルキルベンゼンからピ
ロメリツト酸または無水ピロメリツト酸への反応
速度は非常に速いので、デユレンまたはテトラア
ルキルベンゼン/分子状酸素含有ガスの割合を高
めて操業する場合、触媒層前半部で殆んどの反応
が進行し結果的にその部位に高い熱点(hot
spot)が生じ選択性を低下せしめると同時に触媒
の劣化を促進する。このため、触媒層前半部を担
体で希釈するとか、触媒活性物質の担持量を減じ
るとか、触媒の粒系を大きくするとか、触媒活性
を抑制するとかの従来公知の手段によりその部位
での反応量を抑制し熱点の温度の高さが低くなる
ようにして触媒を使用することができる。触媒活
性のコントロールは、上気の触媒活性物質の範囲
内で、バナジウム含有量、アルカリ金属含有量お
よびリン含有量を変化させ、あるいは使用する
SnO2,TiO2の比表面積を変化させ適宜行なうこ
とができる。
作用効果性 このようにして得られた触媒は溶融塩の如き熱
媒に囲まれた多管式反応塔に充填して使用される
が、熱媒の温度は340〜440℃、とくに360〜400℃
に保持され、反応管は15〜40mm、とくに20〜30mm
の内径のものが使用される。
触媒は1〜3.5メートル、とくに1.5〜3メート
ルの層高に充填され空気または酸素濃度10〜21溶
量%、水蒸気0〜15溶量%、残部不活性ガスより
なる分子状酸素含有ガスにデユレンまたはテトラ
アルキルベンゼンを20〜60g/NM3−分子状酸
素含有ガスの割合で混合し120〜160℃に予熱され
たガスを空間速度2000〜6000Hr-1で導き接触酸
化せしめる。無水ピロメリツトはデユレンより、
110〜120重量%の収率で得られる。効果性につい
て実施例をもつてさらに詳しく説明する。
実施例 1 硫酸第1錫を800℃にて4時間熱分解して比表
面積18m2/gのSnO2を得た。これを気流粉砕し
平均粒子径0.18ミクロンのSnO2としこれを触媒
原料とした。
水6400c.c.中に蓚酸200gを溶解させ、これにメ
タバナジン酸アンモニウム121.8g、第2リン酸
アンモニウム15.35g、塩化ニオブ19.27gおよび
硝酸セシウム5.24gを添加し十分撹拌した。これ
に上気SnO21800gを加え、乳化機により触媒ス
ラリー液を調製した。
外部加熱式の回転炉中に見掛気孔率42%の平均
直径5mm、平均長さ6mmのペレツト状SiC自焼結
担体(比表面積0.4m2/g)を2000c.c.入れ150〜
200℃に予熱した。これに上気触媒スラリーを散
布し触媒活性物質を180g担持せしめたのち空気
流通下で550℃の温度で6時間焼成して触媒−A
を得た。
一方、第2リン酸アンモニウムの添加量を
27.63gとした以外は触媒−Aの場合と同様にし
触媒−Bが調製された。
410℃に保持された溶融塩浴に浸された内径25
mm、長さ3.5メートルの鉄製反応管に先ず触媒−
Bを1.5メートルの高さに充填し、次いでその上
に触媒−Aを1.5メートルの高さに充填した。
反応管上部よりデユレン/空気の割合が30g/
NM3である混合ガスを140℃に予熱し空間速度
4000Hr-1(STP)で通じたところ113.4重量%の
収率で無水ピロメリツト酸が得られた。
実施例 2 水800c.c.中に塩酸200c.c.を溶解させ、これに五酸
化バナジウム10g、第1リン酸アンモニウム1.62
gおよび硫酸カリウム0.28gを添加し十分撹拌し
た。これに硫酸第1錫42.74gと平均粒子径0.5ミ
クロン、比表面積20m2/gの多孔性アナターゼ型
TiO260gとを加え、乳化機により触媒スラリー
液を調製した。
外部より加熱できる蒸発皿の中に上気触媒スラ
リーおよび見掛気孔率48%、比表面積0.3m2/g
でアルニミウム含有量がAl2O3として8%、SiC
含有量75%およびSiO217%よりなる平均直径6
mmの球状多孔性担体を1000c.c.加え、担体を撹拌し
ながら触媒活性物質を160g濃縮付着させたのち、
580℃の温度にて8時間焼成した。
このようにして調製された触媒を405℃に保持
された内径20mmの反応管に2.5メートルの層高に
充填し、デユレン/空気の割合が40g/NM3
ある混合ガスを空間速度3000Hr-1で通じたとこ
ろ112.1重量%の収率で無水ピロメリツト酸が得
られた。
実施例 3 水6400c.c.中に蓚酸120gを溶解させ、これに
V2O555.7g、NbCI556.1g、第2リン酸アンモニ
ウム9.02g、硫酸ルビジウム7.2g、硫酸タリウ
ム2.33g、粉末状酸化アンチモン(Sb2O3)55.7
gを添加し十分撹拌した。これに実施例1におけ
ると同様にして得られたSnO2930gと実施例2に
おけると同様にしてえられたTiO2870gとを加え
乳化機により触媒スラリー液を調製した。
外部加熱式の回転炉中に見掛気孔率40%、平均
外径7mm、平均内径4mm、平均長さ7mm、その組
成が酸化マグネシウム(MgO)10%、SiO220%
およびSiC70%(いずれも重量%)よりなる多孔
性リング状担体2000c.c.を入れ、150〜200℃に予熱
した。これに上記スラリーを散布し、触媒活性物
質を150g担持せしめ、空気流通下500℃の温度に
て4時間焼成して触媒−Cを得た。
一方、硝酸ルビジウムおよび硫酸タリウムを添
加しない以外は触媒−Cの場合と同様にして触媒
−Dを得た。
380℃に保持された溶融塩浴中に浸された内径
25mm、長さ3.5メートルの鉄製反応管に先ず触媒
−Dを1メートルの層高に、次いでその上に触媒
−Cを1メートルの層高に充填した。
反応管上部よりデユレン/分子状酸素含有ガス
(酸素10%、水蒸気10%、N2バランス)の割合が
40g/NM3である混合ガスを空間速度3500Hr-1
で通じたところ117.3重量%の収率で無水ピロメ
リツト酸が得られた。
発明の効果 実施例1〜3に示す如く、従来の触媒はその使
用条件中デユレン/分子状酸素含有ガス(空気も
含む)の割合は10〜20g/NM3という非常に低
く非常に希薄な被酸化物濃度であつたが本発明触
媒におけるそれは20〜40g/NM3と非常に高い
濃度範囲で有効に活性を維持する。
空間速度も3000〜4000Hr-1で従来の触媒に対
するそれよりも低く、触媒の工業的使用において
空気予熱に要するエネルギーおよび送風エネルギ
ーは大幅に軽減される。
もちろん本発明触媒を5000〜8000Hr-1という
空間速度で使用することも可能であることはいう
までもない。
もつとも、空間速度が3000〜4000Hr-1であつ
てもピロメリツト酸または無水ピロメリツト酸の
空時収率〔S.T.Y.〕は120〜175g/−Cat・Hr
であり、デユレン/分子状酸素含有ガスの割合が
高いため従来の触媒にくらべてむしろ高い水準が
維持されていることは明らかである。

Claims (1)

  1. 【特許請求の範囲】 1 バナジウム成分がV2O5として1〜20重量部、
    スズ成分またはスズ成分とチタン成分がSuO2
    TiO2として99〜80重量部、上記成分の合計100重
    量部に対しリン成分がP2O5として0.02〜10重量
    部、ニオブ成分がNb2O5として0.01〜5重量部、
    カリウム、セシウム、ルビジウムおよびタリウム
    よりなる群から選ばれた少なくとも1種の成分が
    酸化物として0.1〜1.2重量部さらにアンチモン成
    分がSb2O5として0〜10重量部含有されてなる触
    媒活性物質よりなり、スズ成分として0.01〜1ミ
    クロンの平均粒子径および5〜100m2/gの比表
    面積を有するSnO2粉末を出発原料として使用し
    て調整された触媒活性物質を不活性担体に担持せ
    しめてなるデユレンまたはテトラアルキルベンゼ
    ンの接触気相酸化による無水ピロメリツト酸製造
    用触媒。 2 スズ成分とチタン成分の重量比が(TiO2
    SnO2=4以下であることを特徴とする特許請求
    の範囲1記載の触媒。
JP14764184A 1984-05-21 1984-07-18 無水ピロメリツト酸製造用触媒 Granted JPS6128456A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP14764184A JPS6128456A (ja) 1984-07-18 1984-07-18 無水ピロメリツト酸製造用触媒
CA000481767A CA1261860A (en) 1984-05-21 1985-05-17 Method for the preparation of pyromellitic acid or its anhydride
NZ212129A NZ212129A (en) 1984-05-21 1985-05-20 Supported catalyst composition
EP85106175A EP0163231B1 (en) 1984-05-21 1985-05-20 Catalyst for use in preparation of pyromellitic acid and/or pyromellitic anhydride
DE8585106175T DE3576074D1 (de) 1984-05-21 1985-05-20 Katalysator zur verwendung in der herstellung von pyromellithsaeure und/oder pyromellithsaeureanhydrid.
US06/841,833 US4665200A (en) 1984-05-21 1986-03-20 Method for preparing pyromellitic acid and/or pyromellitic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14764184A JPS6128456A (ja) 1984-07-18 1984-07-18 無水ピロメリツト酸製造用触媒

Publications (2)

Publication Number Publication Date
JPS6128456A JPS6128456A (ja) 1986-02-08
JPH0415020B2 true JPH0415020B2 (ja) 1992-03-16

Family

ID=15434926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14764184A Granted JPS6128456A (ja) 1984-05-21 1984-07-18 無水ピロメリツト酸製造用触媒

Country Status (1)

Country Link
JP (1) JPS6128456A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4097749B2 (ja) * 1997-10-03 2008-06-11 株式会社日本触媒 接触酸化用触媒
JP5509688B2 (ja) 2008-06-19 2014-06-04 三菱瓦斯化学株式会社 触媒及びこれを用いたカルボン酸又はカルボン酸無水物の製造方法
CN111097466B (zh) * 2018-10-25 2023-03-03 中国石油化工股份有限公司 用于均酐制备催化剂的制备方法
CN114643052A (zh) * 2020-12-21 2022-06-21 中国石油化工股份有限公司 一种用于合成均酐的催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013349A (ja) * 1973-05-04 1975-02-12
JPS5411270A (en) * 1977-06-27 1979-01-27 Ariake Hamamoto Treating of konbu and like to discolor
JPS5622582A (en) * 1979-07-30 1981-03-03 Hitachi Ltd Starter for current type inverter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013349A (ja) * 1973-05-04 1975-02-12
JPS5411270A (en) * 1977-06-27 1979-01-27 Ariake Hamamoto Treating of konbu and like to discolor
JPS5622582A (en) * 1979-07-30 1981-03-03 Hitachi Ltd Starter for current type inverter

Also Published As

Publication number Publication date
JPS6128456A (ja) 1986-02-08

Similar Documents

Publication Publication Date Title
CA1311740C (en) Method for manufacture of phthalic anhydride
KR950009710B1 (ko) 무수프탈산 제조용 촉매와 그 촉매를 이용한 무수프탈산의 제조방법
US4665200A (en) Method for preparing pyromellitic acid and/or pyromellitic anhydride
JPS603307B2 (ja) 無水フタル酸の製造方法
EP0447267B1 (en) Catalyst for producing phthalic anhydride
JPH0415020B2 (ja)
JPS6037108B2 (ja) 無水フタル酸の製造方法
JPH0413026B2 (ja)
JPH0354944B2 (ja)
JP2592490B2 (ja) 芳香族炭化水素の酸化方法
JPH0149133B2 (ja)
JP3298609B2 (ja) 無水フタル酸製造用触媒およびそれを用いてなる無水フタル酸の製造方法
JPH04215843A (ja) 無水フタル酸製造用触媒
JP2000001484A (ja) 無水ピロメリット酸の製造方法
JPS63208575A (ja) シアノピリジンの製造方法
JPS61100543A (ja) アントラキノンの製造方法
JP2003012664A (ja) 酸無水物の製造方法
JPH0371173B2 (ja)
JPH0218900B2 (ja)
JPS6234742B2 (ja)
JP2002105078A (ja) 無水ピロメリット酸の製造方法
JPH05255181A (ja) 安息香酸製造用触媒及び安息香酸の製造方法
JPH11300206A (ja) 気相酸化触媒及びそれを用いた無水フタル酸の製造方法
JPH0667476B2 (ja) ピロメリツト酸またはその無水物製造用触媒およびその製法
JPS5823859B2 (ja) 2↓−タ↓−シヤリ↓−アルキル置換アンスラキノンの製造方法